Merge branch 'master' of github.com:PX4/Firmware into fixedwing

This commit is contained in:
Lorenz Meier 2013-01-08 17:40:44 +01:00
commit 8cc9fb9e2c
320 changed files with 140296 additions and 8 deletions

19
Tools/fix_code_style_ubuntu.sh Executable file
View File

@ -0,0 +1,19 @@
#!/bin/sh
astyle \
--style=linux \
--indent=force-tab=8 \
--indent-cases \
--indent-preprocessor \
--break-blocks=all \
--pad-oper \
--pad-header \
--unpad-paren \
--keep-one-line-blocks \
--keep-one-line-statements \
--align-pointer=name \
--suffix=none \
--lineend=linux \
$*
#--ignore-exclude-errors-x \
#--exclude=EASTL \
#--align-reference=name \

53
apps/controllib/Makefile Normal file
View File

@ -0,0 +1,53 @@
############################################################################
#
# Copyright (C) 2012 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# Control library
#
CSRCS = test_params.c
CXXSRCS = block/Block.cpp \
block/BlockParam.cpp \
block/UOrbPublication.cpp \
block/UOrbSubscription.cpp \
blocks.cpp \
fixedwing.cpp
CXXHDRS = block/Block.hpp \
block/BlockParam.hpp \
block/UOrbPublication.hpp \
block/UOrbSubscription.hpp \
blocks.hpp \
fixedwing.hpp
include $(APPDIR)/mk/app.mk

View File

@ -0,0 +1,210 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file Block.cpp
*
* Controller library code
*/
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "Block.hpp"
#include "BlockParam.hpp"
#include "UOrbSubscription.hpp"
#include "UOrbPublication.hpp"
namespace control
{
Block::Block(SuperBlock *parent, const char *name) :
_name(name),
_parent(parent),
_dt(0),
_subscriptions(),
_params()
{
if (getParent() != NULL) {
getParent()->getChildren().add(this);
}
}
void Block::getName(char *buf, size_t n)
{
if (getParent() == NULL) {
strncpy(buf, _name, n);
} else {
char parentName[blockNameLengthMax];
getParent()->getName(parentName, n);
if (!strcmp(_name, "")) {
strncpy(buf, parentName, blockNameLengthMax);
} else {
snprintf(buf, blockNameLengthMax, "%s_%s", parentName, _name);
}
}
}
void Block::updateParams()
{
BlockParamBase *param = getParams().getHead();
int count = 0;
while (param != NULL) {
if (count++ > maxParamsPerBlock) {
char name[blockNameLengthMax];
getName(name, blockNameLengthMax);
printf("exceeded max params for block: %s\n", name);
break;
}
//printf("updating param: %s\n", param->getName());
param->update();
param = param->getSibling();
}
}
void Block::updateSubscriptions()
{
UOrbSubscriptionBase *sub = getSubscriptions().getHead();
int count = 0;
while (sub != NULL) {
if (count++ > maxSubscriptionsPerBlock) {
char name[blockNameLengthMax];
getName(name, blockNameLengthMax);
printf("exceeded max subscriptions for block: %s\n", name);
break;
}
sub->update();
sub = sub->getSibling();
}
}
void Block::updatePublications()
{
UOrbPublicationBase *pub = getPublications().getHead();
int count = 0;
while (pub != NULL) {
if (count++ > maxPublicationsPerBlock) {
char name[blockNameLengthMax];
getName(name, blockNameLengthMax);
printf("exceeded max publications for block: %s\n", name);
break;
}
pub->update();
pub = pub->getSibling();
}
}
void SuperBlock::setDt(float dt)
{
Block::setDt(dt);
Block *child = getChildren().getHead();
int count = 0;
while (child != NULL) {
if (count++ > maxChildrenPerBlock) {
char name[40];
getName(name, 40);
printf("exceeded max children for block: %s\n", name);
break;
}
child->setDt(dt);
child = child->getSibling();
}
}
void SuperBlock::updateChildParams()
{
Block *child = getChildren().getHead();
int count = 0;
while (child != NULL) {
if (count++ > maxChildrenPerBlock) {
char name[40];
getName(name, 40);
printf("exceeded max children for block: %s\n", name);
break;
}
child->updateParams();
child = child->getSibling();
}
}
void SuperBlock::updateChildSubscriptions()
{
Block *child = getChildren().getHead();
int count = 0;
while (child != NULL) {
if (count++ > maxChildrenPerBlock) {
char name[40];
getName(name, 40);
printf("exceeded max children for block: %s\n", name);
break;
}
child->updateSubscriptions();
child = child->getSibling();
}
}
void SuperBlock::updateChildPublications()
{
Block *child = getChildren().getHead();
int count = 0;
while (child != NULL) {
if (count++ > maxChildrenPerBlock) {
char name[40];
getName(name, 40);
printf("exceeded max children for block: %s\n", name);
break;
}
child->updatePublications();
child = child->getSibling();
}
}
} // namespace control

View File

@ -0,0 +1,131 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file Block.h
*
* Controller library code
*/
#pragma once
#include <stdint.h>
#include <inttypes.h>
#include "List.hpp"
namespace control
{
static const uint16_t maxChildrenPerBlock = 100;
static const uint16_t maxParamsPerBlock = 100;
static const uint16_t maxSubscriptionsPerBlock = 100;
static const uint16_t maxPublicationsPerBlock = 100;
static const uint8_t blockNameLengthMax = 80;
// forward declaration
class BlockParamBase;
class UOrbSubscriptionBase;
class UOrbPublicationBase;
class SuperBlock;
/**
*/
class __EXPORT Block :
public ListNode<Block *>
{
public:
friend class BlockParamBase;
// methods
Block(SuperBlock *parent, const char *name);
void getName(char *name, size_t n);
virtual ~Block() {};
virtual void updateParams();
virtual void updateSubscriptions();
virtual void updatePublications();
virtual void setDt(float dt) { _dt = dt; }
// accessors
float getDt() { return _dt; }
protected:
// accessors
SuperBlock *getParent() { return _parent; }
List<UOrbSubscriptionBase *> & getSubscriptions() { return _subscriptions; }
List<UOrbPublicationBase *> & getPublications() { return _publications; }
List<BlockParamBase *> & getParams() { return _params; }
// attributes
const char *_name;
SuperBlock *_parent;
float _dt;
List<UOrbSubscriptionBase *> _subscriptions;
List<UOrbPublicationBase *> _publications;
List<BlockParamBase *> _params;
};
class __EXPORT SuperBlock :
public Block
{
public:
friend class Block;
// methods
SuperBlock(SuperBlock *parent, const char *name) :
Block(parent, name),
_children() {
}
virtual ~SuperBlock() {};
virtual void setDt(float dt);
virtual void updateParams() {
Block::updateParams();
if (getChildren().getHead() != NULL) updateChildParams();
}
virtual void updateSubscriptions() {
Block::updateSubscriptions();
if (getChildren().getHead() != NULL) updateChildSubscriptions();
}
virtual void updatePublications() {
Block::updatePublications();
if (getChildren().getHead() != NULL) updateChildPublications();
}
protected:
// methods
List<Block *> & getChildren() { return _children; }
void updateChildParams();
void updateChildSubscriptions();
void updateChildPublications();
// attributes
List<Block *> _children;
};
} // namespace control

View File

@ -0,0 +1,77 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file Blockparam.cpp
*
* Controller library code
*/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "BlockParam.hpp"
namespace control
{
BlockParamBase::BlockParamBase(Block *parent, const char *name) :
_handle(PARAM_INVALID)
{
char fullname[blockNameLengthMax];
if (parent == NULL) {
strncpy(fullname, name, blockNameLengthMax);
} else {
char parentName[blockNameLengthMax];
parent->getName(parentName, blockNameLengthMax);
if (!strcmp(name, "")) {
strncpy(fullname, parentName, blockNameLengthMax);
} else {
snprintf(fullname, blockNameLengthMax, "%s_%s", parentName, name);
}
parent->getParams().add(this);
}
_handle = param_find(fullname);
if (_handle == PARAM_INVALID)
printf("error finding param: %s\n", fullname);
};
} // namespace control

View File

@ -0,0 +1,85 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file BlockParam.h
*
* Controller library code
*/
#pragma once
#include <systemlib/param/param.h>
#include "Block.hpp"
#include "List.hpp"
namespace control
{
/**
* A base class for block params that enables traversing linked list.
*/
class __EXPORT BlockParamBase : public ListNode<BlockParamBase *>
{
public:
BlockParamBase(Block *parent, const char *name);
virtual ~BlockParamBase() {};
virtual void update() = 0;
const char *getName() { return param_name(_handle); }
protected:
param_t _handle;
};
/**
* Parameters that are tied to blocks for updating and nameing.
*/
template<class T>
class __EXPORT BlockParam : public BlockParamBase
{
public:
BlockParam(Block *block, const char *name) :
BlockParamBase(block, name),
_val() {
update();
}
T get() { return _val; }
void set(T val) { _val = val; }
void update() {
if (_handle != PARAM_INVALID) param_get(_handle, &_val);
}
protected:
T _val;
};
} // namespace control

View File

@ -0,0 +1,71 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file Node.h
*
* A node of a linked list.
*/
#pragma once
template<class T>
class __EXPORT ListNode
{
public:
ListNode() : _sibling(NULL) {
}
void setSibling(T sibling) { _sibling = sibling; }
T getSibling() { return _sibling; }
T get() {
return _sibling;
}
protected:
T _sibling;
};
template<class T>
class __EXPORT List
{
public:
List() : _head() {
}
void add(T newNode) {
newNode->setSibling(getHead());
setHead(newNode);
}
T getHead() { return _head; }
private:
void setHead(T &head) { _head = head; }
T _head;
};

View File

@ -0,0 +1,39 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file UOrbPublication.cpp
*
*/
#include "UOrbPublication.hpp"

View File

@ -0,0 +1,118 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file UOrbPublication.h
*
*/
#pragma once
#include <uORB/uORB.h>
#include "Block.hpp"
#include "List.hpp"
namespace control
{
class Block;
/**
* Base publication warapper class, used in list traversal
* of various publications.
*/
class __EXPORT UOrbPublicationBase : public ListNode<control::UOrbPublicationBase *>
{
public:
UOrbPublicationBase(
List<UOrbPublicationBase *> * list,
const struct orb_metadata *meta) :
_meta(meta),
_handle() {
if (list != NULL) list->add(this);
}
void update() {
orb_publish(getMeta(), getHandle(), getDataVoidPtr());
}
virtual void *getDataVoidPtr() = 0;
virtual ~UOrbPublicationBase() {
orb_unsubscribe(getHandle());
}
const struct orb_metadata *getMeta() { return _meta; }
int getHandle() { return _handle; }
protected:
void setHandle(orb_advert_t handle) { _handle = handle; }
const struct orb_metadata *_meta;
orb_advert_t _handle;
};
/**
* UOrb Publication wrapper class
*/
template<class T>
class UOrbPublication :
public T, // this must be first!
public UOrbPublicationBase
{
public:
/**
* Constructor
*
* @param list A list interface for adding to list during construction
* @param meta The uORB metadata (usually from the ORB_ID() macro)
* for the topic.
*/
UOrbPublication(
List<UOrbPublicationBase *> * list,
const struct orb_metadata *meta) :
T(), // initialize data structure to zero
UOrbPublicationBase(list, meta) {
// It is important that we call T()
// before we publish the data, so we
// call this here instead of the base class
setHandle(orb_advertise(getMeta(), getDataVoidPtr()));
}
virtual ~UOrbPublication() {}
/*
* XXX
* This function gets the T struct, assuming
* the struct is the first base class, this
* should use dynamic cast, but doesn't
* seem to be available
*/
void *getDataVoidPtr() { return (void *)(T *)(this); }
};
} // namespace control

View File

@ -0,0 +1,51 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file UOrbSubscription.cpp
*
*/
#include "UOrbSubscription.hpp"
namespace control
{
bool __EXPORT UOrbSubscriptionBase::updated()
{
bool isUpdated = false;
orb_check(_handle, &isUpdated);
return isUpdated;
}
} // namespace control

