mkblctrl cleanup

This commit is contained in:
marco 2013-05-23 21:03:49 +02:00
parent dca844a808
commit 9f090e651a
1 changed files with 278 additions and 241 deletions

View File

@ -76,7 +76,6 @@
#include <uORB/topics/actuator_outputs.h>
#include <systemlib/err.h>
#include <systemlib/ppm_decode.h>
#define I2C_BUS_SPEED 400000
#define UPDATE_RATE 400
@ -114,6 +113,7 @@ public:
virtual int ioctl(file *filp, int cmd, unsigned long arg);
virtual int init(unsigned motors);
virtual ssize_t write(file *filp, const char *buffer, size_t len);
int set_mode(Mode mode);
int set_pwm_rate(unsigned rate);
@ -177,9 +177,10 @@ private:
int gpio_ioctl(file *filp, int cmd, unsigned long arg);
int mk_servo_arm(bool status);
int mk_servo_set(unsigned int chan, float val);
int mk_servo_set_test(unsigned int chan, float val);
int mk_servo_set(unsigned int chan, short val);
int mk_servo_set_value(unsigned int chan, short val);
int mk_servo_test(unsigned int chan);
short scaling(float val, float inMin, float inMax, float outMin, float outMax);
};
@ -207,20 +208,20 @@ const int blctrlAddr_octo_x[] = { 1, 4, 0, 1, -4, 1, 1, -4 }; // Addresstranslat
const int blctrlAddr_px4[] = { 0, 0, 0, 0, 0, 0, 0, 0};
int addrTranslator[] = {0,0,0,0,0,0,0,0};
int addrTranslator[] = {0, 0, 0, 0, 0, 0, 0, 0};
struct MotorData_t
{
struct MotorData_t {
unsigned int Version; // the version of the BL (0 = old)
unsigned int SetPoint; // written by attitude controller
unsigned int SetPointLowerBits; // for higher Resolution of new BLs
unsigned int State; // 7 bit for I2C error counter, highest bit indicates if motor is present
unsigned int ReadMode; // select data to read
// the following bytes must be exactly in that order!
unsigned int Current; // in 0.1 A steps, read back from BL
unsigned int MaxPWM; // read back from BL is less than 255 if BL is in current limit
unsigned int Temperature; // old BL-Ctrl will return a 255 here, the new version the temp. in
unsigned int RoundCount;
unsigned int SetPoint; // written by attitude controller
unsigned int SetPointLowerBits; // for higher Resolution of new BLs
unsigned int State; // 7 bit for I2C error counter, highest bit indicates if motor is present
unsigned int ReadMode; // select data to read
unsigned short RawPwmValue; // length of PWM pulse
// the following bytes must be exactly in that order!
unsigned int Current; // in 0.1 A steps, read back from BL
unsigned int MaxPWM; // read back from BL is less than 255 if BL is in current limit
unsigned int Temperature; // old BL-Ctrl will return a 255 here, the new version the temp. in
unsigned int RoundCount;
};
MotorData_t Motor[MAX_MOTORS];
@ -314,7 +315,7 @@ MK::init(unsigned motors)
/* start the IO interface task */
_task = task_spawn("mkblctrl",
SCHED_DEFAULT,
SCHED_PRIORITY_MAX -20,
SCHED_PRIORITY_MAX - 20,
2048,
(main_t)&MK::task_main_trampoline,
nullptr);
@ -346,27 +347,11 @@ MK::set_mode(Mode mode)
*/
switch (mode) {
case MODE_2PWM:
if(_num_outputs == 4) {
//debug("MODE_QUAD");
} else if(_num_outputs == 6) {
//debug("MODE_HEXA");
