Renamed driver folder.

Signed-off-by: Claudio Micheli <claudio@auterion.com>
This commit is contained in:
Claudio Micheli 2018-12-17 15:42:43 +01:00 committed by Beat Küng
parent dd300dca0a
commit 93b3cf241b
12 changed files with 1040 additions and 1494 deletions

View File

@ -43,4 +43,4 @@ add_subdirectory(ulanding)
add_subdirectory(leddar_one)
add_subdirectory(vl53lxx)
add_subdirectory(pga460)
add_subdirectory(airlango)
add_subdirectory(isl2950)

View File

@ -1,44 +0,0 @@
############################################################################
#
# Copyright (c) 2016 Airlango Inc. All rights reserved.
#
############################################################################
# set(TOOLS_ERROR_MSG
# "The AIRLANGO_SDK must be installed and the environment variable AIRLANG_SDK must be set"
# "(e.g. export AIRLANGO_SDK=/opt/airlangoSDK)")
# if ("$ENV{AIRLANGO_SDK}" STREQUAL "")
# message(FATAL_ERROR ${TOOLS_ERROR_MSG})
# else()
# set(AIRLANGO_SDK $ENV{AIRLANGO_SDK})
# endif()
# AirlangoSDK library header files
# include_directories(
# ${AIRLANGO_SDK}/hexagon/include
# )
# add_library(libtof SHARED IMPORTED GLOBAL)
# set_target_properties(libtof PROPERTIES IMPORTED_LOCATION ${AIRLANGO_SDK}/hexagon/lib/libtof.so)
px4_add_module(
MODULE drivers__airlangotof
MAIN tof_main
STACK_MAIN 1200
COMPILE_FLAGS
-Weffc++
SRCS
lanbao_isl_v2.cpp
lanbao_isl.cpp
tof.cpp
tof_main.cpp
DEPENDS
)
# set(module_external_libraries
# ${module_external_libraries}
# libtof
# CACHE INTERNAL "module_external_libraries"
# )

View File

@ -1,305 +0,0 @@
//
// Copyright (c) 2016 Airlango Ltd. All rights reserved.
//
// @file lanbao_isl.cpp
//
// Device driver implementaion for Lanbao ISL29501
//
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <dev_fs_lib_serial.h>
#include <systemlib/err.h>
#include "lanbao_isl.h"
static const char _height_instructions[] = {
0xA5, 0xF0, 0x0F, 0x5A, 0xFE, 0xA5, 0x05, 0x02, 0x5A, 0x06
};
static const int _height_instructions_len =
sizeof(_height_instructions) / sizeof(_height_instructions[0]);
static enum DSPAL_SERIAL_BITRATES IntToDspalSerialBitratesEnum(int bitrate) {
// NOTE: here we only support the data rate we possibly use
switch (bitrate) {
case 115200:
return DSPAL_SIO_BITRATE_115200;
default:
return DSPAL_SIO_BITRATE_MAX;
}
}
LanbaoIsl::LanbaoIsl()
: callback_(NULL),
context_(NULL),
fd_(-1),
rx_should_stop_(false) {
PX4_DEBUG("LanbaoIsl ctor");
}
LanbaoIsl::~LanbaoIsl() {
PX4_DEBUG("LanbaoIsl dtor");
PX4_DEBUG("waiting on rx thread");
rx_should_stop_ = true;
pthread_join(rx_thread_, NULL);
PX4_DEBUG("RX thread done");
Stop();
CloseDevice();
}
int LanbaoIsl::SetDeviceMode(IslWorkingMode mode) {
if (mode == KEEP_HEIGHT) { // actively config mode to HEIGHT
int ret = write(fd_, _height_instructions, _height_instructions_len);
if (ret != _height_instructions_len) {
PX4_ERR("failed to write working mode command to device");
return -1;
}
}
return 0;
}
int LanbaoIsl::InitializeInternal(const char* device, int baudrate) {
PX4_DEBUG("LanbaoIsl::InitializeInternal()");
fd_ = open(device, O_RDWR);
if (fd_ < 0) {
PX4_ERR("failed to open %s", device);
return -1;
}
// set the serial baud rate
struct dspal_serial_ioctl_data_rate rate_cfg = {
.bit_rate = IntToDspalSerialBitratesEnum(baudrate)
};
if (rate_cfg.bit_rate == DSPAL_SIO_BITRATE_MAX) {
PX4_ERR("baudrate not supported: %d", baudrate);
goto failure;
}
if (ioctl(fd_, SERIAL_IOCTL_SET_DATA_RATE, (void*)&rate_cfg) < 0) {
PX4_ERR("failed to set baudrate %d on %s", baudrate, device);
goto failure;
}
#if 0
{
// This device requires us to manually change its working mode
IslWorkingMode mode = KEEP_HEIGHT;
if (SetDeviceMode(mode) < 0) {
PX4_ERR("failed to set device working mode as KEEP_HEIGHT");
goto failure;
}
}
#endif
PX4_DEBUG("LanbaoIsl::InitializeInternal() succeeded");
return 0;
failure:
PX4_DEBUG("LanbaoIsl::InitializeInternal() failed");
CloseDevice();
return -1;
}
void* LanbaoIsl::RxTrampoline(void *arg) {
LanbaoIsl* instance = reinterpret_cast<LanbaoIsl*>(arg);
return instance->RxMain();
}
void* LanbaoIsl::RxMain() {
PX4_DEBUG("enter LanbaoIsl::RxMain()");
uint8_t buffer[50];
int bytes_available = 0;
int bytes_processed = 0;
int bytes_read = 0;
bool full_frame;
while (!rx_should_stop_) {
// sleep for a short while. This is b/c the
// dspal serial driver does not support blocking
// read.
usleep(10 * 1000);
// read incoming bytes into buffer
// On Eagle board, `read()` returns:
// 0 means there's no more data available to read
// < 0 means something error on hardware
// > 0 means successfully get data
bytes_read = read(fd_, buffer + bytes_available, 50 - bytes_available);
PX4_DEBUG("read() returns %d", bytes_read);
if (bytes_read < 0) {
PX4_ERR("error on read(): %d", bytes_read);
rx_should_stop_ = true;
} else if (bytes_read == 0) {
continue;
}
bytes_available += bytes_read;
// parse the buffer data
full_frame = false;
bytes_processed = Parse(buffer, bytes_available, &full_frame);
PX4_DEBUG("Parse() processed %d bytes, full_frame %d",
bytes_processed, full_frame);
// discard the processed bytes and move the buffer content to the head
bytes_available -= bytes_processed;
memcpy(buffer, buffer + bytes_processed, bytes_available);
// if full frame is identified, invoke the
// callback_ if available
if (full_frame) {
int raw_measurement = data_.distance_mm;
// TODO:ATTENTION:
//
#if 0
raw_measurement -= 80;
if (raw_measurement < 0) {
raw_measurement = 0;
}
#endif
data_.raw_distance_mm = raw_measurement;
data_.distance_mm = distance_filter_.Filter(raw_measurement);
PX4_DEBUG("tof measurement data, raw: %d mm, filtered: %d mm",
raw_measurement, data_.distance_mm);
if (callback_) {
callback_(&data_, context_);
}
}
}
PX4_DEBUG("exit RxMain()");
return NULL;
}
void LanbaoIsl::CloseDevice() {
PX4_DEBUG("LanbaoIsl::CloseDevice()");
if (fd_ >= 0) {
PX4_DEBUG("close device handle %d", fd_);
close(fd_);
fd_ = -1;
}
}
int LanbaoIsl::StartRxThread(DataReadyCallback callback, void* context) {
PX4_DEBUG("LanbaoIsl::StartRxThread()");
int ret;
callback_ = callback;
context_ = context;
rx_should_stop_ = false;
pthread_attr_t attr;
size_t stacksize = -1;
pthread_attr_init(&attr);
pthread_attr_getstacksize(&attr, &stacksize);
PX4_DEBUG("RX thread stack size: %d", stacksize);
stacksize = 8 * 1024;
PX4_DEBUG("setting the thread stack size to[%d]", stacksize);
pthread_attr_setstacksize(&attr, stacksize);
ret = pthread_create(&rx_thread_, &attr, &LanbaoIsl::RxTrampoline, this);
if (ret != 0) {
PX4_ERR("Failed to create RX thread in LanbaoIsl: %d", ret);
return -1;
}
PX4_DEBUG("RX thread created in LanbaoIsl");
return 0;
}
int LanbaoIsl::SendMeasurementCommand() {
PX4_DEBUG("SendMeasurementCommand(), nothing need to do since device will.");
return 0;
}
int LanbaoIsl::Parse(const uint8_t* buffer, int length, bool* full_frame) {
static TofFramingState state = TFS_NOT_STARTED;
static uint16_t crc16 = 0;
int bytes_processed = 0;
PX4_DEBUG("LanbaoTof::Parse()");
while (bytes_processed < length) {
uint8_t b = buffer[bytes_processed++];
PX4_DEBUG("parse byte 0x%02X", b);
switch (state) {
case TFS_NOT_STARTED:
if (b == TOF_SFD1) {
crc16 = b;
state = TFS_GOT_SFD1;
PX4_DEBUG("Got SFD1");
}
break;
case TFS_GOT_SFD1:
if (b == TOF_SFD2) {
crc16 += b;
state = TFS_GOT_SFD2;
PX4_DEBUG("Got SFD2");
} else if (b == TOF_SFD1) {
crc16 = b;
state = TFS_GOT_SFD1;
PX4_DEBUG("Discard previous SFD1, Got new SFD1");
} else {
state = TFS_NOT_STARTED;
}
break;
case TFS_GOT_SFD2:
crc16 += b;
data_.distance_mm = b;
state = TFS_GOT_DATA1;
PX4_DEBUG("Got DATA1 0x%02X", b);
break;
case TFS_GOT_DATA1:
crc16 += b;
data_.distance_mm = (data_.distance_mm << 8) + b;
state = TFS_GOT_DATA2;
PX4_DEBUG("Got DATA2 0x%02X", b);
break;
case TFS_GOT_DATA2:
if (b == (crc16 >> 8)) {
state = TFS_GOT_CHECKSUM1;
} else {
PX4_DEBUG("Checksum invalid on high byte: 0x%02X, calculated: 0x%04X",
b, crc16);
state = TFS_NOT_STARTED;
}
break;
case TFS_GOT_CHECKSUM1:
// Here, reset state to `NOT-STARTED` no matter crc ok or not
state = TFS_NOT_STARTED;
if (b == (crc16 & 0xFF)) {
PX4_DEBUG("Checksum verified");
*full_frame = true;
return bytes_processed;
} else {
PX4_DEBUG("Checksum invalidon low byte: 0x%02X, calculated: 0x%04X",
b, crc16);
}
break;
default:
PX4_DEBUG("This should never happen.")
break;
}
}
return bytes_processed;
}