View File

@ -0,0 +1,137 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file UOrbSubscription.h
*
*/
#pragma once
#include <uORB/uORB.h>
#include "Block.hpp"
#include "List.hpp"
namespace control
{
class Block;
/**
* Base subscription warapper class, used in list traversal
* of various subscriptions.
*/
class __EXPORT UOrbSubscriptionBase :
public ListNode<control::UOrbSubscriptionBase *>
{
public:
// methods
/**
* Constructor
*
* @param meta The uORB metadata (usually from the ORB_ID() macro)
* for the topic.
*/
UOrbSubscriptionBase(
List<UOrbSubscriptionBase *> * list,
const struct orb_metadata *meta) :
_meta(meta),
_handle() {
if (list != NULL) list->add(this);
}
bool updated();
void update() {
if (updated()) {
orb_copy(_meta, _handle, getDataVoidPtr());
}
}
virtual void *getDataVoidPtr() = 0;
virtual ~UOrbSubscriptionBase() {
orb_unsubscribe(_handle);
}
// accessors
const struct orb_metadata *getMeta() { return _meta; }
int getHandle() { return _handle; }
protected:
// accessors
void setHandle(int handle) { _handle = handle; }
// attributes
const struct orb_metadata *_meta;
int _handle;
};
/**
* UOrb Subscription wrapper class
*/
template<class T>
class __EXPORT UOrbSubscription :
public T, // this must be first!
public UOrbSubscriptionBase
{
public:
/**
* Constructor
*
* @param list A list interface for adding to list during construction
* @param meta The uORB metadata (usually from the ORB_ID() macro)
* for the topic.
* @param interval The minimum interval in milliseconds between updates
*/
UOrbSubscription(
List<UOrbSubscriptionBase *> * list,
const struct orb_metadata *meta, unsigned interval) :
T(), // initialize data structure to zero
UOrbSubscriptionBase(list, meta) {
setHandle(orb_subscribe(getMeta()));
orb_set_interval(getHandle(), interval);
}
/**
* Deconstructor
*/
virtual ~UOrbSubscription() {}
/*
* XXX
* This function gets the T struct, assuming
* the struct is the first base class, this
* should use dynamic cast, but doesn't
* seem to be available
*/
void *getDataVoidPtr() { return (void *)(T *)(this); }
T getData() { return T(*this); }
};
} // namespace control

486
apps/controllib/blocks.cpp Normal file
View File

@ -0,0 +1,486 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file blocks.cpp
*
* Controller library code
*/
#include <math.h>
#include <stdio.h>
#include "blocks.hpp"
namespace control
{
int basicBlocksTest()
{
blockLimitTest();
blockLimitSymTest();
blockLowPassTest();
blockHighPassTest();
blockIntegralTest();
blockIntegralTrapTest();
blockDerivativeTest();
blockPTest();
blockPITest();
blockPDTest();
blockPIDTest();
blockOutputTest();
blockRandUniformTest();
blockRandGaussTest();
return 0;
}
float BlockLimit::update(float input)
{
if (input > getMax()) {
input = _max.get();
} else if (input < getMin()) {
input = getMin();
}
return input;
}
int blockLimitTest()
{
printf("Test BlockLimit\t\t\t: ");
BlockLimit limit(NULL, "TEST");
// initial state
ASSERT(equal(1.0f, limit.getMax()));
ASSERT(equal(-1.0f, limit.getMin()));
ASSERT(equal(0.0f, limit.getDt()));
// update
ASSERT(equal(-1.0f, limit.update(-2.0f)));
ASSERT(equal(1.0f, limit.update(2.0f)));
ASSERT(equal(0.0f, limit.update(0.0f)));
printf("PASS\n");
return 0;
}
float BlockLimitSym::update(float input)
{
if (input > getMax()) {
input = _max.get();
} else if (input < -getMax()) {
input = -getMax();
}
return input;
}
int blockLimitSymTest()
{
printf("Test BlockLimitSym\t\t: ");
BlockLimitSym limit(NULL, "TEST");
// initial state
ASSERT(equal(1.0f, limit.getMax()));
ASSERT(equal(0.0f, limit.getDt()));
// update
ASSERT(equal(-1.0f, limit.update(-2.0f)));
ASSERT(equal(1.0f, limit.update(2.0f)));
ASSERT(equal(0.0f, limit.update(0.0f)));
printf("PASS\n");
return 0;
}
float BlockLowPass::update(float input)
{
float b = 2 * float(M_PI) * getFCut() * getDt();
float a = b / (1 + b);
setState(a * input + (1 - a)*getState());
return getState();
}
int blockLowPassTest()
{
printf("Test BlockLowPass\t\t: ");
BlockLowPass lowPass(NULL, "TEST_LP");
// test initial state
ASSERT(equal(10.0f, lowPass.getFCut()));
ASSERT(equal(0.0f, lowPass.getState()));
ASSERT(equal(0.0f, lowPass.getDt()));
// set dt
lowPass.setDt(0.1f);
ASSERT(equal(0.1f, lowPass.getDt()));
// set state
lowPass.setState(1.0f);
ASSERT(equal(1.0f, lowPass.getState()));
// test update
ASSERT(equal(1.8626974f, lowPass.update(2.0f)));
// test end condition
for (int i = 0; i < 100; i++) {
lowPass.update(2.0f);
}
ASSERT(equal(2.0f, lowPass.getState()));
ASSERT(equal(2.0f, lowPass.update(2.0f)));
printf("PASS\n");
return 0;
};
float BlockHighPass::update(float input)
{
float b = 2 * float(M_PI) * getFCut() * getDt();
float a = 1 / (1 + b);
setY(a * (getY() + input - getU()));
setU(input);
return getY();
}
int blockHighPassTest()
{
printf("Test BlockHighPass\t\t: ");
BlockHighPass highPass(NULL, "TEST_HP");
// test initial state
ASSERT(equal(10.0f, highPass.getFCut()));
ASSERT(equal(0.0f, highPass.getU()));
ASSERT(equal(0.0f, highPass.getY()));
ASSERT(equal(0.0f, highPass.getDt()));
// set dt
highPass.setDt(0.1f);
ASSERT(equal(0.1f, highPass.getDt()));
// set state
highPass.setU(1.0f);
ASSERT(equal(1.0f, highPass.getU()));
highPass.setY(1.0f);
ASSERT(equal(1.0f, highPass.getY()));
// test update
ASSERT(equal(0.2746051f, highPass.update(2.0f)));
// test end condition
for (int i = 0; i < 100; i++) {
highPass.update(2.0f);
}
ASSERT(equal(0.0f, highPass.getY()));
ASSERT(equal(0.0f, highPass.update(2.0f)));
printf("PASS\n");
return 0;
}
float BlockIntegral::update(float input)
{
// trapezoidal integration
setY(_limit.update(getY() + input * getDt()));
return getY();
}
int blockIntegralTest()
{
printf("Test BlockIntegral\t\t: ");
BlockIntegral integral(NULL, "TEST_I");
// test initial state
ASSERT(equal(1.0f, integral.getMax()));
ASSERT(equal(0.0f, integral.getDt()));
// set dt
integral.setDt(0.1f);
ASSERT(equal(0.1f, integral.getDt()));
// set Y
integral.setY(0.9f);
ASSERT(equal(0.9f, integral.getY()));
// test exceed max
for (int i = 0; i < 100; i++) {
integral.update(1.0f);
}
ASSERT(equal(1.0f, integral.update(1.0f)));
// test exceed min
integral.setY(-0.9f);
ASSERT(equal(-0.9f, integral.getY()));
for (int i = 0; i < 100; i++) {
integral.update(-1.0f);
}
ASSERT(equal(-1.0f, integral.update(-1.0f)));
// test update
integral.setY(0.1f);
ASSERT(equal(0.2f, integral.update(1.0)));
ASSERT(equal(0.2f, integral.getY()));
printf("PASS\n");
return 0;
}
float BlockIntegralTrap::update(float input)
{
// trapezoidal integration
setY(_limit.update(getY() +
(getU() + input) / 2.0f * getDt()));
setU(input);
return getY();
}
int blockIntegralTrapTest()
{
printf("Test BlockIntegralTrap\t\t: ");
BlockIntegralTrap integral(NULL, "TEST_I");
// test initial state
ASSERT(equal(1.0f, integral.getMax()));
ASSERT(equal(0.0f, integral.getDt()));
// set dt
integral.setDt(0.1f);
ASSERT(equal(0.1f, integral.getDt()));
// set U
integral.setU(1.0f);
ASSERT(equal(1.0f, integral.getU()));
// set Y
integral.setY(0.9f);
ASSERT(equal(0.9f, integral.getY()));
// test exceed max
for (int i = 0; i < 100; i++) {
integral.update(1.0f);
}
ASSERT(equal(1.0f, integral.update(1.0f)));
// test exceed min
integral.setU(-1.0f);
integral.setY(-0.9f);
ASSERT(equal(-0.9f, integral.getY()));
for (int i = 0; i < 100; i++) {
integral.update(-1.0f);
}
ASSERT(equal(-1.0f, integral.update(-1.0f)));
// test update
integral.setU(2.0f);
integral.setY(0.1f);
ASSERT(equal(0.25f, integral.update(1.0)));
ASSERT(equal(0.25f, integral.getY()));
ASSERT(equal(1.0f, integral.getU()));
printf("PASS\n");
return 0;
}
float BlockDerivative::update(float input)
{
float output = _lowPass.update((input - getU()) / getDt());
setU(input);
return output;
}
int blockDerivativeTest()
{
printf("Test BlockDerivative\t\t: ");
BlockDerivative derivative(NULL, "TEST_D");
// test initial state
ASSERT(equal(0.0f, derivative.getU()));
ASSERT(equal(10.0f, derivative.getLP()));
// set dt
derivative.setDt(0.1f);
ASSERT(equal(0.1f, derivative.getDt()));
// set U
derivative.setU(1.0f);
ASSERT(equal(1.0f, derivative.getU()));
// test update
ASSERT(equal(8.6269744f, derivative.update(2.0f)));
ASSERT(equal(2.0f, derivative.getU()));
printf("PASS\n");
return 0;
}
int blockPTest()
{
printf("Test BlockP\t\t\t: ");
BlockP blockP(NULL, "TEST_P");
// test initial state
ASSERT(equal(0.2f, blockP.getKP()));
ASSERT(equal(0.0f, blockP.getDt()));
// set dt
blockP.setDt(0.1f);
ASSERT(equal(0.1f, blockP.getDt()));
// test update
ASSERT(equal(0.4f, blockP.update(2.0f)));
printf("PASS\n");
return 0;
}
int blockPITest()
{
printf("Test BlockPI\t\t\t: ");
BlockPI blockPI(NULL, "TEST");
// test initial state
ASSERT(equal(0.2f, blockPI.getKP()));
ASSERT(equal(0.1f, blockPI.getKI()));
ASSERT(equal(0.0f, blockPI.getDt()));
ASSERT(equal(1.0f, blockPI.getIntegral().getMax()));
// set dt
blockPI.setDt(0.1f);
ASSERT(equal(0.1f, blockPI.getDt()));
// set integral state
blockPI.getIntegral().setY(0.1f);
ASSERT(equal(0.1f, blockPI.getIntegral().getY()));
// test update
// 0.2*2 + 0.1*(2*0.1 + 0.1) = 0.43
ASSERT(equal(0.43f, blockPI.update(2.0f)));
printf("PASS\n");
return 0;
}
int blockPDTest()
{
printf("Test BlockPD\t\t\t: ");
BlockPD blockPD(NULL, "TEST");
// test initial state
ASSERT(equal(0.2f, blockPD.getKP()));
ASSERT(equal(0.01f, blockPD.getKD()));
ASSERT(equal(0.0f, blockPD.getDt()));
ASSERT(equal(10.0f, blockPD.getDerivative().getLP()));
// set dt
blockPD.setDt(0.1f);
ASSERT(equal(0.1f, blockPD.getDt()));
// set derivative state
blockPD.getDerivative().setU(1.0f);
ASSERT(equal(1.0f, blockPD.getDerivative().getU()));
// test update
// 0.2*2 + 0.1*(0.1*8.626...) = 0.486269744
ASSERT(equal(0.486269744f, blockPD.update(2.0f)));
printf("PASS\n");
return 0;
}
int blockPIDTest()
{
printf("Test BlockPID\t\t\t: ");
BlockPID blockPID(NULL, "TEST");
// test initial state
ASSERT(equal(0.2f, blockPID.getKP()));
ASSERT(equal(0.1f, blockPID.getKI()));
ASSERT(equal(0.01f, blockPID.getKD()));
ASSERT(equal(0.0f, blockPID.getDt()));
ASSERT(equal(10.0f, blockPID.getDerivative().getLP()));
ASSERT(equal(1.0f, blockPID.getIntegral().getMax()));
// set dt
blockPID.setDt(0.1f);
ASSERT(equal(0.1f, blockPID.getDt()));
// set derivative state
blockPID.getDerivative().setU(1.0f);
ASSERT(equal(1.0f, blockPID.getDerivative().getU()));
// set integral state
blockPID.getIntegral().setY(0.1f);
ASSERT(equal(0.1f, blockPID.getIntegral().getY()));
// test update
// 0.2*2 + 0.1*(2*0.1 + 0.1) + 0.1*(0.1*8.626...) = 0.5162697
ASSERT(equal(0.5162697f, blockPID.update(2.0f)));
printf("PASS\n");
return 0;
}
int blockOutputTest()
{
printf("Test BlockOutput\t\t: ");
BlockOutput blockOutput(NULL, "TEST");
// test initial state
ASSERT(equal(0.0f, blockOutput.getDt()));
ASSERT(equal(0.5f, blockOutput.get()));
ASSERT(equal(-1.0f, blockOutput.getMin()));
ASSERT(equal(1.0f, blockOutput.getMax()));
// test update below min
blockOutput.update(-2.0f);
ASSERT(equal(-1.0f, blockOutput.get()));
// test update above max
blockOutput.update(2.0f);
ASSERT(equal(1.0f, blockOutput.get()));
// test trim
blockOutput.update(0.0f);
ASSERT(equal(0.5f, blockOutput.get()));
printf("PASS\n");
return 0;
}
int blockRandUniformTest()
{
srand(1234);
printf("Test BlockRandUniform\t\t: ");
BlockRandUniform blockRandUniform(NULL, "TEST");
// test initial state
ASSERT(equal(0.0f, blockRandUniform.getDt()));
ASSERT(equal(-1.0f, blockRandUniform.getMin()));
ASSERT(equal(1.0f, blockRandUniform.getMax()));
// test update
int n = 10000;
float mean = blockRandUniform.update();
// recursive mean algorithm from Knuth
for (int i = 2; i < n + 1; i++) {
float val = blockRandUniform.update();
mean += (val - mean) / i;
ASSERT(val <= blockRandUniform.getMax());
ASSERT(val >= blockRandUniform.getMin());
}
ASSERT(equal(mean, (blockRandUniform.getMin() +
blockRandUniform.getMax()) / 2, 1e-1));
printf("PASS\n");
return 0;
}
int blockRandGaussTest()
{
srand(1234);
printf("Test BlockRandGauss\t\t: ");
BlockRandGauss blockRandGauss(NULL, "TEST");
// test initial state
ASSERT(equal(0.0f, blockRandGauss.getDt()));
ASSERT(equal(1.0f, blockRandGauss.getMean()));
ASSERT(equal(2.0f, blockRandGauss.getStdDev()));
// test update
int n = 10000;
float mean = blockRandGauss.update();
float sum = 0;
// recursive mean, stdev algorithm from Knuth
for (int i = 2; i < n + 1; i++) {
float val = blockRandGauss.update();
float newMean = mean + (val - mean) / i;
sum += (val - mean) * (val - newMean);
mean = newMean;
}
float stdDev = sqrt(sum / (n - 1));
ASSERT(equal(mean, blockRandGauss.getMean(), 1e-1));
ASSERT(equal(stdDev, blockRandGauss.getStdDev(), 1e-1));
printf("PASS\n");
return 0;
}
} // namespace control

