forked from Archive/PX4-Autopilot
ekf: split accel bias learning in independant xyz components (#817)
This is a non-functional change required to select accel bias estimation per axis selection. The intent is then to disable the learning before takeoff of the components that are poorly observable.
This commit is contained in:
parent
19bbea75c0
commit
9788c3bdf2
|
@ -146,37 +146,42 @@ void Ekf::predictCovariance()
|
|||
const float d_vel_bias_sig = dt * dt * math::constrain(_params.accel_bias_p_noise, 0.0f, 1.0f);
|
||||
|
||||
// inhibit learning of imu accel bias if the manoeuvre levels are too high to protect against the effect of sensor nonlinearities or bad accel data is detected
|
||||
// xy accel bias learning is also disabled on ground as those states are poorly observable when perpendicular to the gravity vector
|
||||
const float alpha = math::constrain((dt / _params.acc_bias_learn_tc), 0.0f, 1.0f);
|
||||
const float beta = 1.0f - alpha;
|
||||
_ang_rate_magnitude_filt = fmaxf(dt_inv * _imu_sample_delayed.delta_ang.norm(), beta * _ang_rate_magnitude_filt);
|
||||
_accel_magnitude_filt = fmaxf(dt_inv * _imu_sample_delayed.delta_vel.norm(), beta * _accel_magnitude_filt);
|
||||
_accel_vec_filt = alpha * dt_inv * _imu_sample_delayed.delta_vel + beta * _accel_vec_filt;
|
||||
|
||||
if (_ang_rate_magnitude_filt > _params.acc_bias_learn_gyr_lim
|
||||
|| _accel_magnitude_filt > _params.acc_bias_learn_acc_lim
|
||||
|| _bad_vert_accel_detected) {
|
||||
const bool is_manoeuvre_level_high = _ang_rate_magnitude_filt > _params.acc_bias_learn_gyr_lim
|
||||
|| _accel_magnitude_filt > _params.acc_bias_learn_acc_lim;
|
||||
|
||||
// store the bias state variances to be reinstated later
|
||||
if (!_accel_bias_inhibit) {
|
||||
_prev_dvel_bias_var = P.slice<3,3>(13,13).diag();
|
||||
}
|
||||
const bool do_inhibit_all_axes = (_params.fusion_mode & MASK_INHIBIT_ACC_BIAS)
|
||||
|| is_manoeuvre_level_high
|
||||
|| _bad_vert_accel_detected;
|
||||
|
||||
_accel_bias_inhibit = true;
|
||||
for (unsigned stateIndex = 13; stateIndex <= 15; stateIndex++) {
|
||||
const unsigned index = stateIndex - 13;
|
||||
|
||||
} else {
|
||||
if (_accel_bias_inhibit) {
|
||||
// reinstate the bias state variances
|
||||
P(13,13) = _prev_dvel_bias_var(0);
|
||||
P(14,14) = _prev_dvel_bias_var(1);
|
||||
P(15,15) = _prev_dvel_bias_var(2);
|
||||
// TODO: When on ground, only consider an accel bias observable if aligned with the gravity vector
|
||||
// const bool is_bias_observable = (fabsf(_R_to_earth(2, index)) > 0.8f) || _control_status.flags.in_air;
|
||||
const bool is_bias_observable = true;
|
||||
const bool do_inhibit_axis = do_inhibit_all_axes || !is_bias_observable;
|
||||
|
||||
if (do_inhibit_axis) {
|
||||
// store the bias state variances to be reinstated later
|
||||
if (!_accel_bias_inhibit[index]) {
|
||||
_prev_dvel_bias_var(index) = P(stateIndex, stateIndex);
|
||||