View File

@ -1,155 +0,0 @@
//
// Copyright (c) 2016 Airlango Ltd. All rights reserved.
//
// @file lanbao_isl.h
//
// Device driver implementation for ISL29501 from www.shlanbao.com
//
#pragma once
#include <pthread.h>
#include <stdint.h>
#include <string.h>
#include "tof.h"
#include "adiag.h"
// Average filter
template <typename T>
class AverageFilter {
public:
AverageFilter(int window_size = 12)
: window_full_(false),
window_size_(window_size),
item_index_(0),
items_(nullptr) {
// ASSERT(window_size > 0);
items_ = new T[window_size];
if (items_ != nullptr) {
for (int i = 0; i < window_size; i++) {
items_[i] = 0;
}
}
}
~AverageFilter() {
if (items_ != nullptr) {
delete[] items_;
}
}
public:
T Filter(const T& item) {
#if 0
sum_ -= items_[item_index_];
sum_ += item;
items_[item_index_] = item;
if (++item_index_ == window_size_) {
item_index_ = 0;
window_full_ = true;
}
T result = sum_ / (window_full_ ? window_size_ : item_index_);
return result;
#else
items_[item_index_] = item;
if (++item_index_ == window_size_) {
item_index_ = 0;
window_full_ = true;
}
int num = NumOfSamplingForCalc(item);
T result = CalcAverage(num);
return result;
#endif
}
protected:
T CalcAverage(int num) {
int valid_index; // (latest) valid index
if (item_index_ == 0) {
valid_index = window_size_ - 1;
} else {
valid_index = item_index_ - 1;
}
// IF data not fully collected, we return the original sampling data,
// this wil only occur at the very earlier stage
if (!window_full_) {
return items_[valid_index];
}
sum_ = 0;
for (int i = 0; i < num; i++) {
sum_ += items_[valid_index];
if (--valid_index < 0) {
valid_index = window_size_ - 1;
}
}
return sum_ / num;
}
int NumOfSamplingForCalc(const T& item) {
int num = (item / 1000) + 3;
if (num > window_size_) {
num = window_size_;
}
return num;
}
protected:
bool window_full_ = false;
int window_size_ = 0;
int item_index_ = 0;
T* items_ = nullptr;
T sum_ = 0;
};
// frame start delimiter
#define TOF_SFD1 0xA5
#define TOF_SFD2 0x5A
typedef enum {
TFS_NOT_STARTED = 0,
TFS_GOT_SFD1,
TFS_GOT_SFD2,
TFS_GOT_DATA1,
TFS_GOT_DATA2,
TFS_GOT_CHECKSUM1,
TFS_GOT_CHECKSUM2,
} TofFramingState;
enum IslWorkingMode {
KEEP_HEIGHT = 0,
NUM_WORKING_MODE
};
// Lanbao ISL29501 to provide tof functionality
class LanbaoIsl : public Tof {
public:
LanbaoIsl();
virtual ~LanbaoIsl();
virtual TofModel model() const { return LANBAO_ISL; };
protected:
virtual int InitializeInternal(const char* device, int baudrate);
virtual int StartRxThread(DataReadyCallback callback, void* context);
virtual int SendMeasurementCommand();
virtual int Parse(const uint8_t* buffer, int length, bool* full_frame);
static void* RxTrampoline(void* arg);
void* RxMain();
void CloseDevice();
int SetDeviceMode(IslWorkingMode mode = KEEP_HEIGHT);
DataReadyCallback callback_;
void* context_;
int fd_;
pthread_t rx_thread_;
volatile bool rx_should_stop_;
struct TofData data_;
AverageFilter<int> distance_filter_;
};

View File

@ -1,23 +0,0 @@
//
// Copyright (c) 2016 Airlango Ltd. All rights reserved.
//
// @file lanbao_isl_v2.h
//
// Lanbao TOF, hw version 2, with CRC-16 support
//
#ifndef EAGLE_TOF_LANBAO_ISL_V2_H_
#define EAGLE_TOF_LANBAO_ISL_V2_H_
#include "lanbao_isl.h"
class LanbaoIslV2 : public LanbaoIsl {
public:
LanbaoIslV2();
virtual ~LanbaoIslV2();
virtual TofModel model() const { return LANBAO_ISL_V2; }
protected:
virtual int Parse(const uint8_t* buffer, int length, bool* full_frame);
};
#endif