494
apps/controllib/blocks.hpp Normal file
View File

@ -0,0 +1,494 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file blocks.h
*
* Controller library code
*/
#pragma once
#include <assert.h>
#include <time.h>
#include <stdlib.h>
#include <mathlib/math/test/test.hpp>
#include "block/Block.hpp"
#include "block/BlockParam.hpp"
namespace control
{
int __EXPORT basicBlocksTest();
/**
* A limiter/ saturation.
* The output of update is the input, bounded
* by min/max.
*/
class __EXPORT BlockLimit : public Block
{
public:
// methods
BlockLimit(SuperBlock *parent, const char *name) :
Block(parent, name),
_min(this, "MIN"),
_max(this, "MAX")
{};
virtual ~BlockLimit() {};
float update(float input);
// accessors
float getMin() { return _min.get(); }
float getMax() { return _max.get(); }
protected:
// attributes
BlockParam<float> _min;
BlockParam<float> _max;
};
int __EXPORT blockLimitTest();
/**
* A symmetric limiter/ saturation.
* Same as limiter but with only a max, is used for
* upper limit of +max, and lower limit of -max
*/
class __EXPORT BlockLimitSym : public Block
{
public:
// methods
BlockLimitSym(SuperBlock *parent, const char *name) :
Block(parent, name),
_max(this, "MAX")
{};
virtual ~BlockLimitSym() {};
float update(float input);
// accessors
float getMax() { return _max.get(); }
protected:
// attributes
BlockParam<float> _max;
};
int __EXPORT blockLimitSymTest();
/**
* A low pass filter as described here:
* http://en.wikipedia.org/wiki/Low-pass_filter.
*/
class __EXPORT BlockLowPass : public Block
{
public:
// methods
BlockLowPass(SuperBlock *parent, const char *name) :
Block(parent, name),
_state(0),
_fCut(this, "") // only one parameter, no need to name
{};
virtual ~BlockLowPass() {};
float update(float input);
// accessors
float getState() { return _state; }
float getFCut() { return _fCut.get(); }
void setState(float state) { _state = state; }
protected:
// attributes
float _state;
BlockParam<float> _fCut;
};
int __EXPORT blockLowPassTest();
/**
* A high pass filter as described here:
* http://en.wikipedia.org/wiki/High-pass_filter.
*/
class __EXPORT BlockHighPass : public Block
{
public:
// methods
BlockHighPass(SuperBlock *parent, const char *name) :
Block(parent, name),
_u(0),
_y(0),
_fCut(this, "") // only one parameter, no need to name
{};
virtual ~BlockHighPass() {};
float update(float input);
// accessors
float getU() {return _u;}
float getY() {return _y;}
float getFCut() {return _fCut.get();}
void setU(float u) {_u = u;}
void setY(float y) {_y = y;}
protected:
// attributes
float _u; /**< previous input */
float _y; /**< previous output */
BlockParam<float> _fCut; /**< cut-off frequency, Hz */
};
int __EXPORT blockHighPassTest();
/**
* A rectangular integrator.
* A limiter is built into the class to bound the
* integral's internal state. This is important
* for windup protection.
* @see Limit
*/
class __EXPORT BlockIntegral: public SuperBlock
{
public:
// methods
BlockIntegral(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_y(0),
_limit(this, "") {};
virtual ~BlockIntegral() {};
float update(float input);
// accessors
float getY() {return _y;}
float getMax() {return _limit.getMax();}
void setY(float y) {_y = y;}
protected:
// attributes
float _y; /**< previous output */
BlockLimitSym _limit; /**< limiter */
};
int __EXPORT blockIntegralTest();
/**
* A trapezoidal integrator.
* http://en.wikipedia.org/wiki/Trapezoidal_rule
* A limiter is built into the class to bound the
* integral's internal state. This is important
* for windup protection.
* @see Limit
*/
class __EXPORT BlockIntegralTrap : public SuperBlock
{
public:
// methods
BlockIntegralTrap(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_u(0),
_y(0),
_limit(this, "") {};
virtual ~BlockIntegralTrap() {};
float update(float input);
// accessors
float getU() {return _u;}
float getY() {return _y;}
float getMax() {return _limit.getMax();}
void setU(float u) {_u = u;}
void setY(float y) {_y = y;}
protected:
// attributes
float _u; /**< previous input */
float _y; /**< previous output */
BlockLimitSym _limit; /**< limiter */
};
int __EXPORT blockIntegralTrapTest();
/**
* A simple derivative approximation.
* This uses the previous and current input.
* This has a built in low pass filter.
* @see LowPass
*/
class __EXPORT BlockDerivative : public SuperBlock
{
public:
// methods
BlockDerivative(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_u(0),
_lowPass(this, "LP")
{};
virtual ~BlockDerivative() {};
float update(float input);
// accessors
void setU(float u) {_u = u;}
float getU() {return _u;}
float getLP() {return _lowPass.getFCut();}
protected:
// attributes
float _u; /**< previous input */
BlockLowPass _lowPass; /**< low pass filter */
};
int __EXPORT blockDerivativeTest();
/**
* A proportional controller.
* @link http://en.wikipedia.org/wiki/PID_controller
*/
class __EXPORT BlockP: public Block
{
public:
// methods
BlockP(SuperBlock *parent, const char *name) :
Block(parent, name),
_kP(this, "") // only one param, no need to name
{};
virtual ~BlockP() {};
float update(float input) {
return getKP() * input;
}
// accessors
float getKP() { return _kP.get(); }
protected:
BlockParam<float> _kP;
};
int __EXPORT blockPTest();
/**
* A proportional-integral controller.
* @link http://en.wikipedia.org/wiki/PID_controller
*/
class __EXPORT BlockPI: public SuperBlock
{
public:
// methods
BlockPI(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_integral(this, "I"),
_kP(this, "P"),
_kI(this, "I")
{};
virtual ~BlockPI() {};
float update(float input) {
return getKP() * input +
getKI() * getIntegral().update(input);
}
// accessors
float getKP() { return _kP.get(); }
float getKI() { return _kI.get(); }
BlockIntegral &getIntegral() { return _integral; }
private:
BlockIntegral _integral;
BlockParam<float> _kP;
BlockParam<float> _kI;
};
int __EXPORT blockPITest();
/**
* A proportional-derivative controller.
* @link http://en.wikipedia.org/wiki/PID_controller
*/
class __EXPORT BlockPD: public SuperBlock
{
public:
// methods
BlockPD(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_derivative(this, "D"),
_kP(this, "P"),
_kD(this, "D")
{};
virtual ~BlockPD() {};
float update(float input) {
return getKP() * input +
getKD() * getDerivative().update(input);
}
// accessors
float getKP() { return _kP.get(); }
float getKD() { return _kD.get(); }
BlockDerivative &getDerivative() { return _derivative; }
private:
BlockDerivative _derivative;
BlockParam<float> _kP;
BlockParam<float> _kD;
};
int __EXPORT blockPDTest();
/**
* A proportional-integral-derivative controller.
* @link http://en.wikipedia.org/wiki/PID_controller
*/
class __EXPORT BlockPID: public SuperBlock
{
public:
// methods
BlockPID(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_integral(this, "I"),
_derivative(this, "D"),
_kP(this, "P"),
_kI(this, "I"),
_kD(this, "D")
{};
virtual ~BlockPID() {};
float update(float input) {
return getKP() * input +
getKI() * getIntegral().update(input) +
getKD() * getDerivative().update(input);
}
// accessors
float getKP() { return _kP.get(); }
float getKI() { return _kI.get(); }
float getKD() { return _kD.get(); }
BlockIntegral &getIntegral() { return _integral; }
BlockDerivative &getDerivative() { return _derivative; }
private:
// attributes
BlockIntegral _integral;
BlockDerivative _derivative;
BlockParam<float> _kP;
BlockParam<float> _kI;
BlockParam<float> _kD;
};
int __EXPORT blockPIDTest();
/**
* An output trim/ saturation block
*/
class __EXPORT BlockOutput: public SuperBlock
{
public:
// methods
BlockOutput(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_trim(this, "TRIM"),
_limit(this, ""),
_val(0) {
update(0);
};
virtual ~BlockOutput() {};
void update(float input) {
_val = _limit.update(input + getTrim());
}
// accessors
float getMin() { return _limit.getMin(); }
float getMax() { return _limit.getMax(); }
float getTrim() { return _trim.get(); }
float get() { return _val; }
private:
// attributes
BlockParam<float> _trim;
BlockLimit _limit;
float _val;
};
int __EXPORT blockOutputTest();
/**
* A uniform random number generator
*/
class __EXPORT BlockRandUniform: public Block
{
public:
// methods
BlockRandUniform(SuperBlock *parent,
const char *name) :
Block(parent, name),
_min(this, "MIN"),
_max(this, "MAX") {
// seed should be initialized somewhere
// in main program for all calls to rand
// XXX currently in nuttx if you seed to 0, rand breaks
};
virtual ~BlockRandUniform() {};
float update() {
static float rand_max = MAX_RAND;
float rand_val = rand();
float bounds = getMax() - getMin();
return getMin() + (rand_val * bounds) / rand_max;
}
// accessors
float getMin() { return _min.get(); }
float getMax() { return _max.get(); }
private:
// attributes
BlockParam<float> _min;
BlockParam<float> _max;
};
int __EXPORT blockRandUniformTest();
class __EXPORT BlockRandGauss: public Block
{
public:
// methods
BlockRandGauss(SuperBlock *parent,
const char *name) :
Block(parent, name),
_mean(this, "MEAN"),
_stdDev(this, "DEV") {
// seed should be initialized somewhere
// in main program for all calls to rand
// XXX currently in nuttx if you seed to 0, rand breaks
};
virtual ~BlockRandGauss() {};
float update() {
static float V1, V2, S;
static int phase = 0;
float X;
if (phase == 0) {
do {
float U1 = (float)rand() / MAX_RAND;
float U2 = (float)rand() / MAX_RAND;
V1 = 2 * U1 - 1;
V2 = 2 * U2 - 1;
S = V1 * V1 + V2 * V2;
} while (S >= 1 || fabsf(S) < 1e-8f);
X = V1 * float(sqrt(-2 * float(log(S)) / S));
} else
X = V2 * float(sqrt(-2 * float(log(S)) / S));
phase = 1 - phase;
return X * getStdDev() + getMean();
}
// accessors
float getMean() { return _mean.get(); }
float getStdDev() { return _stdDev.get(); }
private:
// attributes
BlockParam<float> _mean;
BlockParam<float> _stdDev;
};
int __EXPORT blockRandGaussTest();
} // namespace control