} else if(_num_outputs == 8) {
//debug("MODE_OCTO");
}
//up_pwm_servo_init(0x3);
up_pwm_servo_deinit();
_update_rate = UPDATE_RATE; /* default output rate */
break;
case MODE_4PWM:
if(_num_outputs == 4) {
//debug("MODE_QUADRO");
} else if(_num_outputs == 6) {
//debug("MODE_HEXA");
} else if(_num_outputs == 8) {
//debug("MODE_OCTO");
}
//up_pwm_servo_init(0xf);
up_pwm_servo_deinit();
_update_rate = UPDATE_RATE; /* default output rate */
break;
@ -412,45 +397,55 @@ MK::set_frametype(int frametype)
int
MK::set_motor_count(unsigned count)
{
if(count > 0) {
if (count > 0) {
_num_outputs = count;
if(_px4mode == MAPPING_MK) {
if(_frametype == FRAME_PLUS) {
if (_px4mode == MAPPING_MK) {
if (_frametype == FRAME_PLUS) {
fprintf(stderr, "[mkblctrl] addresstanslator for Mikrokopter addressing used. Frametype: +\n");
} else if(_frametype == FRAME_X) {
} else if (_frametype == FRAME_X) {
fprintf(stderr, "[mkblctrl] addresstanslator for Mikrokopter addressing used. Frametype: X\n");
}
if(_num_outputs == 4) {
if(_frametype == FRAME_PLUS) {
if (_num_outputs == 4) {
if (_frametype == FRAME_PLUS) {
memcpy(&addrTranslator, &blctrlAddr_quad_plus, sizeof(blctrlAddr_quad_plus));
} else if(_frametype == FRAME_X) {
} else if (_frametype == FRAME_X) {
memcpy(&addrTranslator, &blctrlAddr_quad_x, sizeof(blctrlAddr_quad_x));
}
} else if(_num_outputs == 6) {
if(_frametype == FRAME_PLUS) {
} else if (_num_outputs == 6) {
if (_frametype == FRAME_PLUS) {
memcpy(&addrTranslator, &blctrlAddr_hexa_plus, sizeof(blctrlAddr_hexa_plus));
} else if(_frametype == FRAME_X) {
} else if (_frametype == FRAME_X) {
memcpy(&addrTranslator, &blctrlAddr_hexa_x, sizeof(blctrlAddr_hexa_x));
}
} else if(_num_outputs == 8) {
if(_frametype == FRAME_PLUS) {
} else if (_num_outputs == 8) {
if (_frametype == FRAME_PLUS) {
memcpy(&addrTranslator, &blctrlAddr_octo_plus, sizeof(blctrlAddr_octo_plus));
} else if(_frametype == FRAME_X) {
} else if (_frametype == FRAME_X) {
memcpy(&addrTranslator, &blctrlAddr_octo_x, sizeof(blctrlAddr_octo_x));
}
}
} else {
fprintf(stderr, "[mkblctrl] PX4 native addressing used.\n");
memcpy(&addrTranslator, &blctrlAddr_px4, sizeof(blctrlAddr_px4));
}
if(_num_outputs == 4) {
if (_num_outputs == 4) {
fprintf(stderr, "[mkblctrl] Quadrocopter Mode (4)\n");
} else if(_num_outputs == 6) {
} else if (_num_outputs == 6) {
fprintf(stderr, "[mkblctrl] Hexacopter Mode (6)\n");
} else if(_num_outputs == 8) {
} else if (_num_outputs == 8) {
fprintf(stderr, "[mkblctrl] Octocopter Mode (8)\n");
}
@ -469,16 +464,35 @@ MK::set_motor_test(bool motortest)
return OK;
}
short
MK::scaling(float val, float inMin, float inMax, float outMin, float outMax)
{
short retVal = 0;
retVal = (val - inMin) / (inMax - inMin) * (outMax - outMin) + outMin;
if (retVal < outMin) {
retVal = outMin;
} else if (retVal > outMax) {
retVal = outMax;
}
return retVal;
}
void
MK::task_main()
{
long update_rate_in_us = 0;
float tmpVal = 0;
/*
* Subscribe to the appropriate PWM output topic based on whether we are the
* primary PWM output or not.