_accel_bias_inhibit[index] = true;
|
||||
}
|
||||
|
||||
} else {
|
||||
// store the bias state variances to be reinstated later
|
||||
_prev_dvel_bias_var = P.slice<3,3>(13,13).diag();
|
||||
|
||||
if (_accel_bias_inhibit[index]) {
|
||||
// reinstate the bias state variances
|
||||
P(stateIndex, stateIndex) = _prev_dvel_bias_var(index);
|
||||
_accel_bias_inhibit[index] = false;
|
||||
}
|
||||
}
|
||||
|
||||
_accel_bias_inhibit = false;
|
||||
}
|
||||
|
||||
// Don't continue to grow the earth field variances if they are becoming too large or we are not doing 3-axis fusion as this can make the covariance matrix badly conditioned
|
||||
|
@ -431,68 +436,43 @@ void Ekf::predictCovariance()
|
|||
nextP(i,i) = kahanSummation(nextP(i,i), process_noise(i), _delta_angle_bias_var_accum(index));
|
||||
}
|
||||
|
||||
// Don't calculate these covariance terms if IMU delta velocity bias estimation is inhibited
|
||||
if (!(_params.fusion_mode & MASK_INHIBIT_ACC_BIAS) && !_accel_bias_inhibit) {
|
||||
for (unsigned i = 13; i <= 15; i++) {
|
||||
const unsigned index = i - 13;
|
||||
|
||||
// calculate variances and upper diagonal covariances for IMU delta velocity bias states
|
||||
nextP(0,13) = P(0,13) + P(1,13)*SF[9] + P(2,13)*SF[11] + P(3,13)*SF[10] + P(10,13)*SF[14] + P(11,13)*SF[15] + P(12,13)*SPP[10];
|
||||
nextP(1,13) = P(1,13) + P(0,13)*SF[8] + P(2,13)*SF[7] + P(3,13)*SF[11] - P(12,13)*SF[15] + P(11,13)*SPP[10] - (P(10,13)*q0)/2;
|
||||
nextP(2,13) = P(2,13) + P(0,13)*SF[6] + P(1,13)*SF[10] + P(3,13)*SF[8] + P(12,13)*SF[14] - P(10,13)*SPP[10] - (P(11,13)*q0)/2;
|
||||
nextP(3,13) = P(3,13) + P(0,13)*SF[7] + P(1,13)*SF[6] + P(2,13)*SF[9] + P(10,13)*SF[15] - P(11,13)*SF[14] - (P(12,13)*q0)/2;
|
||||
nextP(4,13) = P(4,13) + P(0,13)*SF[5] + P(1,13)*SF[3] - P(3,13)*SF[4] + P(2,13)*SPP[0] + P(13,13)*SPP[3] + P(14,13)*SPP[6] - P(15,13)*SPP[9];
|
||||
nextP(5,13) = P(5,13) + P(0,13)*SF[4] + P(2,13)*SF[3] + P(3,13)*SF[5] - P(1,13)*SPP[0] - P(13,13)*SPP[8] + P(14,13)*SPP[2] + P(15,13)*SPP[5];
|
||||
nextP(6,13) = P(6,13) + P(1,13)*SF[4] - P(2,13)*SF[5] + P(3,13)*SF[3] + P(0,13)*SPP[0] + P(13,13)*SPP[4] - P(14,13)*SPP[7] - P(15,13)*SPP[1];
|
||||
nextP(7,13) = P(7,13) + P(4,13)*dt;
|
||||
nextP(8,13) = P(8,13) + P(5,13)*dt;
|
||||
nextP(9,13) = P(9,13) + P(6,13)*dt;
|
||||
nextP(10,13) = P(10,13);
|
||||
nextP(11,13) = P(11,13);
|
||||
nextP(12,13) = P(12,13);
|
||||
nextP(13,13) = P(13,13);
|
||||
nextP(0,14) = P(0,14) + P(1,14)*SF[9] + P(2,14)*SF[11] + P(3,14)*SF[10] + P(10,14)*SF[14] + P(11,14)*SF[15] + P(12,14)*SPP[10];
|
||||
nextP(1,14) = P(1,14) + P(0,14)*SF[8] + P(2,14)*SF[7] + P(3,14)*SF[11] - P(12,14)*SF[15] + P(11,14)*SPP[10] - (P(10,14)*q0)/2;
|
||||
nextP(2,14) = P(2,14) + P(0,14)*SF[6] + P(1,14)*SF[10] + P(3,14)*SF[8] + P(12,14)*SF[14] - P(10,14)*SPP[10] - (P(11,14)*q0)/2;
|
||||
nextP(3,14) = P(3,14) + P(0,14)*SF[7] + P(1,14)*SF[6] + P(2,14)*SF[9] + P(10,14)*SF[15] - P(11,14)*SF[14] - (P(12,14)*q0)/2;