View File

@ -1,345 +0,0 @@
//
// Copyright (c) 2016 Airlango Ltd. All rights reserved.
//
// @file tof.cpp
//
// Basic implementation for TOF device driver.
//
#include <errno.h>
#include <systemlib/err.h>
#include <pthread.h>
#include <unistd.h>
#include <signal.h>
#include "tof.h"
#include "lanbao_isl.h"
#include "lanbao_isl_v2.h"
#define TOF_MEASUREMENT_TIMEOUT_USEC 200000
#define TOF_MEASUREMENT_TIMER_SIGNAL (SIGRTMAX-1)
#define TIME_DIFF_USEC(start, end) \
(((end).tv_sec - (start).tv_sec)*1E6 + ((end).tv_nsec - (start).tv_nsec)/1E3)
Tof* Tof::instance_ = NULL;
Tof::Tof()
: is_initialized_(false),
callback_(NULL),
context_(NULL),
tx_thread_(0),
measurement_interval_ms_(0),
measurement_should_stop_(true),
periodic_measurement_running_(false) {
PX4_DEBUG("Tof ctor");
memset(&last_measurement_ts_, 0, sizeof(struct timespec));
memset(&last_measurement_, 0, sizeof(struct TofData));
// NOTE(jintao): Must initialize mutex with the following functions.
// Using INITIALIZER results in DSP crash while calling
// and pthread_mutex_destory.
pthread_mutex_init(&mutex_, NULL);
}
Tof::~Tof() {
PX4_DEBUG("Tof dtor");
instance_ = NULL;
pthread_mutex_destroy(&mutex_);
}
Tof* Tof::GetInstance(TofModel model) {
PX4_DEBUG("Tof::GetInstance() for model %s", TofModelToStr(model));
if (model >= TOF_MODEL_NUM) {
PX4_ERR("Unknown model");
return NULL;
}
if (instance_ != NULL) {
TofModel curr_model = instance_->model();
if (curr_model != model) {
PX4_ERR("Tof already initialized for model %s",
TofModelToStr(curr_model));
return NULL;
}
PX4_DEBUG("return existing instance %s", TofModelToStr(curr_model));
return instance_;
}
switch (model) {
case LANBAO_ISL:
instance_ = new LanbaoIsl();
break;
case LANBAO_ISL_V2:
instance_ = new LanbaoIslV2();
break;
default:
return NULL;
}
if (instance_ == NULL) {
PX4_ERR("Failed to instantiate Tof model %s", TofModelToStr(model));
return NULL;
}
PX4_DEBUG("Created instance for %s", TofModelToStr(model));
return instance_;
}
int Tof::Initialize(const char* device, int baudrate) {
int ret;
if (is_initialized_) {
PX4_ERR("Initialize() can be called only once!");
return -1;
}
// Initialize the specified serial device with baudrate
ret = InitializeInternal(device, baudrate);
if (ret < 0) {
PX4_ERR("Failed to initialize device %s baudrate %d", device, baudrate);
return -1;
}
// Start RX thread to parse the incoming frame
ret = StartRxThread(Tof::DataReadyCb, (void*)this);
if (ret < 0) {
PX4_ERR("Failed to register Data Ready Callback. Fatal!");
return -1;
}
is_initialized_ = true;
return 0;
}
void Tof::DataReadyCb(const struct TofData* data, void* context) {
PX4_DEBUG("Tof::DataReadyCb(): new data %d mm", data->distance_mm);
Tof* obj = (Tof*)context;
obj->HandleNewMeasurement(data);
}
void Tof::HandleNewMeasurement(const struct TofData* data) {
PX4_DEBUG("Tof::HandleNewMeasurement()");
struct TofData m;
int ret;
struct timespec ts;
// remember the latest measurement result. Call user callback
// if available.
pthread_mutex_lock(&mutex_);
memcpy(&last_measurement_, data, sizeof(struct TofData));
clock_gettime(CLOCK_REALTIME, &last_measurement_ts_);
// save a snapshot to avoid race condition.
m = last_measurement_;
ts = last_measurement_ts_;
pthread_mutex_unlock(&mutex_);
PX4_DEBUG("last_measurement updated distance %d mm, ts %llu ms",
m.distance_mm, ts.tv_sec*1000+(uint64_t)(ts.tv_nsec/1E6));
if (callback_) {
PX4_DEBUG("Notifying user of new measurement result");
callback_(&m, context_);
}
}
int Tof::Start(int interval_ms, DataReadyCallback callback, void* context) {
PX4_DEBUG("Tof::Start() internval %d ms", interval_ms);
int ret;
if (!is_initialized_) {
PX4_ERR("Start() cannot be called without device initialized!");
return -1;
}
if (interval_ms <= 0) {
PX4_ERR("Invalid measurement interval %d", interval_ms);
return -1;
}
callback_ = callback;
context_ = context;
measurement_interval_ms_ = interval_ms;
measurement_should_stop_ = false;
periodic_measurement_running_ = true;
// If device requires user to actively send measurement commands, we create
// a thread (timer) to do that periodically
if (NeedTriggerManually()) {
pthread_attr_t attr;
size_t stacksize = -1;
pthread_attr_init(&attr);
pthread_attr_getstacksize(&attr, &stacksize);
PX4_DEBUG("TX thread stack size: %d", stacksize);
stacksize = 8 * 1024;
PX4_DEBUG("setting the thread stack size to[%d]", stacksize);
pthread_attr_setstacksize(&attr, stacksize);
ret = pthread_create(&tx_thread_, &attr, &Tof::TxTrampoline, this);
if (ret != 0) {
periodic_measurement_running_ = false;
PX4_ERR("Failed to create TX thread in Tof: %d", ret);
return -1;
}
}
return 0;
}
void* Tof::TxTrampoline(void* arg) {
Tof* obj = (Tof*)arg;
return obj->DoPeriodicMeasurement();
}
void* Tof::DoPeriodicMeasurement() {
struct itimerspec timer_spec;
struct sigevent sigev;
sigset_t set;
timer_t timer_id;
int sig;
int rv;
sigev.sigev_notify = SIGEV_SIGNAL;
sigev.sigev_signo = TOF_MEASUREMENT_TIMER_SIGNAL;
sigev.sigev_value.sival_int = TOF_MEASUREMENT_TIMER_SIGNAL;
sigev.sigev_notify_function = 0;
sigev.sigev_notify_attributes = 0;
// create timer
if (timer_create(CLOCK_REALTIME, &sigev, &timer_id) != 0) {
PX4_ERR("timer_create failed");
return NULL;
}
timer_spec.it_value.tv_sec = 0;
timer_spec.it_value.tv_nsec = measurement_interval_ms_*1E6;
timer_spec.it_interval.tv_sec = 0;
timer_spec.it_interval.tv_nsec = measurement_interval_ms_*1E6;
// start the timer
if (timer_settime(timer_id, 0, &timer_spec, NULL) != 0) {
PX4_ERR("timer_settime failed");
timer_delete(timer_id);
return NULL;
}
sigemptyset(&set);
sigaddset(&set, TOF_MEASUREMENT_TIMER_SIGNAL);
PX4_DEBUG("start periodic measurement");
while(!measurement_should_stop_) {
rv = sigwait(&set, &sig);
if (rv != 0 || sig != TOF_MEASUREMENT_TIMER_SIGNAL) {
PX4_ERR("sigwait failed rv %d sig %d", rv, sig);
continue;
}
PX4_DEBUG("waken up by signal %d", sig);
rv = SendMeasurementCommand();
if (rv < 0) {
PX4_ERR("SendMeasurementCommand() failed: %d", rv);
} else {
PX4_DEBUG("Sent measurement command");
}
}
PX4_DEBUG("stop periodic measurement");
// delete the timer
timer_delete(timer_id);
return NULL;
}
int Tof::Stop() {
PX4_DEBUG("Tof::Stop()");
PX4_DEBUG("stopping measurement thread");
measurement_should_stop_ = true;
if (tx_thread_ != 0) {
pthread_join(tx_thread_, NULL);
tx_thread_ = 0;
}
periodic_measurement_running_ = false;
PX4_DEBUG("measurement thread stopped");
return 0;
}
int Tof::DoMeasurement() {
int ret;
struct timespec ts_start, ts_now, old_ts;
bool stop_wait = false;
uint64_t time_lapse_usec;
int i;
PX4_DEBUG("Tof::DoMeasurement()");
if (!is_initialized_) {
PX4_ERR("DoMeasurement() cannot be called without device initialized!");
return -1;
}
// get a snapshot of previous last_measurement_ts_
pthread_mutex_lock(&mutex_);
old_ts = last_measurement_ts_;
pthread_mutex_unlock(&mutex_);
// Send measurement command only if the device is not in
// periodic measurement mode
if (!periodic_measurement_running_) {
ret = SendMeasurementCommand();
if (ret < 0) {
PX4_DEBUG("SendMeasurementCommand() failed: %d", ret);
return -1;
}
}
clock_gettime(CLOCK_REALTIME, &ts_start);
// Wait on new data arrival until new measurement is ready or time out occurs.
// Periodically poll the last measurement result. If the last measurement
// timestamp is within max RTT 20ms, it is considered the new measurement
// data.
while (!stop_wait) {
pthread_mutex_lock(&mutex_);
if (last_measurement_ts_.tv_sec != old_ts.tv_sec ||
last_measurement_ts_.tv_nsec != old_ts.tv_nsec) {
stop_wait = true;
ret = last_measurement_.distance_mm;
pthread_mutex_unlock(&mutex_);
break;
}
pthread_mutex_unlock(&mutex_);
clock_gettime(CLOCK_REALTIME, &ts_now);
time_lapse_usec = TIME_DIFF_USEC(ts_start, ts_now);
PX4_DEBUG("time_lapse_usec %llu", time_lapse_usec);
if (time_lapse_usec > TOF_MEASUREMENT_TIMEOUT_USEC) {
stop_wait = true;
ret = -2;
}
usleep(10000);
}
PX4_DEBUG("DoMeasurement() return %d", ret);
return ret;
}