*/
_t_actuators = orb_subscribe(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS :
ORB_ID(actuator_controls_1));
ORB_ID(actuator_controls_0));
/* force a reset of the update rate */
_current_update_rate = 0;
@ -488,16 +502,11 @@ MK::task_main()
/* advertise the mixed control outputs */
actuator_outputs_s outputs;
memset(&outputs, 0, sizeof(outputs));
/* advertise the mixed control outputs */
_t_outputs = orb_advertise(_primary_pwm_device ? ORB_ID_VEHICLE_CONTROLS : ORB_ID(actuator_outputs_1),
&outputs);
/* advertise the effective control inputs */
actuator_controls_effective_s controls_effective;
memset(&controls_effective, 0, sizeof(controls_effective));
/* advertise the effective control inputs */
_t_actuators_effective = orb_advertise(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE : ORB_ID(actuator_controls_effective_1),
&controls_effective);
pollfd fds[2];
fds[0].fd = _t_actuators;
@ -505,15 +514,7 @@ MK::task_main()
fds[1].fd = _t_armed;
fds[1].events = POLLIN;
// rc input, published to ORB
struct rc_input_values rc_in;
orb_advert_t to_input_rc = 0;
memset(&rc_in, 0, sizeof(rc_in));
rc_in.input_source = RC_INPUT_SOURCE_PX4FMU_PPM;
log("starting");
long update_rate_in_us = 0;
/* loop until killed */
while (!_task_should_exit) {
@ -528,6 +529,7 @@ MK::task_main()
update_rate_in_ms = 2;
_update_rate = 500;
}
/* reject slower than 50 Hz updates */
if (update_rate_in_ms > 20) {
update_rate_in_ms = 20;
@ -539,8 +541,9 @@ MK::task_main()
_current_update_rate = _update_rate;
}
/* sleep waiting for data, but no more than a second */
int ret = ::poll(&fds[0], 2, 1000);
/* sleep waiting for data, stopping to check for PPM
* input at 100Hz */
int ret = ::poll(&fds[0], 2, 100);
/* this would be bad... */
if (ret < 0) {
@ -553,7 +556,7 @@ MK::task_main()
if (fds[0].revents & POLLIN) {
/* get controls - must always do this to avoid spinning */
orb_copy(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS : ORB_ID(actuator_controls_1), _t_actuators, &_controls);
orb_copy(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS : ORB_ID(actuator_controls_0), _t_actuators, &_controls);
/* can we mix? */
if (_mixers != nullptr) {
@ -565,53 +568,52 @@ MK::task_main()
// XXX output actual limited values
memcpy(&controls_effective, &_controls, sizeof(controls_effective));
orb_publish(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE : ORB_ID(actuator_controls_effective_1), _t_actuators_effective, &controls_effective);
/* iterate actuators */
for (unsigned int i = 0; i < _num_outputs; i++) {
/* last resort: catch NaN, INF and out-of-band errors */
if (i < outputs.noutputs &&
isfinite(outputs.output[i]) &&
outputs.output[i] >= -1.0f &&
outputs.output[i] <= 1.0f) {
isfinite(outputs.output[i]) &&
outputs.output[i] >= -1.0f &&
outputs.output[i] <= 1.0f) {
/* scale for PWM output 900 - 2100us */
//outputs.output[i] = 1500 + (600 * outputs.output[i]);
//outputs.output[i] = 127 + (127 * outputs.output[i]);
/* nothing to do here */
} else {
/*
* Value is NaN, INF or out of band - set to the minimum value.
* This will be clearly visible on the servo status and will limit the risk of accidentally
* spinning motors. It would be deadly in flight.
*/
if(outputs.output[i] < -1.0f) {
if (outputs.output[i] < -1.0f) {
outputs.output[i] = -1.0f;
} else if(outputs.output[i] > 1.0f) {
} else if (outputs.output[i] > 1.0f) {
outputs.output[i] = 1.0f;
} else {
outputs.output[i] = -1.0f;
}
}
/* don't go under BLCTRL_MIN_VALUE */
if(outputs.output[i] < BLCTRL_MIN_VALUE) {
if (outputs.output[i] < BLCTRL_MIN_VALUE) {
outputs.output[i] = BLCTRL_MIN_VALUE;
}
//_motortest = true;
/* output to BLCtrl's */
if(_motortest == true) {
mk_servo_test(i);
} else {
//mk_servo_set(i, outputs.output[i]);
mk_servo_set_test(i, outputs.output[i]); // 8Bit
}
/* output to BLCtrl's */
if (_motortest == true) {
mk_servo_test(i);
} else {
mk_servo_set_value(i, scaling(outputs.output[i], -1.0f, 1.0f, 0, 1024)); // scale the output to 0 - 1024 and sent to output routine
}
}
/* and publish for anyone that cares to see */
orb_publish(_primary_pwm_device ? ORB_ID_VEHICLE_CONTROLS : ORB_ID(actuator_outputs_1), _t_outputs, &outputs);
}
}
/* how about an arming update? */
@ -622,29 +624,9 @@ MK::task_main()
orb_copy(ORB_ID(actuator_armed), _t_armed, &aa);
/* update PWM servo armed status if armed and not locked down */
////up_pwm_servo_arm(aa.armed && !aa.lockdown);
mk_servo_arm(aa.armed && !aa.lockdown);
}
// see if we have new PPM input data
if (ppm_last_valid_decode != rc_in.timestamp) {
// we have a new PPM frame. Publish it.