View File

@ -0,0 +1,351 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file fixedwing.cpp
*
* Controller library code
*/
#include "fixedwing.hpp"
namespace control
{
namespace fixedwing
{
BlockYawDamper::BlockYawDamper(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_rLowPass(this, "R_LP"),
_rWashout(this, "R_HP"),
_r2Rdr(this, "R2RDR"),
_rudder(0)
{
}
BlockYawDamper::~BlockYawDamper() {};
void BlockYawDamper::update(float rCmd, float r)
{
_rudder = _r2Rdr.update(rCmd -
_rWashout.update(_rLowPass.update(r)));
}
BlockStabilization::BlockStabilization(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_yawDamper(this, ""),
_pLowPass(this, "P_LP"),
_qLowPass(this, "Q_LP"),
_p2Ail(this, "P2AIL"),
_q2Elv(this, "Q2ELV"),
_aileron(0),
_elevator(0)
{
}
BlockStabilization::~BlockStabilization() {};
void BlockStabilization::update(float pCmd, float qCmd, float rCmd,
float p, float q, float r)
{
_aileron = _p2Ail.update(
pCmd - _pLowPass.update(p));
_elevator = _q2Elv.update(
qCmd - _qLowPass.update(q));
_yawDamper.update(rCmd, r);
}
BlockHeadingHold::BlockHeadingHold(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_psi2Phi(this, "PSI2PHI"),
_phi2P(this, "PHI2P"),
_phiLimit(this, "PHI_LIM")
{
}
BlockHeadingHold::~BlockHeadingHold() {};
float BlockHeadingHold::update(float psiCmd, float phi, float psi, float p)
{
float psiError = _wrap_pi(psiCmd - psi);
float phiCmd = _phiLimit.update(_psi2Phi.update(psiError));
return _phi2P.update(phiCmd - phi);
}
BlockVelocityHoldBackside::BlockVelocityHoldBackside(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_v2Theta(this, "V2THE"),
_theta2Q(this, "THE2Q"),
_theLimit(this, "THE"),
_vLimit(this, "V")
{
}
BlockVelocityHoldBackside::~BlockVelocityHoldBackside() {};
float BlockVelocityHoldBackside::update(float vCmd, float v, float theta, float q)
{
// negative sign because nose over to increase speed
float thetaCmd = _theLimit.update(-_v2Theta.update(_vLimit.update(vCmd) - v));
return _theta2Q.update(thetaCmd - theta);
}
BlockVelocityHoldFrontside::BlockVelocityHoldFrontside(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_v2Thr(this, "V2THR")
{
}
BlockVelocityHoldFrontside::~BlockVelocityHoldFrontside() {};
float BlockVelocityHoldFrontside::update(float vCmd, float v)
{
return _v2Thr.update(vCmd - v);
}
BlockAltitudeHoldBackside::BlockAltitudeHoldBackside(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_h2Thr(this, "H2THR"),
_throttle(0)
{
}
BlockAltitudeHoldBackside::~BlockAltitudeHoldBackside() {};
void BlockAltitudeHoldBackside::update(float hCmd, float h)
{
_throttle = _h2Thr.update(hCmd - h);
}
BlockAltitudeHoldFrontside::BlockAltitudeHoldFrontside(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_h2Theta(this, "H2THE"),
_theta2Q(this, "THE2Q")
{
}
BlockAltitudeHoldFrontside::~BlockAltitudeHoldFrontside() {};
float BlockAltitudeHoldFrontside::update(float hCmd, float h, float theta, float q)
{
float thetaCmd = _h2Theta.update(hCmd - h);
return _theta2Q.update(thetaCmd - theta);
}
BlockBacksideAutopilot::BlockBacksideAutopilot(SuperBlock *parent,
const char *name,
BlockStabilization *stabilization) :
SuperBlock(parent, name),
_stabilization(stabilization),
_headingHold(this, ""),
_velocityHold(this, ""),
_altitudeHold(this, ""),
_trimAil(this, "TRIM_AIL"),
_trimElv(this, "TRIM_ELV"),
_trimRdr(this, "TRIM_RDR"),
_trimThr(this, "TRIM_THR")
{
}
BlockBacksideAutopilot::~BlockBacksideAutopilot() {};
void BlockBacksideAutopilot::update(float hCmd, float vCmd, float rCmd, float psiCmd,
float h, float v,
float phi, float theta, float psi,
float p, float q, float r)
{
_altitudeHold.update(hCmd, h);
_stabilization->update(
_headingHold.update(psiCmd, phi, psi, p),
_velocityHold.update(vCmd, v, theta, q),
rCmd,
p, q, r);
}
BlockWaypointGuidance::BlockWaypointGuidance(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
_xtYawLimit(this, "XT2YAW"),
_xt2Yaw(this, "XT2YAW"),
_psiCmd(0)
{
}
BlockWaypointGuidance::~BlockWaypointGuidance() {};
void BlockWaypointGuidance::update(vehicle_global_position_s &pos,
vehicle_attitude_s &att,
vehicle_global_position_setpoint_s &posCmd,
vehicle_global_position_setpoint_s &lastPosCmd)
{
// heading to waypoint
float psiTrack = get_bearing_to_next_waypoint(
(double)pos.lat / (double)1e7d,
(double)pos.lon / (double)1e7d,
(double)posCmd.lat / (double)1e7d,
(double)posCmd.lon / (double)1e7d);
// cross track
struct crosstrack_error_s xtrackError;
get_distance_to_line(&xtrackError,
(double)pos.lat / (double)1e7d,
(double)pos.lon / (double)1e7d,
(double)lastPosCmd.lat / (double)1e7d,
(double)lastPosCmd.lon / (double)1e7d,
(double)posCmd.lat / (double)1e7d,
(double)posCmd.lon / (double)1e7d);
_psiCmd = _wrap_2pi(psiTrack -
_xtYawLimit.update(_xt2Yaw.update(xtrackError.distance)));
}
BlockUorbEnabledAutopilot::BlockUorbEnabledAutopilot(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
// subscriptions
_att(&getSubscriptions(), ORB_ID(vehicle_attitude), 20),
_attCmd(&getSubscriptions(), ORB_ID(vehicle_attitude_setpoint), 20),
_ratesCmd(&getSubscriptions(), ORB_ID(vehicle_rates_setpoint), 20),
_pos(&getSubscriptions() , ORB_ID(vehicle_global_position), 20),
_posCmd(&getSubscriptions(), ORB_ID(vehicle_global_position_setpoint), 20),
_manual(&getSubscriptions(), ORB_ID(manual_control_setpoint), 20),
_status(&getSubscriptions(), ORB_ID(vehicle_status), 20),
_param_update(&getSubscriptions(), ORB_ID(parameter_update), 1000), // limit to 1 Hz
// publications
_actuators(&getPublications(), ORB_ID(actuator_controls_0))
{
}
BlockUorbEnabledAutopilot::~BlockUorbEnabledAutopilot() {};
BlockMultiModeBacksideAutopilot::BlockMultiModeBacksideAutopilot(SuperBlock *parent, const char *name) :
BlockUorbEnabledAutopilot(parent, name),
_stabilization(this, ""), // no name needed, already unique
_backsideAutopilot(this, "", &_stabilization),
_guide(this, ""),
_vCmd(this, "V_CMD"),
_attPoll(),
_lastPosCmd(),
_timeStamp(0)
{
_attPoll.fd = _att.getHandle();
_attPoll.events = POLLIN;
}
void BlockMultiModeBacksideAutopilot::update()
{
// wait for a sensor update, check for exit condition every 100 ms
if (poll(&_attPoll, 1, 100) < 0) return; // poll error
uint64_t newTimeStamp = hrt_absolute_time();
float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
_timeStamp = newTimeStamp;
// check for sane values of dt
// to prevent large control responses
if (dt > 1.0f || dt < 0) return;
// set dt for all child blocks
setDt(dt);
// store old position command before update if new command sent
if (_posCmd.updated()) {
_lastPosCmd = _posCmd.getData();
}
// check for new updates
if (_param_update.updated()) updateParams();
// get new information from subscriptions
updateSubscriptions();
// default all output to zero unless handled by mode
for (unsigned i = 4; i < NUM_ACTUATOR_CONTROLS; i++)
_actuators.control[i] = 0.0f;
// handle autopilot modes
if (_status.state_machine == SYSTEM_STATE_STABILIZED) {
_stabilization.update(
_ratesCmd.roll, _ratesCmd.pitch, _ratesCmd.yaw,
_att.rollspeed, _att.pitchspeed, _att.yawspeed);
_actuators.control[CH_AIL] = _stabilization.getAileron();
_actuators.control[CH_ELV] = _stabilization.getElevator();
_actuators.control[CH_RDR] = _stabilization.getRudder();
_actuators.control[CH_THR] = _manual.throttle;
} else if (_status.state_machine == SYSTEM_STATE_AUTO) {
// update guidance
_guide.update(_pos, _att, _posCmd, _lastPosCmd);
// calculate velocity, XXX should be airspeed, but using ground speed for now
float v = sqrtf(_pos.vx * _pos.vx + _pos.vy * _pos.vy + _pos.vz * _pos.vz);
// commands
float rCmd = 0;
_backsideAutopilot.update(
_posCmd.altitude, _vCmd.get(), rCmd, _guide.getPsiCmd(),
_pos.alt, v,
_att.roll, _att.pitch, _att.yaw,
_att.rollspeed, _att.pitchspeed, _att.yawspeed
);
_actuators.control[CH_AIL] = _backsideAutopilot.getAileron();
_actuators.control[CH_ELV] = _backsideAutopilot.getElevator();
_actuators.control[CH_RDR] = _backsideAutopilot.getRudder();
_actuators.control[CH_THR] = _backsideAutopilot.getThrottle();
} else if (_status.state_machine == SYSTEM_STATE_MANUAL) {
_actuators.control[CH_AIL] = _manual.roll;
_actuators.control[CH_ELV] = _manual.pitch;
_actuators.control[CH_RDR] = _manual.yaw;
_actuators.control[CH_THR] = _manual.throttle;
}
// update all publications
updatePublications();
}
BlockMultiModeBacksideAutopilot::~BlockMultiModeBacksideAutopilot()
{
// send one last publication when destroyed, setting
// all output to zero
for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++)
_actuators.control[i] = 0.0f;
updatePublications();
}
} // namespace fixedwing
} // namespace control