View File

@ -1,173 +0,0 @@
//
// Copyright (c) 2016 Airlango Ltd. All rights reserved.
//
// @file tof.h
//
// TOF (time of flight) device driver interfaces
//
#pragma once
#include <pthread.h>
// Data info reported to up-layer user
struct TofData {
int distance_mm;
int raw_distance_mm;
};
// Supported TOF device model
enum TofModel {
LANBAO_ISL,
LANBAO_ISL_V2, // hw version 2, with crc16
BENEWAKE_TF_MINI, // Benewake TF_MINI
TOF_MODEL_NUM
};
static inline const char* TofModelToStr(enum TofModel model) {
switch (model) {
case LANBAO_ISL:
return "LANBAO_ISL";
case LANBAO_ISL_V2:
return "LANBAO_ISL_V2";
case BENEWAKE_TF_MINI:
return "BENEWAKE_TF_MINI";
default:
return "Unknown";
}
}
typedef void (*DataReadyCallback)(const struct TofData* data, void* context);
// Tof is a base class to define interfaces for TOF device driver. Sub-classes
// shall provide detailed implementation for specific device to complete
// the measurement functionality.
class Tof {
public:
// Tof class method to get the singleton Tof instance.
// If no device model has been instantiated, this function instantiates
// specified model and return the pointer to the new instance. If the
// specified type has been instantiated, this function returns the
// pointer to the existing instance. If a different model has been
// instantiated, this function returns NULL.
// NOTE:
// 1. This function only instantiates the singleton object. To initialize
// the tof device, need to call Initialize().
// 2. Tof driver is currently not implemented to be thread-safe. We assume
// there is up to 1 user that uses tof driver at a moment.
//
// @param[in] model the tof model enumeration value
//
// @return
// - pointer to the instance on success
// - NULL on error.
static Tof* GetInstance(TofModel model);
virtual ~Tof();
// @brief
// Initialize the Tof driver instance for the specified device path. On
// successful initialization, the Tof device is ready to do measurement.
// For periodic measurement, see Start() function.
//
// @param[in] device
// the dspal serial device path which the tof is connected to
// @param[in] baudrate
// the UART baud rate in bit per second
// @return
// - 0 on success
// - -1 on error
int Initialize(const char* device, int baudrate);
// @brief
// Start periodic measurement at specified interval_ms.
// @param[in] interval_ms measurement interval_ms in millisecond
// @param[in] callback data ready interrupt service routine. This is
// the callback function to be invoked when new measurement data
// is ready.
// @param[in] context address where the context data for callback is stored at
// @return
// - 0 successfully started the measurement
// - -1 device not initialized
// - -2 other errors
int Start(int interval_ms, DataReadyCallback callback, void* context);
// Stop the periodic measurement. If this function is called when measurement
// is not running, this function takes no effect.
// @return
// - 0 on success
// - -1 on error
int Stop();
// Do one time measurement and return the measurement results. This is a
// blocking call.
//
// @return
// - positive integer indicating the distance to the object in millimeter
// - 0 if no object is detected
// - -1 on error
// - -2 on timeout
int DoMeasurement();
virtual TofModel model() const = 0;
protected:
Tof();
static void DataReadyCb(const struct TofData* data, void* context);
void HandleNewMeasurement(const struct TofData* data);
// Initialize the specified serial device with given baudrate. The
// actual initialization operation is model specific, thus this virtual
// method should be implemented by the tof subclass.
// This function is called in Initialize().
//
// @return
// - 0 if device is successfully initialized.
// - -1 on error.
virtual int InitializeInternal(const char* device, int baudrate) = 0;
// Start RX thread to process incoming byte stream amd register the provided
// callback function as data ready callback. On success, when
// As the tof data parser is model dependent, thus this virtual method
// shall be implemented by the tof subclass. When new tof measurement
// data is ready, the subclass instance invokes the callback immediately.
// context is pass to the callback function as argument.
// This method is called in Initialize().
//
// @return
// - 0 on success
// -1 on error.
virtual int StartRxThread(DataReadyCallback callback, void* context) = 0;
// Send one time measurement command to tof device. This tof communication
// protocol is device specific and thus this virtual method needs to be
// implemented by tof subclass.
//
// @return
// - 0 on success,
// - -1 on error
virtual int SendMeasurementCommand() = 0;
// Some devices will periodically response measurement data once it gets
// initialized. While some other devices might need user trigger measurement
// operation manually.
virtual bool NeedTriggerManually() const { return false; }
static void* TxTrampoline(void* arg);
void* DoPeriodicMeasurement();
private:
static Tof* instance_;
bool is_initialized_;
pthread_mutex_t mutex_;
struct TofData last_measurement_;
struct timespec last_measurement_ts_;
DataReadyCallback callback_;
void* context_;
pthread_t tx_thread_;
int measurement_interval_ms_;
bool measurement_should_stop_;
bool periodic_measurement_running_;
};