rc_in.channel_count = ppm_decoded_channels;
if (rc_in.channel_count > RC_INPUT_MAX_CHANNELS) {
rc_in.channel_count = RC_INPUT_MAX_CHANNELS;
}
for (uint8_t i=0; i<rc_in.channel_count; i++) {
rc_in.values[i] = ppm_buffer[i];
}
rc_in.timestamp = ppm_last_valid_decode;
/* lazily advertise on first publication */
if (to_input_rc == 0) {
to_input_rc = orb_advertise(ORB_ID(input_rc), &rc_in);
} else {
orb_publish(ORB_ID(input_rc), to_input_rc, &rc_in);
}
}
}
@ -666,7 +648,7 @@ MK::task_main()
}
int
int
MK::mk_servo_arm(bool status)
{
_armed = status;
@ -680,12 +662,13 @@ MK::mk_check_for_blctrl(unsigned int count, bool showOutput)
_retries = 50;
uint8_t foundMotorCount = 0;
for(unsigned i=0; i<MAX_MOTORS; i++) {
for (unsigned i = 0; i < MAX_MOTORS; i++) {
Motor[i].Version = 0;
Motor[i].SetPoint = 0;
Motor[i].SetPointLowerBits = 0;
Motor[i].State = 0;
Motor[i].ReadMode = 0;
Motor[i].RawPwmValue = 0;
Motor[i].Current = 0;
Motor[i].MaxPWM = 0;
Motor[i].Temperature = 0;
@ -695,34 +678,37 @@ MK::mk_check_for_blctrl(unsigned int count, bool showOutput)
uint8_t msg = 0;
uint8_t result[3];
for(unsigned i=0; i< count; i++) {
for (unsigned i = 0; i < count; i++) {
result[0] = 0;
result[1] = 0;
result[2] = 0;
set_address( BLCTRL_BASE_ADDR + i );
set_address(BLCTRL_BASE_ADDR + i);
if (OK == transfer(&msg, 1, &result[0], 3)) {
Motor[i].Current = result[0];
Motor[i].MaxPWM = result[1];
Motor[i].Temperature = result[2];
Motor[i].State |= MOTOR_STATE_PRESENT_MASK; // set present bit;
foundMotorCount++;
if(Motor[i].MaxPWM == 250) {
if (Motor[i].MaxPWM == 250) {
Motor[i].Version = BLCTRL_NEW;
} else {
Motor[i].Version = BLCTRL_OLD;
}
}
}
if(showOutput) {
fprintf(stderr, "[mkblctrl] MotorsFound: %i\n",foundMotorCount);
for(unsigned i=0; i< foundMotorCount; i++) {
fprintf(stderr, "[mkblctrl] blctrl[%i] : found=%i\tversion=%i\tcurrent=%i\tmaxpwm=%i\ttemperature=%i\n", i,Motor[i].State, Motor[i].Version, Motor[i].Current, Motor[i].MaxPWM, Motor[i].Temperature);
if (showOutput) {
fprintf(stderr, "[mkblctrl] MotorsFound: %i\n", foundMotorCount);
for (unsigned i = 0; i < foundMotorCount; i++) {
fprintf(stderr, "[mkblctrl] blctrl[%i] : found=%i\tversion=%i\tcurrent=%i\tmaxpwm=%i\ttemperature=%i\n", i, Motor[i].State, Motor[i].Version, Motor[i].Current, Motor[i].MaxPWM, Motor[i].Temperature);
}
if(foundMotorCount != 4 && foundMotorCount != 6 && foundMotorCount != 8) {
if (foundMotorCount != 4 && foundMotorCount != 6 && foundMotorCount != 8) {
_task_should_exit = true;
}
}
@ -734,122 +720,136 @@ MK::mk_check_for_blctrl(unsigned int count, bool showOutput)
int
MK::mk_servo_set(unsigned int chan, float val)
MK::mk_servo_set(unsigned int chan, short val)
{
float tmpVal = 0;
short tmpVal = 0;
_retries = 0;
uint8_t result[3] = { 0,0,0 };
uint8_t msg[2] = { 0,0 };
uint8_t rod=0;
uint8_t result[3] = { 0, 0, 0 };
uint8_t msg[2] = { 0, 0 };
uint8_t rod = 0;
uint8_t bytesToSendBL2 = 2;
tmpVal = val;
tmpVal = (1023 + (1023 * val));