View File

@ -0,0 +1,438 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file fixedwing.h
*
* Controller library code
*/
#pragma once
#include <uORB/topics/vehicle_attitude_setpoint.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_rates_setpoint.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_global_position_setpoint.h>
#include <uORB/topics/manual_control_setpoint.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/parameter_update.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <drivers/drv_hrt.h>
#include <poll.h>
#include "blocks.hpp"
#include "block/UOrbSubscription.hpp"
#include "block/UOrbPublication.hpp"
extern "C" {
#include <systemlib/geo/geo.h>
}
namespace control
{
namespace fixedwing
{
/**
* BlockYawDamper
*
* This block has more explations to help new developers
* add their own blocks. It includes a limited explanation
* of some C++ basics.
*
* Block: The generic class describing a typical block as you
* would expect in Simulink or ScicosLab. A block can have
* parameters. It cannot have other blocks.
*
* SuperBlock: A superblock is a block that can have other
* blocks. It has methods that manage the blocks beneath it.
*
* BlockYawDamper inherits from SuperBlock publically, this
* means that any public function in SuperBlock are public within
* BlockYawDamper and may be called from outside the
* class methods. Any protected function within block
* are private to the class and may not be called from
* outside this class. Protected should be preferred
* where possible to public as it is important to
* limit access to the bare minimum to prevent
* accidental errors.
*/
class __EXPORT BlockYawDamper : public SuperBlock
{
private:
/**
* Declaring other blocks used by this block
*
* In this section we declare all child blocks that
* this block is composed of. They are private
* members so only this block has direct access to
* them.
*/
BlockLowPass _rLowPass;
BlockHighPass _rWashout;
BlockP _r2Rdr;
/**
* Declaring output values and accessors
*
* If we have any output values for the block we
* declare them here. Output can be directly returned
* through the update function, but outputs should be
* declared here if the information will likely be requested
* again, or if there are multiple outputs.
*
* You should only be able to set outputs from this block,
* so the outputs are declared in the private section.
* A get accessor is provided
* in the public section for other blocks to get the
* value of the output.
*/
float _rudder;
public:
/**
* BlockYawDamper Constructor
*
* The job of the constructor is to initialize all
* parameter in this block and initialize all child
* blocks. Note also, that the output values must be
* initialized here. The order of the members in the
* member initialization list should follow the
* order in which they are declared within the class.
* See the private member declarations above.
*
* Block Construction
*
* All blocks are constructed with their parent block
* and their name. This allows parameters within the
* block to construct a fully qualified name from
* concatenating the two. If the name provided to the
* block is "", then the block will use the parent
* name as it's name. This is useful in cases where
* you have a block that has parameters "MIN", "MAX",
* such as BlockLimit and you do not want an extra name
* to qualify them since the parent block has no "MIN",
* "MAX" parameters.
*
* Block Parameter Construction
*
* Block parameters are named constants, they are
* constructed using:
* BlockParam::BlockParam(Block * parent, const char * name)
* This funciton takes both a parent block and a name.
* The constructore then uses the parent name and the name of
* the paramter to ask the px4 param library if it has any
* parameters with this name. If it does, a handle to the
* parameter is retrieved.
*
* Block/ BlockParam Naming
*
* When desigining new blocks, the naming of the parameters and
* blocks determines the fully qualified name of the parameters
* within the ground station, so it is important to choose
* short, easily understandable names. Again, when a name of
* "" is passed, the parent block name is used as the value to
* prepend to paramters names.
*/
BlockYawDamper(SuperBlock *parent, const char *name);
/**
* Block deconstructor
*
* It is always a good idea to declare a virtual
* deconstructor so that upon calling delete from
* a class derived from this, all of the
* deconstructors all called, the derived class first, and
* then the base class
*/
virtual ~BlockYawDamper();
/**
* Block update function
*
* The job of the update function is to compute the output
* values for the block. In a simple block with one output,
* the output may be returned directly. If the output is
* required frequenly by other processses, it might be a
* good idea to declare a member to store the temporary
* variable.
*/
void update(float rCmd, float r);
/**
* Rudder output value accessor
*
* This is a public accessor function, which means that the
* private value _rudder is returned to anyone calling
* BlockYawDamper::getRudder(). Note thate a setRudder() is
* not provided, this is because the updateParams() call
* for a block provides the mechanism for updating the
* paramter.
*/
float getRudder() { return _rudder; }
};
/**
* Stability augmentation system.
* Aircraft Control and Simulation, Stevens and Lewis, pg. 292, 299
*/
class __EXPORT BlockStabilization : public SuperBlock
{
private:
BlockYawDamper _yawDamper;
BlockLowPass _pLowPass;
BlockLowPass _qLowPass;
BlockP _p2Ail;
BlockP _q2Elv;
float _aileron;
float _elevator;
public:
BlockStabilization(SuperBlock *parent, const char *name);
virtual ~BlockStabilization();
void update(float pCmd, float qCmd, float rCmd,
float p, float q, float r);
float getAileron() { return _aileron; }
float getElevator() { return _elevator; }
float getRudder() { return _yawDamper.getRudder(); }
};
/**
* Heading hold autopilot block.
* Aircraft Control and Simulation, Stevens and Lewis
* Heading hold, pg. 348
*/
class __EXPORT BlockHeadingHold : public SuperBlock
{
private:
BlockP _psi2Phi;
BlockP _phi2P;
BlockLimitSym _phiLimit;
public:
BlockHeadingHold(SuperBlock *parent, const char *name);
virtual ~BlockHeadingHold();
/**
* returns pCmd
*/
float update(float psiCmd, float phi, float psi, float p);
};
/**
* Frontside/ Backside Control Systems
*
* Frontside :
* velocity error -> throttle
* altitude error -> elevator
*
* Backside :
* velocity error -> elevator
* altitude error -> throttle
*
* Backside control systems are more resilient at
* slow speeds on the back-side of the power
* required curve/ landing etc. Less performance
* than frontside at high speeds.
*/
/**
* Backside velocity hold autopilot block.
* v -> theta -> q -> elevator
*/
class __EXPORT BlockVelocityHoldBackside : public SuperBlock
{
private:
BlockPID _v2Theta;
BlockPID _theta2Q;
BlockLimit _theLimit;
BlockLimit _vLimit;
public:
BlockVelocityHoldBackside(SuperBlock *parent, const char *name);
virtual ~BlockVelocityHoldBackside();
/**
* returns qCmd
*/
float update(float vCmd, float v, float theta, float q);
};
/**
* Frontside velocity hold autopilot block.
* v -> throttle
*/
class __EXPORT BlockVelocityHoldFrontside : public SuperBlock
{
private:
BlockPID _v2Thr;
public:
BlockVelocityHoldFrontside(SuperBlock *parent, const char *name);
virtual ~BlockVelocityHoldFrontside();
/**
* returns throttle
*/
float update(float vCmd, float v);
};
/**
* Backside altitude hold autopilot block.
* h -> throttle
*/
class __EXPORT BlockAltitudeHoldBackside : public SuperBlock
{
private:
BlockPID _h2Thr;
float _throttle;
public:
BlockAltitudeHoldBackside(SuperBlock *parent, const char *name);
virtual ~BlockAltitudeHoldBackside();
void update(float hCmd, float h);
float getThrottle() { return _throttle; }
};
/**
* Frontside altitude hold autopilot block.
* h -> theta > q -> elevator
*/
class __EXPORT BlockAltitudeHoldFrontside : public SuperBlock
{
private:
BlockPID _h2Theta;
BlockPID _theta2Q;
public:
BlockAltitudeHoldFrontside(SuperBlock *parent, const char *name);
virtual ~BlockAltitudeHoldFrontside();
/**
* return qCmd
*/
float update(float hCmd, float h, float theta, float q);
};
/**
* Backside autopilot
*/
class __EXPORT BlockBacksideAutopilot : public SuperBlock
{
private:
BlockStabilization *_stabilization;
BlockHeadingHold _headingHold;
BlockVelocityHoldBackside _velocityHold;
BlockAltitudeHoldBackside _altitudeHold;
BlockParam<float> _trimAil;
BlockParam<float> _trimElv;
BlockParam<float> _trimRdr;
BlockParam<float> _trimThr;
public:
BlockBacksideAutopilot(SuperBlock *parent,
const char *name,
BlockStabilization *stabilization);
virtual ~BlockBacksideAutopilot();
void update(float hCmd, float vCmd, float rCmd, float psiCmd,
float h, float v,
float phi, float theta, float psi,
float p, float q, float r);
float getRudder() { return _stabilization->getRudder() + _trimRdr.get(); }
float getAileron() { return _stabilization->getAileron() + _trimAil.get(); }
float getElevator() { return _stabilization->getElevator() + _trimElv.get(); }
float getThrottle() { return _altitudeHold.getThrottle() + _trimThr.get(); }
};
/**
* Waypoint Guidance block
*/
class __EXPORT BlockWaypointGuidance : public SuperBlock
{
private:
BlockLimitSym _xtYawLimit;
BlockP _xt2Yaw;
float _psiCmd;
public:
BlockWaypointGuidance(SuperBlock *parent, const char *name);
virtual ~BlockWaypointGuidance();
void update(vehicle_global_position_s &pos,
vehicle_attitude_s &att,
vehicle_global_position_setpoint_s &posCmd,
vehicle_global_position_setpoint_s &lastPosCmd);
float getPsiCmd() { return _psiCmd; }
};
/**
* UorbEnabledAutopilot
*/
class __EXPORT BlockUorbEnabledAutopilot : public SuperBlock
{
protected:
// subscriptions
UOrbSubscription<vehicle_attitude_s> _att;
UOrbSubscription<vehicle_attitude_setpoint_s> _attCmd;
UOrbSubscription<vehicle_rates_setpoint_s> _ratesCmd;
UOrbSubscription<vehicle_global_position_s> _pos;
UOrbSubscription<vehicle_global_position_setpoint_s> _posCmd;
UOrbSubscription<manual_control_setpoint_s> _manual;
UOrbSubscription<vehicle_status_s> _status;
UOrbSubscription<parameter_update_s> _param_update;
// publications
UOrbPublication<actuator_controls_s> _actuators;
public:
BlockUorbEnabledAutopilot(SuperBlock *parent, const char *name);
virtual ~BlockUorbEnabledAutopilot();
};
/**
* Multi-mode Autopilot
*/
class __EXPORT BlockMultiModeBacksideAutopilot : public BlockUorbEnabledAutopilot
{
private:
BlockStabilization _stabilization;
BlockBacksideAutopilot _backsideAutopilot;
BlockWaypointGuidance _guide;
BlockParam<float> _vCmd;
struct pollfd _attPoll;
vehicle_global_position_setpoint_s _lastPosCmd;
enum {CH_AIL, CH_ELV, CH_RDR, CH_THR};
uint64_t _timeStamp;
public:
BlockMultiModeBacksideAutopilot(SuperBlock *parent, const char *name);
void update();
virtual ~BlockMultiModeBacksideAutopilot();
};
} // namespace fixedwing
} // namespace control