|
||||
nextP(4,14) = P(4,14) + P(0,14)*SF[5] + P(1,14)*SF[3] - P(3,14)*SF[4] + P(2,14)*SPP[0] + P(13,14)*SPP[3] + P(14,14)*SPP[6] - P(15,14)*SPP[9];
|
||||
nextP(5,14) = P(5,14) + P(0,14)*SF[4] + P(2,14)*SF[3] + P(3,14)*SF[5] - P(1,14)*SPP[0] - P(13,14)*SPP[8] + P(14,14)*SPP[2] + P(15,14)*SPP[5];
|
||||
nextP(6,14) = P(6,14) + P(1,14)*SF[4] - P(2,14)*SF[5] + P(3,14)*SF[3] + P(0,14)*SPP[0] + P(13,14)*SPP[4] - P(14,14)*SPP[7] - P(15,14)*SPP[1];
|
||||
nextP(7,14) = P(7,14) + P(4,14)*dt;
|
||||
nextP(8,14) = P(8,14) + P(5,14)*dt;
|
||||
nextP(9,14) = P(9,14) + P(6,14)*dt;
|
||||
nextP(10,14) = P(10,14);
|
||||
nextP(11,14) = P(11,14);
|
||||
nextP(12,14) = P(12,14);
|
||||
nextP(13,14) = P(13,14);
|
||||
nextP(14,14) = P(14,14);
|
||||
nextP(0,15) = P(0,15) + P(1,15)*SF[9] + P(2,15)*SF[11] + P(3,15)*SF[10] + P(10,15)*SF[14] + P(11,15)*SF[15] + P(12,15)*SPP[10];
|
||||
nextP(1,15) = P(1,15) + P(0,15)*SF[8] + P(2,15)*SF[7] + P(3,15)*SF[11] - P(12,15)*SF[15] + P(11,15)*SPP[10] - (P(10,15)*q0)/2;
|
||||
nextP(2,15) = P(2,15) + P(0,15)*SF[6] + P(1,15)*SF[10] + P(3,15)*SF[8] + P(12,15)*SF[14] - P(10,15)*SPP[10] - (P(11,15)*q0)/2;
|
||||
nextP(3,15) = P(3,15) + P(0,15)*SF[7] + P(1,15)*SF[6] + P(2,15)*SF[9] + P(10,15)*SF[15] - P(11,15)*SF[14] - (P(12,15)*q0)/2;
|
||||
nextP(4,15) = P(4,15) + P(0,15)*SF[5] + P(1,15)*SF[3] - P(3,15)*SF[4] + P(2,15)*SPP[0] + P(13,15)*SPP[3] + P(14,15)*SPP[6] - P(15,15)*SPP[9];
|
||||
nextP(5,15) = P(5,15) + P(0,15)*SF[4] + P(2,15)*SF[3] + P(3,15)*SF[5] - P(1,15)*SPP[0] - P(13,15)*SPP[8] + P(14,15)*SPP[2] + P(15,15)*SPP[5];
|
||||
nextP(6,15) = P(6,15) + P(1,15)*SF[4] - P(2,15)*SF[5] + P(3,15)*SF[3] + P(0,15)*SPP[0] + P(13,15)*SPP[4] - P(14,15)*SPP[7] - P(15,15)*SPP[1];
|
||||
nextP(7,15) = P(7,15) + P(4,15)*dt;
|
||||
nextP(8,15) = P(8,15) + P(5,15)*dt;
|
||||
nextP(9,15) = P(9,15) + P(6,15)*dt;
|
||||
nextP(10,15) = P(10,15);
|
||||
nextP(11,15) = P(11,15);
|
||||
nextP(12,15) = P(12,15);
|
||||
nextP(13,15) = P(13,15);
|
||||
nextP(14,15) = P(14,15);
|
||||
nextP(15,15) = P(15,15);
|
||||
if (!_accel_bias_inhibit[index]) {
|
||||
// calculate variances and upper diagonal covariances for IMU delta velocity bias states
|
||||
nextP(0,i) = P(0,i) + P(1,i)*SF[9] + P(2,i)*SF[11] + P(3,i)*SF[10] + P(10,i)*SF[14] + P(11,i)*SF[15] + P(12,i)*SPP[10];
|
||||
nextP(1,i) = P(1,i) + P(0,i)*SF[8] + P(2,i)*SF[7] + P(3,i)*SF[11] - P(12,i)*SF[15] + P(11,i)*SPP[10] - (P(10,i)*q0)/2;
|
||||
nextP(2,i) = P(2,i) + P(0,i)*SF[6] + P(1,i)*SF[10] + P(3,i)*SF[8] + P(12,i)*SF[14] - P(10,i)*SPP[10] - (P(11,i)*q0)/2;
|
||||
nextP(3,i) = P(3,i) + P(0,i)*SF[7] + P(1,i)*SF[6] + P(2,i)*SF[9] + P(10,i)*SF[15] - P(11,i)*SF[14] - (P(12,i)*q0)/2;
|
||||
nextP(4,i) = P(4,i) + P(0,i)*SF[5] + P(1,i)*SF[3] - P(3,i)*SF[4] + P(2,i)*SPP[0] + P(13,i)*SPP[3] + P(14,i)*SPP[6] - P(15,i)*SPP[9];
|
||||