View File

@ -1,370 +0,0 @@
/****************************************************************************
* Copyright (c) 2016 Airlango, Inc. All rights reserved.
*
****************************************************************************/
/**
* @file tof_main.cpp
*
* TOF device driver task
*/
#include <px4_includes.h>
#include <px4_getopt.h>
#include <px4_tasks.h>
#include <px4_log.h>
#include <stdlib.h>
#include <string.h>
#include <drivers/drv_hrt.h>
#include <uORB/uORB.h>
#include <uORB/topics/distance_sensor.h>
#include <drivers/drv_hrt.h>
#include <tof.h>
#include <systemlib/param/param.h>
//#define NO_ADIAG_LOG
//#define NO_ADIAG_STATS
#include <adiag.h>
/** driver 'main' command */
extern "C" { __EXPORT int tof_main(int argc, char *argv[]); }
/*
* Default parameters for tof driver
*/
#define TOF_DEFAULT_BAUDRATE 115200
#define TOF_DEFAULT_INTERVAL 100 /* milliseconds */
#define MAX_LEN_DEV_PATH 32
static param_t algo_aes;
namespace tof
{
/** device path that TOF is connected to */
static char _device[MAX_LEN_DEV_PATH];
/** serial device speed (uart baudrate) */
static int _baudrate = TOF_DEFAULT_BAUDRATE;
/** sampling frequency in Hz */
static int _frequency = 10;
/** tof device model */
static int _device_model = 0;
/** flag indicating if TOF driver task is running */
static bool _is_running = false;
/** flag indicating if TOF driver task should stop */
static bool _task_should_stop = false;
/** handle to the task main thread */
static px4_task_t _task_handle = -1;
/** TOF measurement data */
static struct TofData _data;
/** TOF data publication */
static orb_advert_t _tof_pub = nullptr;
/** Print out the usage information */
static void usage();
/** TOF start measurement */
static void start();
/** TOF stop measurement */
static void stop();
/** task main trampoline function */
static void task_main_trampoline(int argc, char *argv[]);
/** TOF measurement thread primary entry point */
static void task_main(int argc, char *argv[]);
void tof_rx_callback(const TofData* data, void* context)
{
(void)context;
/* copy out the TOF data */
_data = *data;
/* send signal to measurement thread */
px4_task_kill(_task_handle, SIGRTMIN);
}
void publish_reports()
{
algo_aes = param_find("ALGO_AES");
int aes;
if (param_get(algo_aes, &aes) == 0) {
// AD_DEBUG("ALGO_AES %d", aes);
}
struct distance_sensor_s report;
report.timestamp = hrt_absolute_time();
report.type = distance_sensor_s::MAV_DISTANCE_SENSOR_ULTRASOUND;
report.current_distance =
static_cast<float>(_data.distance_mm) / 1000; /* in metre */
// PX4_WARN("tof-avg %d, tof-raw %d", _data.distance_mm, _data.raw_distance_mm);
AD_STATS("tof_time %llu, tof-avg %d, tof-raw %d",report.timestamp, _data.distance_mm, _data.raw_distance_mm);
// TODO: subject to tune
if (report.current_distance < 0.17f) {
// NOTE(xiaoming@airlango.com): add a random noise to avoid round up error in blockstats deviation calculation
report.current_distance = 0.15f + float(rand())/100000000000000;
// AD_DEBUG("RANDOM %f", float(rand())/100000000000000);
}
switch (aes) {
case 0:
report.min_distance = 0.1f;
break;
case 1:
report.min_distance = 0.01f;
break;
default:
report.min_distance = 0.17f;
break;
}
report.max_distance = 10.0f;
report.orientation = 25;//downward facing
report.covariance = 0.002f;
// report.covariance = 0.01f;
/* TODO: set proper ID */
report.id = 90;
if (_tof_pub == nullptr) {
_tof_pub = orb_advertise(ORB_ID(distance_sensor), &report);
} else {
orb_publish(ORB_ID(distance_sensor), _tof_pub, &report);
}
// PX4_WARN("Published distance sensor data: %.3f m", report.current_distance);
}
void task_main(int argc, char *argv[])
{
PX4_WARN("enter tof task_main");
int interval_ms = TOF_DEFAULT_INTERVAL;
if (_frequency > 0) {
interval_ms = 1000 / _frequency;
}
/*
* initialize signal
*/
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGRTMIN);
/*
* start tof driver
*/
TofModel tof_model = static_cast<TofModel>(_device_model);
Tof* driver = Tof::GetInstance(tof_model);
if (driver == nullptr) {
PX4_ERR("fail to instantiate tof driver");
goto _failure;
}
if (driver->Initialize(_device, _baudrate) < 0) {
PX4_ERR("fail to initialize tof driver");
goto _failure;
}
if (driver->Start(interval_ms, tof_rx_callback, nullptr) < 0) {
PX4_ERR("fail to start tof driver");
goto _failure;
}
/*
* enter working loop
*/
while (!_task_should_stop) {
/* wait on signal */
int sig = 0;
int rv = sigwait(&set, &sig);
/* check if we are waken up by the proper signal */
if (rv != 0 || sig != SIGRTMIN) {
PX4_WARN("sigwait failed rv %d sig %d", rv, sig);
continue;
}
/* publish distance sensor reports */
publish_reports();
}
_failure:
PX4_WARN("closing tof");
if (driver != nullptr) {
driver->Stop();
delete driver;
}
_is_running = false;
}
void task_main_trampoline(int argc, char *argv[])
{
PX4_WARN("task_main_trampoline");
task_main(argc, argv);
}
void start()
{
ASSERT(_task_handle == -1);
_task_handle = px4_task_spawn_cmd("tof_main",
SCHED_DEFAULT,
SCHED_PRIORITY_MAX,
1500,
(px4_main_t)&task_main_trampoline,
nullptr);
if (_task_handle < 0) {
PX4_WARN("tof task start failed");
return;
}
_is_running = true;
}
void stop()
{
_task_should_stop = true;
_is_running = false;
_task_handle = -1;
}
void usage()
{
PX4_WARN("missing command: try 'start', 'stop', 'status'");
PX4_WARN("options:");
PX4_WARN(" -D device device path, e.g. /dev/tty-1");
PX4_WARN(" -F frequency sampling frequency (Hz), default to 10");
PX4_WARN(" -M model device hardware model (0: LANBAO_ISL)");
}
}; // namespace tof
int tof_main(int argc, char* argv[])
{
int ch;
int myoptind = 1;
const char* myoptarg = nullptr;
const char* device = nullptr;
const char* frequency = nullptr;
const char* device_model = nullptr;
const char* baudrate = nullptr;
if (argc < 2) {
tof::usage();
return -1;
}
while ((ch = px4_getopt(argc, argv, "D:F:M:B:", &myoptind, &myoptarg)) != EOF) {
switch (ch) {
case 'D':
device = myoptarg;
break;
case 'F':
frequency = myoptarg;
break;
case 'M':
device_model = myoptarg;
break;
case 'B':
baudrate = myoptarg;
break;
default:
tof::usage();
return -1;
}
}
if (device == NULL || strlen(device) == 0) {
tof::usage();
return -1;
}
memset(tof::_device, 0, MAX_LEN_DEV_PATH);
strncpy(tof::_device, device, MAX_LEN_DEV_PATH - 1);
if (frequency != nullptr) {
char *endptr;
long val = strtoul(frequency, &endptr, 0);
if ((errno == ERANGE && (val == LONG_MAX || val == LONG_MIN))
|| (errno != 0 && val == 0)
|| (*endptr != '\0')) {
PX4_WARN("Invalid parameter for frequency, ignore");
} else {
tof::_frequency = val;
}
}
if (device_model != nullptr) {
char *endptr;
long val = strtoul(device_model, &endptr, 0);
if ((errno == ERANGE && (val == LONG_MAX || val == LONG_MIN))
|| (errno != 0 && val == 0)
|| (*endptr != '\0')) {
PX4_WARN("Invalid parameter for device_model, ignore");
} else {
tof::_device_model = val;
}
}
if (baudrate != nullptr) {
char *endptr;
long val = strtoul(baudrate, &endptr, 0);
if ((errno == ERANGE && (val == LONG_MAX || val == LONG_MIN))
|| (errno != 0 && val == 0)
|| (*endptr != '\0')) {
PX4_WARN("Invalid parameter for baudrate, ignore");
} else {
tof::_baudrate = val;
}
}
const char* verb = argv[myoptind];
if (!strcmp(verb, "start")) {
if (tof::_is_running) {
PX4_WARN("tof already running");
return 1;
}
tof::start();
} else if (!strcmp(verb, "stop")) {
if (!tof::_is_running) {
PX4_WARN("tof is not running");
return 1;
}
tof::stop();
} else if (!strcmp(verb, "status")) {
PX4_WARN("tof is %s", tof::_is_running ? "running" : "stopped");
return 0;
} else {
tof::usage();
return -1;
}
return 0;
}