View File

@ -0,0 +1,22 @@
#include <systemlib/param/param.h>
// WARNING:
// do not changes these unless
// you want to recompute the
// answers for all of the unit tests
PARAM_DEFINE_FLOAT(TEST_MIN, -1.0f);
PARAM_DEFINE_FLOAT(TEST_MAX, 1.0f);
PARAM_DEFINE_FLOAT(TEST_TRIM, 0.5f);
PARAM_DEFINE_FLOAT(TEST_HP, 10.0f);
PARAM_DEFINE_FLOAT(TEST_LP, 10.0f);
PARAM_DEFINE_FLOAT(TEST_P, 0.2f);
PARAM_DEFINE_FLOAT(TEST_I, 0.1f);
PARAM_DEFINE_FLOAT(TEST_I_MAX, 1.0f);
PARAM_DEFINE_FLOAT(TEST_D, 0.01f);
PARAM_DEFINE_FLOAT(TEST_D_LP, 10.0f);
PARAM_DEFINE_FLOAT(TEST_MEAN, 1.0f);
PARAM_DEFINE_FLOAT(TEST_DEV, 2.0f);

View File

@ -0,0 +1,42 @@
############################################################################
#
# Copyright (C) 2012 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# Basic example application
#
APPNAME = control_demo
PRIORITY = SCHED_PRIORITY_DEFAULT
STACKSIZE = 2048
include $(APPDIR)/mk/app.mk

View File

@ -0,0 +1,168 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: @author Example User <mail@example.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file control_demo.cpp
* Demonstration of control library
*/
#include <nuttx/config.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <systemlib/systemlib.h>
#include <controllib/fixedwing.hpp>
#include <systemlib/param/param.h>
#include <drivers/drv_hrt.h>
#include <math.h>
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int deamon_task; /**< Handle of deamon task / thread */
/**
* Deamon management function.
*/
extern "C" __EXPORT int control_demo_main(int argc, char *argv[]);
/**
* Mainloop of deamon.
*/
int control_demo_thread_main(int argc, char *argv[]);
/**
* Test function
*/
void test();
/**
* Print the correct usage.
*/
static void usage(const char *reason);
static void
usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
fprintf(stderr, "usage: control_demo {start|stop|status} [-p <additional params>]\n\n");
exit(1);
}
/**
* The deamon app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_create().
*/
int control_demo_main(int argc, char *argv[])
{
if (argc < 1)
usage("missing command");
if (!strcmp(argv[1], "start")) {
if (thread_running) {
printf("control_demo already running\n");
/* this is not an error */
exit(0);
}
thread_should_exit = false;
deamon_task = task_spawn("control_demo",
SCHED_DEFAULT,
SCHED_PRIORITY_MAX - 10,
4096,
control_demo_thread_main,
(argv) ? (const char **)&argv[2] : (const char **)NULL);
exit(0);
}
if (!strcmp(argv[1], "test")) {
test();
exit(0);
}
if (!strcmp(argv[1], "stop")) {
thread_should_exit = true;
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
printf("\tcontrol_demo app is running\n");
} else {
printf("\tcontrol_demo app not started\n");
}
exit(0);
}
usage("unrecognized command");
exit(1);
}
int control_demo_thread_main(int argc, char *argv[])
{
printf("[control_Demo] starting\n");
using namespace control;
fixedwing::BlockMultiModeBacksideAutopilot autopilot(NULL, "FWB");
thread_running = true;
while (!thread_should_exit) {
autopilot.update();
}
printf("[control_demo] exiting.\n");
thread_running = false;
return 0;
}
void test()
{
printf("beginning control lib test\n");
control::basicBlocksTest();
}

View File

@ -0,0 +1,63 @@
#include <systemlib/param/param.h>
// currently tuned for easystar from arkhangar in HIL
//https://github.com/arktools/arkhangar
// 16 is max name length
// gyro low pass filter
PARAM_DEFINE_FLOAT(FWB_P_LP, 10.0f); // roll rate low pass cut freq
PARAM_DEFINE_FLOAT(FWB_Q_LP, 10.0f); // pitch rate low pass cut freq
PARAM_DEFINE_FLOAT(FWB_R_LP, 10.0f); // yaw rate low pass cut freq
// yaw washout
PARAM_DEFINE_FLOAT(FWB_R_HP, 1.0f); // yaw rate high pass
// stabilization mode
PARAM_DEFINE_FLOAT(FWB_P2AIL, 0.1f); // roll rate 2 aileron
PARAM_DEFINE_FLOAT(FWB_Q2ELV, 0.1f); // pitch rate 2 elevator
PARAM_DEFINE_FLOAT(FWB_R2RDR, 0.1f); // yaw rate 2 rudder
// psi -> phi -> p
PARAM_DEFINE_FLOAT(FWB_PSI2PHI, 2.0f); // heading 2 roll
PARAM_DEFINE_FLOAT(FWB_PHI2P, 2.0f); // roll to roll rate
PARAM_DEFINE_FLOAT(FWB_PHI_LIM_MAX, 1.0f); // roll limit
// velocity -> theta
PARAM_DEFINE_FLOAT(FWB_V2THE_P, 0.5f);
PARAM_DEFINE_FLOAT(FWB_V2THE_I, 0.0f);
PARAM_DEFINE_FLOAT(FWB_V2THE_D, 0.0f);
PARAM_DEFINE_FLOAT(FWB_V2THE_D_LP, 0.0f);
PARAM_DEFINE_FLOAT(FWB_V2THE_I_MAX, 0.0f);
PARAM_DEFINE_FLOAT(FWB_THE_MIN, -1.0f);
PARAM_DEFINE_FLOAT(FWB_THE_MAX, 1.0f);
// theta -> q
PARAM_DEFINE_FLOAT(FWB_THE2Q_P, 1.0f);
PARAM_DEFINE_FLOAT(FWB_THE2Q_I, 0.0f);
PARAM_DEFINE_FLOAT(FWB_THE2Q_D, 0.0f);
PARAM_DEFINE_FLOAT(FWB_THE2Q_D_LP, 0.0f);
PARAM_DEFINE_FLOAT(FWB_THE2Q_I_MAX, 0.0f);
// h -> thr
PARAM_DEFINE_FLOAT(FWB_H2THR_P, 0.005f);
PARAM_DEFINE_FLOAT(FWB_H2THR_I, 0.001f);
PARAM_DEFINE_FLOAT(FWB_H2THR_D, 0.01f);
PARAM_DEFINE_FLOAT(FWB_H2THR_D_LP, 1.0f);
PARAM_DEFINE_FLOAT(FWB_H2THR_I_MAX, 250.0f);
// crosstrack
PARAM_DEFINE_FLOAT(FWB_XT2YAW_MAX, 1.0f);
PARAM_DEFINE_FLOAT(FWB_XT2YAW, 0.01f);
// speed command
PARAM_DEFINE_FLOAT(FWB_V_MIN, 20.0f);
PARAM_DEFINE_FLOAT(FWB_V_CMD, 22.0f);
PARAM_DEFINE_FLOAT(FWB_V_MAX, 24.0f);
// trim
PARAM_DEFINE_FLOAT(FWB_TRIM_AIL, 0.0f);
PARAM_DEFINE_FLOAT(FWB_TRIM_ELV, 0.0f);
PARAM_DEFINE_FLOAT(FWB_TRIM_RDR, 0.0f);
PARAM_DEFINE_FLOAT(FWB_TRIM_THR, 0.7f);