if(tmpVal > 2047) {
tmpVal = 2047;
if (tmpVal > 1024) {
tmpVal = 1024;
} else if (tmpVal < 0) {
tmpVal = 0;
}
Motor[chan].SetPoint = (uint8_t)(tmpVal / 4);
//Motor[chan].SetPointLowerBits = (uint8_t) tmpVal % 4;
Motor[chan].SetPoint = (uint8_t) tmpVal / 3; // divide 8
Motor[chan].SetPointLowerBits = (uint8_t) tmpVal % 8; // rest of divide 8
//rod = (uint8_t) tmpVal % 8;
//Motor[chan].SetPointLowerBits = rod<<1; // rest of divide 8
Motor[chan].SetPointLowerBits = 0;
if(_armed == false) {
if (_armed == false) {
Motor[chan].SetPoint = 0;
Motor[chan].SetPointLowerBits = 0;
}
//if(Motor[chan].State & MOTOR_STATE_PRESENT_MASK) {
set_address(BLCTRL_BASE_ADDR + (chan + addrTranslator[chan]));
set_address(BLCTRL_BASE_ADDR + (chan + addrTranslator[chan]));
if (Motor[chan].Version == BLCTRL_OLD) {
/*
* Old BL-Ctrl 8Bit served. Version < 2.0
*/
msg[0] = Motor[chan].SetPoint;
if (Motor[chan].RoundCount >= 16) {
// on each 16th cyle we read out the status messages from the blctrl
if (OK == transfer(&msg[0], 1, &result[0], 2)) {
Motor[chan].Current = result[0];
Motor[chan].MaxPWM = result[1];
Motor[chan].Temperature = 255;;
if(Motor[chan].Version == BLCTRL_OLD) {
/*
* Old BL-Ctrl 8Bit served. Version < 2.0
*/
msg[0] = Motor[chan].SetPoint;
if(Motor[chan].RoundCount >= 16) {
// on each 16th cyle we read out the status messages from the blctrl
if (OK == transfer(&msg[0], 1, &result[0], 2)) {
Motor[chan].Current = result[0];
Motor[chan].MaxPWM = result[1];
Motor[chan].Temperature = 255;;
} else {
if((Motor[chan].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[chan].State++; // error
}
Motor[chan].RoundCount = 0;
} else {
if (OK != transfer(&msg[0], 1, nullptr, 0)) {
if((Motor[chan].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[chan].State++; // error
}
if ((Motor[chan].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[chan].State++; // error
}
Motor[chan].RoundCount = 0;
} else {
/*
* New BL-Ctrl 11Bit served. Version >= 2.0
*/
msg[0] = Motor[chan].SetPoint;
msg[1] = Motor[chan].SetPointLowerBits;
if(Motor[chan].SetPointLowerBits == 0) {
bytesToSendBL2 = 1; // if setpoint lower bits are zero, we send only the higher bits - this saves time
if (OK != transfer(&msg[0], 1, nullptr, 0)) {
if ((Motor[chan].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[chan].State++; // error
}
if(Motor[chan].RoundCount >= 16) {
// on each 16th cyle we read out the status messages from the blctrl
if (OK == transfer(&msg[0], bytesToSendBL2, &result[0], 3)) {
Motor[chan].Current = result[0];
Motor[chan].MaxPWM = result[1];
Motor[chan].Temperature = result[2];
} else {
if((Motor[chan].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[chan].State++; // error
}
Motor[chan].RoundCount = 0;
} else {
if (OK != transfer(&msg[0], bytesToSendBL2, nullptr, 0)) {
if((Motor[chan].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[chan].State++; // error
}
}
}
Motor[chan].RoundCount++;
} else {
/*