View File

@ -0,0 +1,934 @@
/****************************************************************************
*
* Copyright (c) 2014-2015 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file landbao15L2950.cpp
* @author Claudio Micheli <claudio@auterion.com>
*
* Driver for the Lanbao ISL2950
*/
#include <px4_config.h>
#include <px4_getopt.h>
#include <px4_workqueue.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <semaphore.h>
#include <string.h>
#include <fcntl.h>
#include <poll.h>
#include <errno.h>
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <termios.h>
#include <perf/perf_counter.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_range_finder.h>
#include <drivers/device/device.h>
#include <drivers/device/ringbuffer.h>
#include <uORB/uORB.h>
#include <uORB/topics/distance_sensor.h>
#include "isl2950_parser.h"
/* Configuration Constants */
#ifndef CONFIG_SCHED_WORKQUEUE
# error This requires CONFIG_SCHED_WORKQUEUE.
#endif
#define ISL2950_TAKE_RANGE_REG 'd'
// designated serial port on Pixhawk
#define ISL2950_DEFAULT_PORT "/dev/ttyS1" // Its baudrate is 115200
// normal conversion wait time
#define ISL2950_CONVERSION_INTERVAL 100*1000UL/* 100ms */
class ISL2950 : public cdev::CDev
{
public:
// Constructor
ISL2950(const char *port = ISL2950_DEFAULT_PORT, uint8_t rotation = distance_sensor_s::ROTATION_DOWNWARD_FACING);
// Virtual destructor
virtual ~ISL2950();
virtual int init();
//virtual ssize_t read(device::file_t *filp, char *buffer, size_t buflen);
virtual int ioctl(device::file_t *filp, int cmd, unsigned long arg);
/**
* Diagnostics - print some basic information about the driver.
*/
void print_info();
private:
char _port[20];
uint8_t _rotation;
float _min_distance;
float _max_distance;
int _conversion_interval;
work_s _work{};
ringbuffer::RingBuffer *_reports;
int _measure_ticks;
bool _collect_phase;
int _fd;
uint8_t _linebuf[20];
unsigned _linebuf_index;
enum ISL2950_PARSE_STATE _parse_state;
unsigned char _frame_data[4];
uint16_t _crc16;
hrt_abstime _last_read;
int _class_instance;
int _orb_class_instance;
orb_advert_t _distance_sensor_topic;
unsigned _consecutive_fail_count;
perf_counter_t _sample_perf;
perf_counter_t _comms_errors;
/**
* Initialise the automatic measurement state machine and start it.
*
* @note This function is called at open and error time. It might make sense
* to make it more aggressive about resetting the bus in case of errors.
*/
void start();
/**
* Stop the automatic measurement state machine.
*/
void stop();
/**
* Set the min and max distance thresholds if you want the end points of the sensors
* range to be brought in at all, otherwise it will use the defaults SF0X_MIN_DISTANCE
* and SF0X_MAX_DISTANCE
*/
void set_minimum_distance(float min);
void set_maximum_distance(float max);
float get_minimum_distance();
float get_maximum_distance();
/**
* Perform a poll cycle; collect from the previous measurement
* and start a new one.
*/
void cycle();
int measure();
int collect();
/**
* Static trampoline from the workq context; because we don't have a
* generic workq wrapper yet.
*
* @param arg Instance pointer for the driver that is polling.
*/
static void cycle_trampoline(void *arg);
};
/*
* Driver 'main' command.
*/
extern "C" __EXPORT int isl2950_main(int argc, char *argv[]);
/**
* Method : Constructor
*
* @note This method initializes the class variables
*/
ISL2950::ISL2950(const char *port, uint8_t rotation) :
CDev(RANGE_FINDER0_DEVICE_PATH),
_rotation(rotation),
_min_distance(0.10f),
_max_distance(40.0f),
_conversion_interval(ISL2950_CONVERSION_INTERVAL),
_reports(nullptr),
_measure_ticks(0),
_collect_phase(false),
_fd(-1),
_linebuf_index(0),
_parse_state(TFS_NOT_STARTED),
_frame_data{TOF_SFD1, TOF_SFD2, 0, 0},
_crc16(0),
_last_read(0),
_class_instance(-1),
_orb_class_instance(-1),
_distance_sensor_topic(nullptr),
_consecutive_fail_count(0),
_sample_perf(perf_alloc(PC_ELAPSED, "isl2950_read")),
_comms_errors(perf_alloc(PC_COUNT, "isl2950_com_err"))
{
/* store port name */
strncpy(_port, port, sizeof(_port));
/* enforce null termination */
_port[sizeof(_port) - 1] = '\0';
}
// Destructor
ISL2950::~ISL2950()
{
/* make sure we are truly inactive */
stop();
/* free any existing reports */
if (_reports != nullptr) {
delete _reports;
}
if (_class_instance != -1) {
unregister_class_devname(RANGE_FINDER_BASE_DEVICE_PATH, _class_instance);
}
perf_free(_sample_perf);
perf_free(_comms_errors);
}
/**
* Method : init()
*
* This method setup the general driver for a range finder sensor.
*/
int
ISL2950::init()
{
/* status */
int ret = 0;
do { /* create a scope to handle exit conditions using break */
/* do regular cdev init */
ret = CDev::init();
if (ret != OK) { break; }
/* allocate basic report buffers */
_reports = new ringbuffer::RingBuffer(2, sizeof(distance_sensor_s));
if (_reports == nullptr) {
PX4_ERR("alloc failed");
ret = -1;
break;
}
_class_instance = register_class_devname(RANGE_FINDER_BASE_DEVICE_PATH);
/* get a publish handle on the range finder topic */
struct distance_sensor_s ds_report = {};
_distance_sensor_topic = orb_advertise_multi(ORB_ID(distance_sensor), &ds_report,
&_orb_class_instance, ORB_PRIO_HIGH);
if (_distance_sensor_topic == nullptr) {
PX4_ERR("failed to create distance_sensor object");
}
} while (0);
return ret;
}
void
ISL2950::set_minimum_distance(float min)
{
_min_distance = min;
}
void
ISL2950::set_maximum_distance(float max)
{
_max_distance = max;
}
float
ISL2950::get_minimum_distance()
{
return _min_distance;
}
float
ISL2950::get_maximum_distance()
{
return _max_distance;
}
int
ISL2950::ioctl(device::file_t *filp, int cmd, unsigned long arg)
{
switch (cmd) {
case SENSORIOCSPOLLRATE: {
switch (arg) {
/* zero would be bad */
case 0:
return -EINVAL;
/* set default polling rate */
case SENSOR_POLLRATE_DEFAULT: {
/* do we need to start internal polling? */
bool want_start = (_measure_ticks == 0);
/* set interval for next measurement to minimum legal value */
_measure_ticks = USEC2TICK(_conversion_interval);
/* if we need to start the poll state machine, do it */
if (want_start) {
start();
}
return OK;
}
/* adjust to a legal polling interval in Hz */
default: {
/* do we need to start internal polling? */
bool want_start = (_measure_ticks == 0);
/* convert hz to tick interval via microseconds */
int ticks = USEC2TICK(1000000 / arg);
/* check against maximum rate */
if (ticks < USEC2TICK(_conversion_interval)) {
return -EINVAL;
}
/* update interval for next measurement */
_measure_ticks = ticks;
/* if we need to start the poll state machine, do it */
if (want_start) {
start();
}
return OK;
}
}
}
default:
/* give it to the superclass */
return CDev::ioctl(filp, cmd, arg);
}
}
/*
ssize_t
ISL2950::read(device::file_t *filp, char *buffer, size_t buflen)
{
// SOME STUFFS
}*/
int
ISL2950::measure()
{
int ret;
/*
* Send the command to begin a measurement.
*/
char cmd = ISL2950_TAKE_RANGE_REG;
ret = ::write(_fd, &cmd, 1);
if (ret != sizeof(cmd)) {
perf_count(_comms_errors);
printf("write fail %d", ret);
return ret;
}
ret = OK;
return ret;
}
int
/*
* Method: collect()
*
* This method reads data from serial UART and places it into a buffer
*/
ISL2950::collect()
{
int bytes_read = 0;
int bytes_available = 0;
int distance_mm = -1.0f;
bool full_frame = false;
bool stop_serial_read = false;
perf_begin(_sample_perf);
/* clear buffer if last read was too long ago */
int64_t read_elapsed = hrt_absolute_time();
read_elapsed = read_elapsed - _last_read;
/* the buffer for read chars is buflen minus null termination */
uint8_t readbuf[sizeof(_linebuf)];
unsigned readlen = sizeof(readbuf);
while ((!stop_serial_read)) {
/* read from the sensor (uart buffer) */
bytes_read = ::read(_fd, &readbuf[0], readlen);
if (bytes_read < 0) {
stop_serial_read = true;
PX4_DEBUG("read err: %d \n", bytes_read);
perf_count(_comms_errors);
perf_end(_sample_perf);
} else if (bytes_read > 0){
_last_read = hrt_absolute_time();
bytes_available += bytes_read;
//printf("Got a buffer with %d bytes,read %d \n", bytes_available,bytes_read);
for (int i = 0; i < bytes_read; i++) {
if (OK == isl2950_parser(readbuf[i],_frame_data, &_parse_state,&_crc16, &distance_mm)){
stop_serial_read = true;
full_frame = true;
}
}
}
}
if (!full_frame) {
return -EAGAIN;
}
printf("val (int): %d, raw: 0x%08X, valid: %s \n", distance_mm, _frame_data, ((full_frame) ? "OK" : "NO"));
struct distance_sensor_s report;
report.timestamp = hrt_absolute_time();
report.type = distance_sensor_s::MAV_DISTANCE_SENSOR_LASER;
report.orientation = _rotation;
report.current_distance = distance_mm/1000.0f;
report.min_distance = get_minimum_distance();
report.max_distance = get_maximum_distance();
report.covariance = 0.0f;
report.signal_quality = -1;
/* TODO: set proper ID */
report.id = 0;
/* publish it */
orb_publish(ORB_ID(distance_sensor), _distance_sensor_topic, &report);
_reports->force(&report);
/* notify anyone waiting for data */