View File

@ -0,0 +1,627 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file KalmanNav.cpp
*
* kalman filter navigation code
*/
#include <poll.h>
#include "KalmanNav.hpp"
// constants
static const float omega = 7.2921150e-5f; // earth rotation rate, rad/s
static const float R = 6.371000e6f; // earth radius, m
static const float RSq = 4.0589641e13f; // radius squared
static const float g = 9.8f; // gravitational accel. m/s^2
KalmanNav::KalmanNav(SuperBlock *parent, const char *name) :
SuperBlock(parent, name),
// ekf matrices
F(9, 9),
G(9, 6),
P(9, 9),
V(6, 6),
// attitude measurement ekf matrices
HAtt(6, 9),
RAtt(6, 6),
// gps measurement ekf matrices
HGps(6, 9),
RGps(6, 6),
// attitude representations
C_nb(),
q(),
// subscriptions
_sensors(&getSubscriptions(), ORB_ID(sensor_combined), 5), // limit to 200 Hz
_gps(&getSubscriptions(), ORB_ID(vehicle_gps_position), 1000), // limit to 1 Hz
_param_update(&getSubscriptions(), ORB_ID(parameter_update), 1000), // limit to 1 Hz
// publications
_pos(&getPublications(), ORB_ID(vehicle_global_position)),
_att(&getPublications(), ORB_ID(vehicle_attitude)),
// timestamps
_pubTimeStamp(hrt_absolute_time()),
_fastTimeStamp(hrt_absolute_time()),
_slowTimeStamp(hrt_absolute_time()),
_attTimeStamp(hrt_absolute_time()),
_outTimeStamp(hrt_absolute_time()),
// frame count
_navFrames(0),
// state
fN(0), fE(0), fD(0),
phi(0), theta(0), psi(0),
vN(0), vE(0), vD(0),
lat(0), lon(0), alt(0),
// parameters for ground station
_vGyro(this, "V_GYRO"),
_vAccel(this, "V_ACCEL"),
_rMag(this, "R_MAG"),
_rGpsV(this, "R_GPS_V"),
_rGpsGeo(this, "R_GPS_GEO"),
_rGpsAlt(this, "R_GPS_ALT"),
_rAccel(this, "R_ACCEL")
{
using namespace math;
// initial state covariance matrix
P = Matrix::identity(9) * 1.0f;
// wait for gps lock
while (1) {
updateSubscriptions();
if (_gps.fix_type > 2) break;
printf("[kalman_demo] waiting for gps lock\n");
usleep(1000000);
}
// initial state
phi = 0.0f;
theta = 0.0f;
psi = 0.0f;
vN = _gps.vel_n;
vE = _gps.vel_e;
vD = _gps.vel_d;
setLatDegE7(_gps.lat);
setLonDegE7(_gps.lon);
setAltE3(_gps.alt);
// initialize quaternions
q = Quaternion(EulerAngles(phi, theta, psi));
// initialize dcm
C_nb = Dcm(q);
// initialize F to identity
F = Matrix::identity(9);
// HGps is constant
HGps(0, 3) = 1.0f;
HGps(1, 4) = 1.0f;
HGps(2, 5) = 1.0f;
HGps(3, 6) = 1.0f;
HGps(4, 7) = 1.0f;
HGps(5, 8) = 1.0f;
// initialize all parameters
updateParams();
}
void KalmanNav::update()
{
using namespace math;
struct pollfd fds[2];
fds[0].fd = _sensors.getHandle();
fds[0].events = POLLIN;
fds[1].fd = _param_update.getHandle();
fds[1].events = POLLIN;
// poll 20 milliseconds for new data
int ret = poll(fds, 2, 20);
// check return value
if (ret < 0) {
// XXX this is seriously bad - should be an emergency
return;
} else if (ret == 0) { // timeout
// run anyway
} else if (ret > 0) {
// update params when requested
if (fds[1].revents & POLLIN) {
printf("updating params\n");
updateParams();
}
// if no new sensor data, return
if (!(fds[0].revents & POLLIN)) return;
}
// get new timestamp
uint64_t newTimeStamp = hrt_absolute_time();
// check updated subscriptions
bool gpsUpdate = _gps.updated();
// get new information from subscriptions
// this clears update flag
updateSubscriptions();
// count fast frames
_navFrames += 1;
// fast prediciton step
// note, using sensors timestamp so we can account
// for packet lag
float dtFast = (_sensors.timestamp - _fastTimeStamp) / 1.0e6f;
_fastTimeStamp = _sensors.timestamp;
predictFast(dtFast);
// slow prediction step
float dtSlow = (_sensors.timestamp - _slowTimeStamp) / 1.0e6f;
if (dtSlow > 1.0f / 200) { // 200 Hz
_slowTimeStamp = _sensors.timestamp;
predictSlow(dtSlow);
}
// gps correction step
if (gpsUpdate) {
correctGps();
}
// attitude correction step
if (_sensors.timestamp - _attTimeStamp > 1e6 / 1) { // 1 Hz
_attTimeStamp = _sensors.timestamp;
correctAtt();
}
// publication
if (newTimeStamp - _pubTimeStamp > 1e6 / 50) { // 50 Hz
_pubTimeStamp = newTimeStamp;
updatePublications();
}
// output
if (newTimeStamp - _outTimeStamp > 1e6) { // 1 Hz
_outTimeStamp = newTimeStamp;
printf("nav: %4d Hz\n", _navFrames);
_navFrames = 0;
}
}
void KalmanNav::updatePublications()
{
using namespace math;
// position publication
_pos.timestamp = _pubTimeStamp;
_pos.time_gps_usec = _gps.timestamp;
_pos.valid = true;
_pos.lat = getLatDegE7();
_pos.lon = getLonDegE7();
_pos.alt = float(alt);
_pos.relative_alt = float(alt); // TODO, make relative
_pos.vx = vN;
_pos.vy = vE;
_pos.vz = vD;
_pos.hdg = psi;
// attitude publication
_att.timestamp = _pubTimeStamp;
_att.roll = phi;
_att.pitch = theta;
_att.yaw = psi;
_att.rollspeed = _sensors.gyro_rad_s[0];
_att.pitchspeed = _sensors.gyro_rad_s[1];
_att.yawspeed = _sensors.gyro_rad_s[2];
// TODO, add gyro offsets to filter
_att.rate_offsets[0] = 0.0f;
_att.rate_offsets[1] = 0.0f;
_att.rate_offsets[2] = 0.0f;
for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++)
_att.R[i][j] = C_nb(i, j);
for (int i = 0; i < 4; i++) _att.q[i] = q(i);
_att.R_valid = true;
_att.q_valid = true;
_att.counter = _navFrames;
// update publications
SuperBlock::updatePublications();
}
void KalmanNav::predictFast(float dt)
{
using namespace math;
Vector3 w(_sensors.gyro_rad_s);
// attitude
q = q + q.derivative(w) * dt;
// renormalize quaternion if needed
if (fabsf(q.norm() - 1.0f) > 1e-4f) {
q = q.unit();
}
// C_nb update
C_nb = Dcm(q);
// euler update
EulerAngles euler(C_nb);
phi = euler.getPhi();
theta = euler.getTheta();
psi = euler.getPsi();
// specific acceleration in nav frame
Vector3 accelB(_sensors.accelerometer_m_s2);
Vector3 accelN = C_nb * accelB;
fN = accelN(0);
fE = accelN(1);
fD = accelN(2);
// trig
float sinL = sinf(lat);
float cosL = cosf(lat);
// position update
// neglects angular deflections in local gravity
// see Titerton pg. 70
float LDot = vN / (R + float(alt));
float lDot = vE / (cosL * (R + float(alt)));
float vNDot = fN - vE * (2 * omega +
lDot) * sinL +
vD * LDot;
float vDDot = fD - vE * (2 * omega + lDot) * cosL -
vN * LDot + g;
float vEDot = fE + vN * (2 * omega + lDot) * sinL +
vDDot * (2 * omega * cosL);
// rectangular integration
vN += vNDot * dt;
vE += vEDot * dt;
vD += vDDot * dt;
lat += double(LDot * dt);
lon += double(lDot * dt);
alt += double(-vD * dt);
}
void KalmanNav::predictSlow(float dt)
{
using namespace math;
// trig
float sinL = sinf(lat);
float cosL = cosf(lat);
float cosLSq = cosL * cosL;
float tanL = tanf(lat);
// F Matrix
// Titterton pg. 291
//
// difference from Jacobian
// multiplity by dt for all elements
// add 1.0 to diagonal elements
F(0, 1) = (-(omega * sinL + vE * tanL / R)) * dt;
F(0, 2) = (vN / R) * dt;
F(0, 4) = (1.0f / R) * dt;
F(0, 6) = (-omega * sinL) * dt;
F(0, 8) = (-vE / RSq) * dt;
F(1, 0) = (omega * sinL + vE * tanL / R) * dt;
F(1, 2) = (omega * cosL + vE / R) * dt;
F(1, 3) = (-1.0f / R) * dt;
F(1, 8) = (vN / RSq) * dt;
F(2, 0) = (-vN / R) * dt;
F(2, 1) = (-omega * cosL - vE / R) * dt;
F(2, 4) = (-tanL / R) * dt;
F(2, 6) = (-omega * cosL - vE / (R * cosLSq)) * dt;
F(2, 8) = (vE * tanL / RSq) * dt;
F(3, 1) = (-fD) * dt;
F(3, 2) = (fE) * dt;
F(3, 3) = 1.0f + (vD / R) * dt; // on diagonal
F(3, 4) = (-2 * (omega * sinL + vE * tanL / R)) * dt;
F(3, 5) = (vN / R) * dt;
F(3, 6) = (-vE * (2 * omega * cosL + vE / (R * cosLSq))) * dt;
F(3, 8) = ((vE * vE * tanL - vN * vD) / RSq) * dt;
F(4, 0) = (fD) * dt;
F(4, 2) = (-fN) * dt;
F(4, 3) = (2 * omega * sinL + vE * tanL / R) * dt;
F(4, 4) = 1.0f + ((vN * tanL + vD) / R) * dt; // on diagonal
F(4, 5) = (2 * omega * cosL + vE / R) * dt;
F(4, 6) = (2 * omega * (vN * cosL - vD * sinL) +
vN * vE / (R * cosLSq)) * dt;
F(4, 8) = (-vE * (vN * tanL + vD) / RSq) * dt;
F(5, 0) = (-fE) * dt;
F(5, 1) = (fN) * dt;
F(5, 3) = (-2 * vN / R) * dt;
F(5, 4) = (-2 * (omega * cosL + vE / R)) * dt;
F(5, 6) = (2 * omega * vE * sinL) * dt;
F(5, 8) = ((vN * vN + vE * vE) / RSq) * dt;
F(6, 3) = (1 / R) * dt;
F(6, 8) = (-vN / RSq) * dt;
F(7, 4) = (1 / (R * cosL)) * dt;
F(7, 6) = (vE * tanL / (R * cosL)) * dt;
F(7, 8) = (-vE / (cosL * RSq)) * dt;
F(8, 5) = (-1) * dt;
// G Matrix
// Titterton pg. 291
G(0, 0) = -C_nb(0, 0) * dt;
G(0, 1) = -C_nb(0, 1) * dt;
G(0, 2) = -C_nb(0, 2) * dt;
G(1, 0) = -C_nb(1, 0) * dt;
G(1, 1) = -C_nb(1, 1) * dt;
G(1, 2) = -C_nb(1, 2) * dt;
G(2, 0) = -C_nb(2, 0) * dt;
G(2, 1) = -C_nb(2, 1) * dt;
G(2, 2) = -C_nb(2, 2) * dt;
G(3, 3) = C_nb(0, 0) * dt;
G(3, 4) = C_nb(0, 1) * dt;
G(3, 5) = C_nb(0, 2) * dt;
G(4, 3) = C_nb(1, 0) * dt;
G(4, 4) = C_nb(1, 1) * dt;
G(4, 5) = C_nb(1, 2) * dt;
G(5, 3) = C_nb(2, 0) * dt;
G(5, 4) = C_nb(2, 1) * dt;
G(5, 5) = C_nb(2, 2) * dt;
// predict equations for kalman filter
P = F * P * F.transpose() + G * V * G.transpose();
}
void KalmanNav::correctAtt()
{
using namespace math;
// trig
float cosPhi = cosf(phi);
float cosTheta = cosf(theta);
float cosPsi = cosf(psi);
float sinPhi = sinf(phi);
float sinTheta = sinf(theta);
float sinPsi = sinf(psi);
// mag measurement
Vector3 zMag(_sensors.magnetometer_ga);
zMag = zMag.unit();
// mag predicted measurement
// choosing some typical magnetic field properties,
// TODO dip/dec depend on lat/ lon/ time
static const float dip = 60.0f / M_RAD_TO_DEG_F; // dip, inclination with level
static const float dec = 0.0f / M_RAD_TO_DEG_F; // declination, clockwise rotation from north
float bN = cosf(dip) * cosf(dec);
float bE = cosf(dip) * sinf(dec);
float bD = sinf(dip);
Vector3 bNav(bN, bE, bD);
Vector3 zMagHat = (C_nb.transpose() * bNav).unit();
// accel measurement
Vector3 zAccel(_sensors.accelerometer_m_s2);
zAccel = zAccel.unit();
// accel predicted measurement
Vector3 zAccelHat = (C_nb.transpose() * Vector3(0, 0, -1)).unit();
// combined measurement
Vector zAtt(6);
Vector zAttHat(6);
for (int i = 0; i < 3; i++) {
zAtt(i) = zMag(i);
zAtt(i + 3) = zAccel(i);
zAttHat(i) = zMagHat(i);
zAttHat(i + 3) = zAccelHat(i);
}
// HMag , HAtt (0-2,:)
float tmp1 =
cosPsi * cosTheta * bN +
sinPsi * cosTheta * bE -
sinTheta * bD;
HAtt(0, 1) = -(
cosPsi * sinTheta * bN +
sinPsi * sinTheta * bE +
cosTheta * bD
);
HAtt(0, 2) = -cosTheta * (sinPsi * bN - cosPsi * bE);
HAtt(1, 0) =
(cosPhi * cosPsi * sinTheta + sinPhi * sinPsi) * bN +
(cosPhi * sinPsi * sinTheta - sinPhi * cosPsi) * bE +
cosPhi * cosTheta * bD;
HAtt(1, 1) = sinPhi * tmp1;
HAtt(1, 2) = -(
(sinPhi * sinPsi * sinTheta + cosPhi * cosPsi) * bN -
(sinPhi * cosPsi * sinTheta - cosPhi * sinPsi) * bE
);
HAtt(2, 0) = -(
(sinPhi * cosPsi * sinTheta - cosPhi * sinPsi) * bN +
(sinPhi * sinPsi * sinTheta + cosPhi * cosPsi) * bE +
(sinPhi * cosTheta) * bD
);
HAtt(2, 1) = cosPhi * tmp1;
HAtt(2, 2) = -(
(cosPhi * sinPsi * sinTheta - sinPhi * cosTheta) * bN -
(cosPhi * cosPsi * sinTheta + sinPhi * sinPsi) * bE
);
// HAccel , HAtt (3-5,:)
HAtt(3, 1) = cosTheta;
HAtt(4, 0) = -cosPhi * cosTheta;
HAtt(4, 1) = sinPhi * sinTheta;
HAtt(5, 0) = sinPhi * cosTheta;
HAtt(5, 1) = cosPhi * sinTheta;
// compute correction
Vector y = zAtt - zAttHat; // residual
Matrix S = HAtt * P * HAtt.transpose() + RAtt; // residual covariance
Matrix K = P * HAtt.transpose() * S.inverse();
Vector xCorrect = K * y;
// check correciton is sane
for (size_t i = 0; i < xCorrect.getRows(); i++) {
float val = xCorrect(i);
if (isnan(val) || isinf(val)) {
// abort correction and return
printf("[kalman_demo] numerical failure in att correction\n");
return;
}
}
// correct state
phi += xCorrect(PHI);
theta += xCorrect(THETA);
psi += xCorrect(PSI);
// update state covariance
P = P - K * HAtt * P;
// fault detection
float beta = y.dot(S.inverse() * y);
printf("attitude: beta = %8.4f\n", (double)beta);
if (beta > 10.0f) {
//printf("fault in attitude: beta = %8.4f\n", (double)beta);
//printf("y:\n"); y.print();
}
// update quaternions from euler
// angle correction
q = Quaternion(EulerAngles(phi, theta, psi));
}
void KalmanNav::correctGps()
{
using namespace math;
Vector y(6);
y(0) = _gps.vel_n - vN;
y(1) = _gps.vel_e - vE;
y(2) = _gps.vel_d - vD;
y(3) = double(_gps.lat) / 1.0e7 / M_RAD_TO_DEG - lat;
y(4) = double(_gps.lon) / 1.0e7 / M_RAD_TO_DEG - lon;
y(5) = double(_gps.alt) / 1.0e3 - alt;
// compute correction
Matrix S = HGps * P * HGps.transpose() + RGps; // residual covariance
Matrix K = P * HGps.transpose() * S.inverse();
Vector xCorrect = K * y;
// check correction is sane
for (size_t i = 0; i < xCorrect.getRows(); i++) {
float val = xCorrect(i);
if (isnan(val) || isinf(val)) {
// abort correction and return
printf("[kalman_demo] numerical failure in gps correction\n");
// fallback to GPS
vN = _gps.vel_n;
vE = _gps.vel_e;
vD = _gps.vel_d;
setLatDegE7(_gps.lat);
setLonDegE7(_gps.lon);
setAltE3(_gps.alt);
return;
}
}
// correct state
vN += xCorrect(VN);
vE += xCorrect(VE);
vD += xCorrect(VD);
lat += double(xCorrect(LAT));
lon += double(xCorrect(LON));
alt += double(xCorrect(ALT));
// update state covariance
P = P - K * HGps * P;
// fault detetcion
float beta = y.dot(S.inverse() * y);
printf("gps: beta = %8.4f\n", (double)beta);
if (beta > 100.0f) {
//printf("fault in gps: beta = %8.4f\n", (double)beta);
//printf("y:\n"); y.print();
}
}
void KalmanNav::updateParams()
{
using namespace math;
using namespace control;
SuperBlock::updateParams();
// gyro noise
V(0, 0) = _vGyro.get(); // gyro x, rad/s
V(1, 1) = _vGyro.get(); // gyro y
V(2, 2) = _vGyro.get(); // gyro z
// accel noise
V(3, 3) = _vAccel.get(); // accel x, m/s^2
V(4, 4) = _vAccel.get(); // accel y
V(5, 5) = _vAccel.get(); // accel z
// magnetometer noise
RAtt(0, 0) = _rMag.get(); // normalized direction
RAtt(1, 1) = _rMag.get();
RAtt(2, 2) = _rMag.get();
// accelerometer noise
RAtt(3, 3) = _rAccel.get(); // normalized direction
RAtt(4, 4) = _rAccel.get();
RAtt(5, 5) = _rAccel.get();
// gps noise
RGps(0, 0) = _rGpsV.get(); // vn, m/s
RGps(1, 1) = _rGpsV.get(); // ve
RGps(2, 2) = _rGpsV.get(); // vd
RGps(3, 3) = _rGpsGeo.get(); // L, rad
RGps(4, 4) = _rGpsGeo.get(); // l, rad
RGps(5, 5) = _rGpsAlt.get(); // h, m
}