* New BL-Ctrl 11Bit served. Version >= 2.0
*/
msg[0] = Motor[chan].SetPoint;
msg[1] = Motor[chan].SetPointLowerBits;
if (Motor[chan].SetPointLowerBits == 0) {
bytesToSendBL2 = 1; // if setpoint lower bits are zero, we send only the higher bits - this saves time
}
if (Motor[chan].RoundCount >= 16) {
// on each 16th cyle we read out the status messages from the blctrl
if (OK == transfer(&msg[0], bytesToSendBL2, &result[0], 3)) {
Motor[chan].Current = result[0];
Motor[chan].MaxPWM = result[1];
Motor[chan].Temperature = result[2];
} else {
if ((Motor[chan].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[chan].State++; // error
}
Motor[chan].RoundCount = 0;
} else {
if (OK != transfer(&msg[0], bytesToSendBL2, nullptr, 0)) {
if ((Motor[chan].State & MOTOR_STATE_ERROR_MASK) < MOTOR_STATE_ERROR_MASK) Motor[chan].State++; // error
}
}
}
Motor[chan].RoundCount++;
//}
if(showDebug == true) {
if (showDebug == true) {
debugCounter++;
if(debugCounter == 2000) {
if (debugCounter == 2000) {
debugCounter = 0;
for(int i=0; i<_num_outputs; i++){
if(Motor[i].State & MOTOR_STATE_PRESENT_MASK) {
for (int i = 0; i < _num_outputs; i++) {
if (Motor[i].State & MOTOR_STATE_PRESENT_MASK) {
fprintf(stderr, "[mkblctrl] #%i:\tVer: %i\tVal: %i\tCurr: %i\tMaxPWM: %i\tTemp: %i\tState: %i\n", i, Motor[i].Version, Motor[i].SetPoint, Motor[i].Current, Motor[i].MaxPWM, Motor[i].Temperature, Motor[i].State);
}
}
fprintf(stderr, "\n");
}
}
return 0;
}
int
MK::mk_servo_set_test(unsigned int chan, float val)
MK::mk_servo_set_value(unsigned int chan, short val)
{
_retries = 0;
int ret;
short tmpVal = 0;
uint8_t msg[2] = { 0, 0 };
float tmpVal = 0;
tmpVal = val;
uint8_t msg[2] = { 0,0 };
if (tmpVal > 1024) {
tmpVal = 1024;
tmpVal = (1023 + (1023 * val));
if(tmpVal > 2048) {
tmpVal = 2048;
} else if (tmpVal < 0) {
tmpVal = 0;
}
Motor[chan].SetPoint = (uint8_t) (tmpVal / 8);
Motor[chan].SetPoint = (uint8_t)(tmpVal / 4);
if(_armed == false) {
if (_armed == false) {
Motor[chan].SetPoint = 0;
Motor[chan].SetPointLowerBits = 0;
}
@ -860,7 +860,6 @@ MK::mk_servo_set_test(unsigned int chan, float val)
ret = transfer(&msg[0], 1, nullptr, 0);
ret = OK;
return ret;
}
@ -868,59 +867,61 @@ MK::mk_servo_set_test(unsigned int chan, float val)
int
MK::mk_servo_test(unsigned int chan)
{
int ret=0;
int ret = 0;
float tmpVal = 0;
float val = -1;
_retries = 0;
uint8_t msg[2] = { 0,0 };
uint8_t msg[2] = { 0, 0 };
if(debugCounter >= MOTOR_SPINUP_COUNTER) {
if (debugCounter >= MOTOR_SPINUP_COUNTER) {
debugCounter = 0;
_motor++;
if(_motor < _num_outputs) {
if (_motor < _num_outputs) {
fprintf(stderr, "[mkblctrl] Motortest - #%i:\tspinup\n", _motor);
}
if(_motor >= _num_outputs) {
if (_motor >= _num_outputs) {
_motor = -1;
_motortest = false;
}
}
debugCounter++;
if(_motor == chan) {
if (_motor == chan) {
val = BLCTRL_MIN_VALUE;
} else {
val = -1;
}
tmpVal = (1023 + (1023 * val));
if(tmpVal > 2048) {
tmpVal = 2048;
tmpVal = (511 + (511 * val));