poll_notify(POLLIN);
bytes_read = OK;
perf_end(_sample_perf);
return bytes_read;
// ----------------------- LANBAO SPECIFIC ---------------------------
/*
uint8_t buffer[50];
int bytes_available = 0;
int bytes_processed = 0;
int bytes_read = 0;
int distance_mm = -1.0f;
bytes_read = ::read(_fd, buffer + bytes_available, 50 - bytes_available);
//printf("read() returns %02X %02X %02X %02X \n", buffer[0], buffer[1],buffer[2],buffer[3] );
//--------------------------------------------------------------------
if (bytes_read < 0) {
PX4_ERR("isl2950 - read() error: %d \n", bytes_read);
perf_count(_comms_errors);
perf_end(_sample_perf);
// only throw an error if we time out
if (read_elapsed > (_conversion_interval * 2)) {
printf("read elapsed %d , conversion interval %d",read_elapsed,_conversion_interval * 2);
return bytes_read;
} else {
printf("EAGAIN",read_elapsed,_conversion_interval * 2);
return -EAGAIN;
}
} else if (bytes_read == 0) {
return OK; // If we dont read any bites we simply exit from collecting
}
_last_read = hrt_absolute_time();
bytes_available += bytes_read;
// parse the buffer data
full_frame = false;
bytes_processed = isl2950_parser(buffer, bytes_available, &full_frame,&distance_mm);
tempo = tempo - hrt_absolute_time();
//printf("isl2950_parser() processed %d bytes, full_frame %d \n", bytes_processed, full_frame);
// discard the processed bytes and move the buffer content to the head
bytes_available -= bytes_processed;
memcpy(buffer, buffer + bytes_processed, bytes_available);
if (full_frame) {
printf("Measured Distance %d mm\n",distance_mm);
}
else if (!full_frame) { // If the frame is not valid we avoid publishing it
return OK;
}
struct distance_sensor_s report;
report.timestamp = hrt_absolute_time();
report.type = distance_sensor_s::MAV_DISTANCE_SENSOR_LASER;
report.orientation = _rotation;
report.current_distance = distance_mm/1000; // To meters
report.min_distance = get_minimum_distance();
report.max_distance = get_maximum_distance();
report.covariance = 0.0f;
report.signal_quality = -1;
// TODO: set proper ID
report.id = 0;
// publish it
orb_publish(ORB_ID(distance_sensor), _distance_sensor_topic, &report);
_reports->force(&report);
// notify anyone waiting for data
poll_notify(POLLIN);
printf("tempo %d \n",tempo);
perf_end(_sample_perf);
return OK; */
}
void
ISL2950::start()
{
PX4_INFO("ISL2950::start() - launch the work queue");
/* reset the report ring and state machine */
_collect_phase = false;
_reports->flush();
/* schedule a cycle to start things */
work_queue(HPWORK, &_work, (worker_t)&ISL2950::cycle_trampoline, this, 1);
}
void
ISL2950::stop()
{
work_cancel(HPWORK, &_work);
}
void
ISL2950::cycle_trampoline(void *arg)
{
ISL2950 *dev = static_cast<ISL2950 *>(arg);
dev->cycle();
}
void
ISL2950::cycle()
{
PX4_DEBUG("ISL2950::cycle() - in the cycle");
/* fds initialized? */
if (_fd < 0) {
/* open fd */
_fd = ::open(_port,O_RDWR);
if (_fd < 0) {
PX4_ERR("ISL2950::cycle() - open failed (%i)", errno);
return;
}
struct termios uart_config;
int termios_state;
/* fill the struct for the new configuration */
tcgetattr(_fd, &uart_config);
/* clear ONLCR flag (which appends a CR for every LF) */
uart_config.c_oflag &= ~ONLCR;
/* no parity, one stop bit */
uart_config.c_cflag &= ~(CSTOPB | PARENB);
unsigned speed = B115200;
/* set baud rate */
if ((termios_state = cfsetispeed(&uart_config, speed)) < 0) {
PX4_ERR("CFG: %d ISPD", termios_state);
}
if ((termios_state = cfsetospeed(&uart_config, speed)) < 0) {
PX4_ERR("CFG: %d OSPD", termios_state);
}
if ((termios_state = tcsetattr(_fd, TCSANOW, &uart_config)) < 0) {
PX4_ERR("baud %d ATTR", termios_state);
}
}
//printf("COLLECT \n");
/* perform collection */
int collect_ret = collect();
if (collect_ret == -EAGAIN) {
/* reschedule to grab the missing bits, time to transmit 8 bytes @ 9600 bps */
work_queue(HPWORK,&_work,(worker_t)&ISL2950::cycle_trampoline,this,USEC2TICK(1042 * 8));
return;
}
// ------------------- DISABLED CHECKING OF CONSECUTIVE FAIL
// if (OK != collect_ret) {
/* we know the sensor needs about four seconds to initialize */
// if (hrt_absolute_time() > 1 * 1000 * 1000LL && _consecutive_fail_count < 5) {
// PX4_ERR("collection error #%u", _consecutive_fail_count);
// }
// _consecutive_fail_count++;
/* restart the measurement state machine */
// start();
// return;
// } else {
/* apparently success */
// _consecutive_fail_count = 0;
// }
// ------------------- DISABLED CHECKING OF CONSECUTIVE FAIL
/* schedule a fresh cycle call when the measurement is done */
work_queue(HPWORK,
&_work,
(worker_t)&ISL2950::cycle_trampoline,
this,
USEC2TICK(_conversion_interval));
}
void
ISL2950::print_info()
{
perf_print_counter(_sample_perf);
perf_print_counter(_comms_errors);
printf("poll interval: %d ticks\n", _measure_ticks);
_reports->print_info("report queue");
}
/**
* Local functions in support of the shell command.
*/
namespace isl2950
{
ISL2950 *g_dev;
int start(const char *port, uint8_t rotation);
int stop();
int test();
int reset();
int info();
/**
* Start the driver.
*/
int
start(const char *port, uint8_t rotation)
{
int fd;
if (g_dev != nullptr) {
PX4_WARN("already started");
return -1;
}
/* create the driver */
g_dev = new ISL2950(port, rotation);
if (g_dev == nullptr) {
goto fail;
}
if (OK != g_dev->init()) {
goto fail;
}
/* set the poll rate to default, starts automatic data collection */
fd = open(RANGE_FINDER0_DEVICE_PATH, 0);
if (fd < 0) {
PX4_ERR("device open fail (%i)", errno);
goto fail;
}
if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) {
PX4_ERR("failed to set baudrate %d", B115200);
goto fail;
}
PX4_DEBUG("isl2950::start() succeeded");
return 0;
fail:
PX4_DEBUG("isl2950::start() failed");
if (g_dev != nullptr) {
delete g_dev;
g_dev = nullptr;
}
return -1;
}
/**
* Stop the driver
*/
int stop()
{
if (g_dev != nullptr) {
delete g_dev;
g_dev = nullptr;
} else {
return -1;
}
return 0;
}
/**
* Perform some basic functional tests on the driver;
* make sure we can collect data from the sensor in polled
* and automatic modes.
*/
int
test()
{
struct distance_sensor_s report;
ssize_t sz;
int fd = open(RANGE_FINDER0_DEVICE_PATH, O_RDONLY);
if (fd < 0) {
PX4_ERR("%s open failed (try 'isl2950 start' if the driver is not running", RANGE_FINDER0_DEVICE_PATH);
return -1;
}
/* do a simple demand read */
sz = read(fd, &report, sizeof(report));
if (sz != sizeof(report)) {
PX4_ERR("immediate read failed");
return -1;
}
print_message(report);
/* start the sensor polling at 2 Hz rate */
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 2)) {
PX4_ERR("failed to set 2Hz poll rate");
return -1;
}
/* read the sensor 5x and report each value */
for (unsigned i = 0; i < 5; i++) {
struct pollfd fds;
/* wait for data to be ready */
fds.fd = fd;
fds.events = POLLIN;
int ret = poll(&fds, 1, 2000);
if (ret != 1) {
PX4_ERR("timed out");
break;
}
/* now go get it */
sz = read(fd, &report, sizeof(report));
if (sz != sizeof(report)) {
PX4_ERR("read failed: got %zi vs exp. %zu", sz, sizeof(report));
break;
}
print_message(report);
}
/* reset the sensor polling to the default rate */
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT)) {
PX4_ERR("ioctl SENSORIOCSPOLLRATE failed");
return -1;
}
return 0;
}
/**
* Reset the driver.
*/
int
reset()
{
int fd = open(RANGE_FINDER0_DEVICE_PATH, O_RDONLY);
if (fd < 0) {
PX4_ERR("open failed (%i)", errno);
return -1;
}
if (ioctl(fd, SENSORIOCRESET, 0) < 0) {
PX4_ERR("driver reset failed");
return -1;
}
if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) {
PX4_ERR("driver poll restart failed");
return -1;
}
return 0;
}
/**
* Print a little info about the driver.
*/
int
info()
{
if (g_dev == nullptr) {
PX4_ERR("driver not running");
return -1;
}
printf("state @ %p\n", g_dev);
g_dev->print_info();
return 0;
}
} // namespace
int
isl2950_main(int argc, char *argv[])
{
uint8_t rotation = distance_sensor_s::ROTATION_DOWNWARD_FACING;
const char *device_path = ISL2950_DEFAULT_PORT;
int ch;
int myoptind = 1;
const char *myoptarg = nullptr;
while ((ch = px4_getopt(argc, argv, "R:d:", &myoptind, &myoptarg)) != EOF) {
switch (ch) {
case 'R':
rotation = (uint8_t)atoi(myoptarg);
break;
case 'd':
device_path = myoptarg;
break;
default:
PX4_WARN("Unknown option!");
return -1;
}
}
if (myoptind >= argc) {
goto out_error;
}
/*
* Start/load the driver.
*/
if (!strcmp(argv[myoptind], "start")) {
return isl2950::start(device_path, rotation);
}
/*
* Stop the driver
*/
if (!strcmp(argv[myoptind], "stop")) {
return isl2950::stop();
}
/*
* Test the driver/device.
*/
if (!strcmp(argv[myoptind], "test")) {
return isl2950::test();
}
/*
* Reset the driver.
*/
if (!strcmp(argv[myoptind], "reset")) {
return isl2950::reset();
}
/*
* Print driver information.
*/
if (!strcmp(argv[myoptind], "info") || !strcmp(argv[myoptind], "status")) {
return isl2950::info();
}
out_error:
PX4_ERR("unrecognized command, try 'start', 'test', 'reset' or 'info'");
return -1;
}