nextP(5,i) = P(5,i) + P(0,i)*SF[4] + P(2,i)*SF[3] + P(3,i)*SF[5] - P(1,i)*SPP[0] - P(13,i)*SPP[8] + P(14,i)*SPP[2] + P(15,i)*SPP[5];
|
||||
nextP(6,i) = P(6,i) + P(1,i)*SF[4] - P(2,i)*SF[5] + P(3,i)*SF[3] + P(0,i)*SPP[0] + P(13,i)*SPP[4] - P(14,i)*SPP[7] - P(15,i)*SPP[1];
|
||||
nextP(7,i) = P(7,i) + P(4,i)*dt;
|
||||
nextP(8,i) = P(8,i) + P(5,i)*dt;
|
||||
nextP(9,i) = P(9,i) + P(6,i)*dt;
|
||||
nextP(10,i) = P(10,i);
|
||||
nextP(11,i) = P(11,i);
|
||||
nextP(12,i) = P(12,i);
|
||||
nextP(13,i) = P(13,i);
|
||||
|
||||
// add process noise that is not from the IMU
|
||||
// process noise contributiton for delta velocity states can be very small compared to
|
||||
// the variances, therefore use algorithm to minimise numerical error
|
||||
for (unsigned i = 13; i <= 15; i++) {
|
||||
const int index = i-13;
|
||||
if (i > 13) {
|
||||
nextP(14,i) = P(14,i);
|
||||
}
|
||||
|
||||
if (i > 14) {
|
||||
nextP(15,i) = P(15,i);
|
||||
}
|
||||
|
||||
// add process noise that is not from the IMU
|
||||
// process noise contributiton for delta velocity states can be very small compared to
|
||||
// the variances, therefore use algorithm to minimise numerical error
|
||||
nextP(i,i) = kahanSummation(nextP(i,i), process_noise(i), _delta_vel_bias_var_accum(index));
|
||||
}
|
||||
|
||||
} else {
|
||||
// Inhibit delta velocity bias learning by zeroing the covariance terms
|
||||
nextP.uncorrelateCovarianceSetVariance<3>(13, 0.0f);
|
||||
_delta_vel_bias_var_accum.setZero();
|
||||
} else {
|
||||
nextP.uncorrelateCovarianceSetVariance<1>(i, 0.f);
|
||||
_delta_vel_bias_var_accum(index) = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
// Don't do covariance prediction on magnetic field states unless we are using 3-axis fusion
|
||||
|
@ -757,16 +737,17 @@ void Ekf::fixCovarianceErrors(bool force_symmetry)
|
|||
// by ensuring the corresponding covariance matrix values are kept at zero
|
||||
|
||||
// accelerometer bias states
|
||||
if ((_params.fusion_mode & MASK_INHIBIT_ACC_BIAS) || _accel_bias_inhibit) {
|
||||
P.uncorrelateCovarianceSetVariance<3>(13, 0.0f);
|
||||
|
||||
} else {
|
||||
if (!_accel_bias_inhibit[0] || !_accel_bias_inhibit[1] || !_accel_bias_inhibit[2]) {
|
||||
// Find the maximum delta velocity bias state variance and request a covariance reset if any variance is below the safe minimum
|
||||
const float minSafeStateVar = 1e-9f;
|
||||
float maxStateVar = minSafeStateVar;
|
||||
bool resetRequired = false;
|
||||
|
||||
for (uint8_t stateIndex = 13; stateIndex <= 15; stateIndex++) {
|
||||
if (_accel_bias_inhibit[stateIndex - 13]) {
|
||||
// Skip the check for the inhibited axis
|
||||
continue;
|
||||
}
|
||||
if (P(stateIndex,stateIndex) > maxStateVar) {
|
||||
maxStateVar = P(stateIndex,stateIndex);
|
||||
|
||||
|
@ -782,6 +763,10 @@ void Ekf::fixCovarianceErrors(bool force_symmetry)
|
|||
float minAllowedStateVar = fmaxf(0.01f * maxStateVar, minStateVarTarget);
|
||||
|
||||