if (tmpVal > 1024) {
tmpVal = 1024;
}
//Motor[chan].SetPoint = (uint8_t) (tmpVal / 8);
//Motor[chan].SetPointLowerBits = (uint8_t) (tmpVal % 8) & 0x07;
Motor[chan].SetPoint = (uint8_t) tmpVal>>3;
Motor[chan].SetPointLowerBits = (uint8_t) tmpVal & 0x07;
Motor[chan].SetPoint = (uint8_t)(tmpVal / 4);
if(_motor != chan) {
if (_motor != chan) {
Motor[chan].SetPoint = 0;
Motor[chan].SetPointLowerBits = 0;
}
if(Motor[chan].Version == BLCTRL_OLD) {
if (Motor[chan].Version == BLCTRL_OLD) {
msg[0] = Motor[chan].SetPoint;
} else {
msg[0] = Motor[chan].SetPoint;
msg[1] = Motor[chan].SetPointLowerBits;
}
set_address(BLCTRL_BASE_ADDR + (chan + addrTranslator[chan]));
if(Motor[chan].Version == BLCTRL_OLD) {
if (Motor[chan].Version == BLCTRL_OLD) {
ret = transfer(&msg[0], 1, nullptr, 0);
} else {
ret = transfer(&msg[0], 2, nullptr, 0);
}
@ -931,9 +932,9 @@ MK::mk_servo_test(unsigned int chan)
int
MK::control_callback(uintptr_t handle,
uint8_t control_group,
uint8_t control_index,
float &input)
uint8_t control_group,
uint8_t control_index,
float &input)
{
const actuator_controls_s *controls = (actuator_controls_s *)handle;
@ -947,7 +948,6 @@ MK::ioctl(file *filp, int cmd, unsigned long arg)
int ret;
// XXX disabled, confusing users
//debug("ioctl 0x%04x 0x%08x", cmd, arg);
/* try it as a GPIO ioctl first */
ret = gpio_ioctl(filp, cmd, arg);
@ -978,32 +978,37 @@ int
MK::pwm_ioctl(file *filp, int cmd, unsigned long arg)
{
int ret = OK;
int channel;
lock();
switch (cmd) {
case PWM_SERVO_ARM:
////up_pwm_servo_arm(true);
mk_servo_arm(true);
break;
case PWM_SERVO_SET_ARM_OK:
case PWM_SERVO_CLEAR_ARM_OK:
// these are no-ops, as no safety switch
break;
case PWM_SERVO_DISARM:
////up_pwm_servo_arm(false);
mk_servo_arm(false);
break;
case PWM_SERVO_SET_UPDATE_RATE:
set_pwm_rate(arg);
ret = OK;
break;
case PWM_SERVO_SELECT_UPDATE_RATE:
ret = OK;
break;
case PWM_SERVO_SET(0) ... PWM_SERVO_SET(_max_actuators - 1):
if (arg < 2150) {
Motor[cmd - PWM_SERVO_SET(0)].RawPwmValue = (unsigned short)arg;
mk_servo_set_value(cmd - PWM_SERVO_SET(0), scaling(arg, 1010, 2100, 0, 1024));
/* fake an update to the selected 'servo' channel */
if ((arg >= 0) && (arg <= 255)) {
channel = cmd - PWM_SERVO_SET(0);
//mk_servo_set(channel, arg);
} else {
ret = -EINVAL;
}
@ -1012,20 +1017,20 @@ MK::pwm_ioctl(file *filp, int cmd, unsigned long arg)
case PWM_SERVO_GET(0) ... PWM_SERVO_GET(_max_actuators - 1):
/* copy the current output value from the channel */
*(servo_position_t *)arg = cmd - PWM_SERVO_GET(0);
*(servo_position_t *)arg = Motor[cmd - PWM_SERVO_SET(0)].RawPwmValue;
break;
case PWM_SERVO_GET_RATEGROUP(0):
case PWM_SERVO_GET_RATEGROUP(1):
case PWM_SERVO_GET_RATEGROUP(2):
case PWM_SERVO_GET_RATEGROUP(3):
//*(uint32_t *)arg = up_pwm_servo_get_rate_group(cmd - PWM_SERVO_GET_RATEGROUP(0));
break;
case PWM_SERVO_GET_COUNT:
case MIXERIOCGETOUTPUTCOUNT:
/*
if (_mode == MODE_4PWM) {
*(unsigned *)arg = 4;
} else {
*(unsigned *)arg = 2;