View File

@ -1,18 +1,56 @@
//
// Copyright (c) 2016 Airlango Ltd. All rights reserved.
//
// @file lanbao_isl.cpp
//
// Device driver implementaion for Lanbao ISL29501 hardware version 2, which
// uses crc-16 for checksum calculation.
// Also see http://zhangxu1018.blog.sohu.com/161752060.html
//
#include <systemlib/err.h>
#include "lanbao_isl_v2.h"
/****************************************************************************
*
* Copyright (c) 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file isl2950_parser.cpp
* @author Claudio Micheli
* claudio@auterion.com
*
*/
#include "isl2950_parser.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "isl2950_parser.h"
#include <string.h>
#include <stdlib.h>
typedef unsigned char UCHAR;
typedef unsigned short USHORT;
// Note : No clue what those static variables are
static const UCHAR aucCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
@ -63,6 +101,18 @@ static const UCHAR aucCRCLo[] = {
0x41, 0x81, 0x80, 0x40
};
// TOF frame format
//
// 1B 1B 1B 1B 2B
// | 0xA5 | 0x5A | distance-MSB | distance-LSB | crc-16 |
//
// Frame data saved for CRC calculation
const static int TOF_DISTANCE_MSB_POS = 2;
const static int TOF_DISTANCE_LSB_POS = 3;
const static int TOF_CRC_CALC_DATA_LEN = 4;
USHORT usMBCRC16(UCHAR* pucFrame, USHORT usLen) {
UCHAR ucCRCHi = 0xFF;
UCHAR ucCRCLo = 0xFF;
@ -75,104 +125,81 @@ USHORT usMBCRC16(UCHAR* pucFrame, USHORT usLen) {
return (USHORT)(ucCRCHi << 8 | ucCRCLo);
}
LanbaoIslV2::LanbaoIslV2() {
PX4_DEBUG("LanbaoIslV2 ctor");
}
int isl2950_parser(uint8_t c, uint8_t *parserbuf, ISL2950_PARSE_STATE *state, uint16_t *crc16, int *dist)
{
int ret = -1;
// int bytes_processed = 0;
LanbaoIslV2::~LanbaoIslV2() {
PX4_DEBUG("LanbaoIslV2 dtor");
}
// TOF frame format
//
// 1B 1B 1B 1B 2B
// | 0xA5 | 0x5A | distance-MSB | distance-LSB | crc-16 |
//
// Frame data saved for CRC calculation
const static int TOF_DISTANCE_MSB_POS = 2;
const static int TOF_DISTANCE_LSB_POS = 3;
const static int TOF_CRC_CALC_DATA_LEN = 4;
static unsigned char frame_data[TOF_CRC_CALC_DATA_LEN] = {
TOF_SFD1, TOF_SFD2, 0, 0
};
// uint8_t b = buffer[bytes_processed++]; // Can be removed
// printf("parse byte 0x%02X \n", b);
int LanbaoIslV2::Parse(const uint8_t* buffer, int length, bool* full_frame) {
static TofFramingState state = TFS_NOT_STARTED;
static uint16_t crc16 = 0;
int bytes_processed = 0;
PX4_DEBUG("LanbaoTofV2::Parse()");
while (bytes_processed < length) {
uint8_t b = buffer[bytes_processed++];
PX4_DEBUG("parse byte 0x%02X", b);
switch (state) {
switch (*state) {
case TFS_NOT_STARTED:
if (b == TOF_SFD1) {
state = TFS_GOT_SFD1;
PX4_DEBUG("Got SFD1");
if (c == TOF_SFD1) {
*state = TFS_GOT_SFD1;
//printf("Got SFD1 \n");
}
break;
case TFS_GOT_SFD1:
if (b == TOF_SFD2) {
state = TFS_GOT_SFD2;
PX4_DEBUG("Got SFD2");
} else if (b == TOF_SFD1) {
state = TFS_GOT_SFD1;
PX4_DEBUG("Discard previous SFD1, Got new SFD1");
if (c == TOF_SFD2) {
*state = TFS_GOT_SFD2;
//printf("Got SFD2 \n");
}
// @NOTE (claudio@auterion.com): Strange thing, if second byte is wrong we skip all the frame !!
else if (c == TOF_SFD1) {
*state = TFS_GOT_SFD1;
// printf("Discard previous SFD1, Got new SFD1 \n");
} else {
state = TFS_NOT_STARTED;
*state = TFS_NOT_STARTED;
}
break;
case TFS_GOT_SFD2:
frame_data[TOF_DISTANCE_MSB_POS] = b;
state = TFS_GOT_DATA1;
PX4_DEBUG("Got DATA1 0x%02X", b);
*state = TFS_GOT_DATA1;
parserbuf[TOF_DISTANCE_MSB_POS] = c; // MSB Data
//printf("Got DATA1 0x%02X \n", c);
break;
case TFS_GOT_DATA1:
frame_data[TOF_DISTANCE_LSB_POS] = b;
state = TFS_GOT_DATA2;
PX4_DEBUG("Got DATA2 0x%02X", b);
*state = TFS_GOT_DATA2;
parserbuf[TOF_DISTANCE_LSB_POS] = c; // LSB Data
//printf("Got DATA2 0x%02X \n", c);
// do crc calculation
crc16 = usMBCRC16(frame_data, TOF_CRC_CALC_DATA_LEN);
*crc16 = usMBCRC16(parserbuf, TOF_CRC_CALC_DATA_LEN);
// convert endian
crc16 = (crc16 >> 8) | (crc16 << 8);
*crc16 = (*crc16 >> 8) | (*crc16 << 8);
break;
case TFS_GOT_DATA2:
if (b == (crc16 >> 8)) {
state = TFS_GOT_CHECKSUM1;
if (c == (*crc16 >> 8)) {
*state = TFS_GOT_CHECKSUM1;
} else {
PX4_DEBUG("Checksum invalid on high byte: 0x%02X, calculated: 0x%04X",
b, crc16);
state = TFS_NOT_STARTED;
printf("Checksum invalid on high byte: 0x%02X, calculated: 0x%04X \n",c, *crc16);
//*state = TFS_NOT_STARTED;
*state = TFS_GOT_CHECKSUM1; // Forcing to print the value anyway
}
break;
case TFS_GOT_CHECKSUM1:
// Here, reset state to `NOT-STARTED` no matter crc ok or not
state = TFS_NOT_STARTED;
if (b == (crc16 & 0xFF)) {
PX4_DEBUG("Checksum verified");
data_.distance_mm = (frame_data[TOF_DISTANCE_MSB_POS] << 8)
| frame_data[TOF_DISTANCE_LSB_POS];
*full_frame = true;
return bytes_processed;
} else {
PX4_DEBUG("Checksum invalidon low byte: 0x%02X, calculated: 0x%04X",
b, crc16);
}
*state = TFS_NOT_STARTED;
/*if (c == (*crc16 & 0xFF)) {
//printf("Checksum verified \n");
*dist = (parserbuf[TOF_DISTANCE_MSB_POS] << 8) | parserbuf[TOF_DISTANCE_LSB_POS];
return OK;
}*/
*dist = (parserbuf[TOF_DISTANCE_MSB_POS] << 8) | parserbuf[TOF_DISTANCE_LSB_POS];
return OK;
break;
default:
PX4_DEBUG("This should never happen.")
printf("This should never happen. \n");
break;
}
}
return bytes_processed;
// SOME STUFFS
return ret;
}