for (uint8_t stateIndex = 13; stateIndex <= 15; stateIndex++) {
|
||||
if (_accel_bias_inhibit[stateIndex - 13]) {
|
||||
// Skip the check for the inhibited axis
|
||||
continue;
|
||||
}
|
||||
P(stateIndex,stateIndex) = math::constrain(P(stateIndex,stateIndex), minAllowedStateVar, sq(0.1f * CONSTANTS_ONE_G * _dt_ekf_avg));
|
||||
}
|
||||
|
||||
|
@ -792,7 +777,7 @@ void Ekf::fixCovarianceErrors(bool force_symmetry)
|
|||
|
||||
// Run additional checks to see if the delta velocity bias has hit limits in a direction that is clearly wrong
|
||||
// calculate accel bias term aligned with the gravity vector
|
||||
float dVel_bias_lim = 0.9f * _params.acc_bias_lim * _dt_ekf_avg;
|
||||
const float dVel_bias_lim = 0.9f * _params.acc_bias_lim * _dt_ekf_avg;
|
||||
float down_dvel_bias = 0.0f;
|
||||
|
||||
for (uint8_t axis_index = 0; axis_index < 3; axis_index++) {
|
||||
|
|
|
@ -477,7 +477,7 @@ private:
|
|||
gps_check_fail_status_u _gps_check_fail_status{};
|
||||
|
||||
// variables used to inhibit accel bias learning
|
||||
bool _accel_bias_inhibit{false}; ///< true when the accel bias learning is being inhibited
|
||||
bool _accel_bias_inhibit[3]{}; ///< true when the accel bias learning is being inhibited for the specified axis
|
||||
Vector3f _accel_vec_filt; ///< acceleration vector after application of a low pass filter (m/sec**2)
|
||||
float _accel_magnitude_filt{0.0f}; ///< acceleration magnitude after application of a decaying envelope filter (rad/sec)
|
||||
float _ang_rate_magnitude_filt{0.0f}; ///< angular rate magnitude after application of a decaying envelope filter (rad/sec)
|
||||
|
|
|
@ -99,14 +99,14 @@ class EkfInitializationTest : public ::testing::Test {
|
|||
const Vector3f vel_var = _ekf->getVelocityVariance();
|
||||
|
||||
const float pos_variance_limit = 0.2f;
|
||||
EXPECT_TRUE(pos_var(0) > pos_variance_limit) << "pos_var(1)" << pos_var(0);
|
||||
EXPECT_TRUE(pos_var(1) > pos_variance_limit) << "pos_var(2)" << pos_var(1);
|
||||
EXPECT_TRUE(pos_var(2) > pos_variance_limit) << "pos_var(3)" << pos_var(2);
|
||||
EXPECT_TRUE(pos_var(0) > pos_variance_limit) << "pos_var(0)" << pos_var(0);
|
||||
EXPECT_TRUE(pos_var(1) > pos_variance_limit) << "pos_var(1)" << pos_var(1);
|
||||
EXPECT_TRUE(pos_var(2) > pos_variance_limit) << "pos_var(2)" << pos_var(2);
|
||||
|
||||
const float vel_variance_limit = 0.4f;
|
||||
EXPECT_TRUE(vel_var(0) > vel_variance_limit) << "vel_var(1)" << vel_var(0);
|
||||
EXPECT_TRUE(vel_var(1) > vel_variance_limit) << "vel_var(2)" << vel_var(1);
|
||||
EXPECT_TRUE(vel_var(2) > vel_variance_limit) << "vel_var(3)" << vel_var(2);
|
||||
EXPECT_TRUE(vel_var(0) > vel_variance_limit) << "vel_var(0)" << vel_var(0);
|
||||
EXPECT_TRUE(vel_var(1) > vel_variance_limit) << "vel_var(1)" << vel_var(1);
|
||||
EXPECT_TRUE(vel_var(2) > vel_variance_limit) << "vel_var(2)" << vel_var(2);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in New Issue