}
*/
*(unsigned *)arg = _num_outputs;
break;
case MIXERIOCRESET:
@ -1078,6 +1083,7 @@ MK::pwm_ioctl(file *filp, int cmd, unsigned long arg)
ret = -EINVAL;
}
}
break;
}
@ -1091,6 +1097,32 @@ MK::pwm_ioctl(file *filp, int cmd, unsigned long arg)
return ret;
}
/*
this implements PWM output via a write() method, for compatibility
with px4io
*/
ssize_t
MK::write(file *filp, const char *buffer, size_t len)
{
unsigned count = len / 2;
uint16_t values[4];
if (count > 4) {
// we only have 4 PWM outputs on the FMU
count = 4;
}
// allow for misaligned values
memcpy(values, buffer, count * 2);
for (uint8_t i = 0; i < count; i++) {
Motor[i].RawPwmValue = (unsigned short)values[i];
mk_servo_set_value(i, scaling(values[i], 1010, 2100, 0, 1024));
}
return count * 2;
}
void
MK::gpio_reset(void)
{
@ -1229,10 +1261,10 @@ enum MappingMode {
MAPPING_PX4,
};
enum FrameType {
FRAME_PLUS = 0,
FRAME_X,
};
enum FrameType {
FRAME_PLUS = 0,
FRAME_X,
};
PortMode g_port_mode;
@ -1297,18 +1329,17 @@ mk_new_mode(PortMode new_mode, int update_rate, int motorcount, bool motortest,
g_mk->set_motor_test(motortest);
/* (re)set count of used motors */
////g_mk->set_motor_count(motorcount);
/* count used motors */
do {
if(g_mk->mk_check_for_blctrl(8, false) != 0) {
if (g_mk->mk_check_for_blctrl(8, false) != 0) {
shouldStop = 4;
} else {
shouldStop++;
}
sleep(1);
} while ( shouldStop < 3);
} while (shouldStop < 3);
g_mk->set_motor_count(g_mk->mk_check_for_blctrl(8, true));
@ -1375,7 +1406,8 @@ mkblctrl_main(int argc, char *argv[])
if (argc > i + 1) {
bus = atoi(argv[i + 1]);
newMode = true;
} else {
} else {
errx(1, "missing argument for i2c bus (-b)");
return 1;
}
@ -1384,17 +1416,21 @@ mkblctrl_main(int argc, char *argv[])
/* look for the optional frame parameter */
if (strcmp(argv[i], "-mkmode") == 0 || strcmp(argv[i], "--mkmode") == 0) {
if (argc > i + 1) {
if(strcmp(argv[i + 1], "+") == 0 || strcmp(argv[i + 1], "x") == 0 || strcmp(argv[i + 1], "X") == 0) {
if (strcmp(argv[i + 1], "+") == 0 || strcmp(argv[i + 1], "x") == 0 || strcmp(argv[i + 1], "X") == 0) {
px4mode = MAPPING_MK;
newMode = true;
if(strcmp(argv[i + 1], "+") == 0) {
if (strcmp(argv[i + 1], "+") == 0) {
frametype = FRAME_PLUS;
} else {
frametype = FRAME_X;
}
} else {
errx(1, "only + or x for frametype supported !");
}
} else {
errx(1, "missing argument for mkmode (-mkmode)");
return 1;
@ -1409,12 +1445,12 @@ mkblctrl_main(int argc, char *argv[])
/* look for the optional -h --help parameter */
if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
showHelp == true;
showHelp = true;
}
}
if(showHelp) {
if (showHelp) {
fprintf(stderr, "mkblctrl: help:\n");
fprintf(stderr, " [-mkmode frame{+/x}] [-b i2c_bus_number] [-t motortest] [-h / --help]\n");
exit(1);
@ -1424,6 +1460,7 @@ mkblctrl_main(int argc, char *argv[])
if (g_mk == nullptr) {
if (mk_start(bus, motorcount) != OK) {
errx(1, "failed to start the MK-BLCtrl driver");
} else {
newMode = true;
}