View File

@ -0,0 +1,116 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file KalmanNav.hpp
*
* kalman filter navigation code
*/
#pragma once
//#define MATRIX_ASSERT
//#define VECTOR_ASSERT
#include <nuttx/config.h>
#include <mathlib/mathlib.h>
#include <controllib/blocks.hpp>
#include <controllib/block/BlockParam.hpp>
#include <controllib/block/UOrbSubscription.hpp>
#include <controllib/block/UOrbPublication.hpp>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/sensor_combined.h>
#include <uORB/topics/vehicle_gps_position.h>
#include <uORB/topics/parameter_update.h>
#include <drivers/drv_hrt.h>
#include <poll.h>
#include <unistd.h>
class KalmanNav : public control::SuperBlock
{
public:
KalmanNav(SuperBlock *parent, const char *name);
virtual ~KalmanNav() {};
void update();
virtual void updatePublications();
void predictFast(float dt);
void predictSlow(float dt);
void correctAtt();
void correctGps();
virtual void updateParams();
protected:
math::Matrix F;
math::Matrix G;
math::Matrix P;
math::Matrix V;
math::Matrix HAtt;
math::Matrix RAtt;
math::Matrix HGps;
math::Matrix RGps;
math::Dcm C_nb;
math::Quaternion q;
control::UOrbSubscription<sensor_combined_s> _sensors;
control::UOrbSubscription<vehicle_gps_position_s> _gps;
control::UOrbSubscription<parameter_update_s> _param_update;
control::UOrbPublication<vehicle_global_position_s> _pos;
control::UOrbPublication<vehicle_attitude_s> _att;
uint64_t _pubTimeStamp;
uint64_t _fastTimeStamp;
uint64_t _slowTimeStamp;
uint64_t _attTimeStamp;
uint64_t _outTimeStamp;
uint16_t _navFrames;
float fN, fE, fD;
// states
enum {PHI = 0, THETA, PSI, VN, VE, VD, LAT, LON, ALT};
float phi, theta, psi;
float vN, vE, vD;
double lat, lon, alt;
control::BlockParam<float> _vGyro;
control::BlockParam<float> _vAccel;
control::BlockParam<float> _rMag;
control::BlockParam<float> _rGpsV;
control::BlockParam<float> _rGpsGeo;
control::BlockParam<float> _rGpsAlt;
control::BlockParam<float> _rAccel;
int32_t getLatDegE7() { return int32_t(lat * 1.0e7 * M_RAD_TO_DEG); }
void setLatDegE7(int32_t val) { lat = val / 1.0e7 / M_RAD_TO_DEG; }
int32_t getLonDegE7() { return int32_t(lon * 1.0e7 * M_RAD_TO_DEG); }
void setLonDegE7(int32_t val) { lon = val / 1.0e7 / M_RAD_TO_DEG; }
int32_t getAltE3() { return int32_t(alt * 1.0e3); }
void setAltE3(int32_t val) { alt = double(val) / 1.0e3; }
};

View File

@ -0,0 +1,42 @@
############################################################################
#
# Copyright (C) 2012 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# Basic example application
#
APPNAME = kalman_demo
PRIORITY = SCHED_PRIORITY_MAX - 30
STACKSIZE = 2048
include $(APPDIR)/mk/app.mk

View File

@ -0,0 +1,152 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: @author Example User <mail@example.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file kalman_demo.cpp
* Demonstration of control library
*/
#include <nuttx/config.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <systemlib/systemlib.h>
#include <systemlib/param/param.h>
#include <drivers/drv_hrt.h>
#include <math.h>
#include "KalmanNav.hpp"
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int deamon_task; /**< Handle of deamon task / thread */
/**
* Deamon management function.
*/
extern "C" __EXPORT int kalman_demo_main(int argc, char *argv[]);
/**
* Mainloop of deamon.
*/
int kalman_demo_thread_main(int argc, char *argv[]);
/**
* Print the correct usage.
*/
static void usage(const char *reason);
static void
usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
fprintf(stderr, "usage: kalman_demo {start|stop|status} [-p <additional params>]\n\n");
exit(1);
}
/**
* The deamon app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_create().
*/
int kalman_demo_main(int argc, char *argv[])
{
if (argc < 1)
usage("missing command");
if (!strcmp(argv[1], "start")) {
if (thread_running) {
printf("kalman_demo already running\n");
/* this is not an error */
exit(0);
}
thread_should_exit = false;
deamon_task = task_spawn("kalman_demo",
SCHED_DEFAULT,
SCHED_PRIORITY_MAX - 5,
4096,
kalman_demo_thread_main,
(argv) ? (const char **)&argv[2] : (const char **)NULL);
exit(0);
}
if (!strcmp(argv[1], "stop")) {
thread_should_exit = true;
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
printf("\tkalman_demo app is running\n");
} else {
printf("\tkalman_demo app not started\n");
}
exit(0);
}
usage("unrecognized command");
exit(1);
}
int kalman_demo_thread_main(int argc, char *argv[])
{
printf("[kalman_demo] starting\n");
using namespace math;
thread_running = true;
KalmanNav nav(NULL, "KF");
while (!thread_should_exit) {
nav.update();
}
printf("[kalman_demo] exiting.\n");
thread_running = false;
return 0;
}

View File

@ -0,0 +1,10 @@
#include <systemlib/param/param.h>
/*PARAM_DEFINE_FLOAT(NAME,0.0f);*/
PARAM_DEFINE_FLOAT(KF_V_GYRO, 0.01f);
PARAM_DEFINE_FLOAT(KF_V_ACCEL, 0.01f);
PARAM_DEFINE_FLOAT(KF_R_MAG, 0.01f);
PARAM_DEFINE_FLOAT(KF_R_GPS_V, 0.1f);
PARAM_DEFINE_FLOAT(KF_R_GPS_GEO, 1.0e-7f);
PARAM_DEFINE_FLOAT(KF_R_GPS_ALT, 10.0f);
PARAM_DEFINE_FLOAT(KF_R_ACCEL, 0.01f);

View File

@ -0,0 +1,42 @@
############################################################################
#
# Copyright (C) 2012 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# Basic example application
#
APPNAME = math_demo
PRIORITY = SCHED_PRIORITY_DEFAULT
STACKSIZE = 8192
include $(APPDIR)/mk/app.mk

View File

@ -0,0 +1,105 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: @author Example User <mail@example.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file math_demo.cpp
* Demonstration of math library
*/
#include <nuttx/config.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <systemlib/systemlib.h>
#include <mathlib/mathlib.h>
/**
* Management function.
*/
extern "C" __EXPORT int math_demo_main(int argc, char *argv[]);
/**
* Test function
*/
void test();
/**
* Print the correct usage.
*/
static void usage(const char *reason);
static void
usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
fprintf(stderr, "usage: math_demo {test}\n\n");
exit(1);
}
/**
* The deamon app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_create().
*/
int math_demo_main(int argc, char *argv[])
{
if (argc < 1)
usage("missing command");
if (!strcmp(argv[1], "test")) {
test();
exit(0);
}
usage("unrecognized command");
exit(1);
}
void test()
{
printf("beginning math lib test\n");
using namespace math;
vectorTest();
matrixTest();
vector3Test();
eulerAnglesTest();
quaternionTest();
dcmTest();
}

View File

@ -0,0 +1,159 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_abs_f32.c
*
* Description: Vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
#include <math.h>
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicAbs Vector Absolute Value
*
* Computes the absolute value of a vector on an element-by-element basis.
*
* <pre>
* pDst[n] = abs(pSrcA[n]), 0 <= n < blockSize.
* </pre>
*
* The operation can be done in-place by setting the input and output pointers to the same buffer.
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Floating-point vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_abs_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4; /* temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute and then store the results in the destination buffer. */
/* read sample from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
/* find absolute value */
in1 = fabsf(in1);
/* read sample from source */
in4 = *(pSrc + 3);
/* find absolute value */
in2 = fabsf(in2);
/* read sample from source */
*pDst = in1;
/* find absolute value */
in3 = fabsf(in3);
/* find absolute value */
in4 = fabsf(in4);
/* store result to destination */
*(pDst + 1) = in2;
/* store result to destination */
*(pDst + 2) = in3;
/* store result to destination */
*(pDst + 3) = in4;
/* Update source pointer to process next sampels */
pSrc += 4u;
/* Update destination pointer to process next sampels */
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute and then store the results in the destination buffer. */
*pDst++ = fabsf(*pSrc++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,173 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_abs_q15.c
*
* Description: Q15 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q15 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_abs_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1; /* Input value1 */
q15_t in2; /* Input value2 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Read two inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* Store the Absolute result in the destination buffer by packing the two values, in a single cycle */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(((in1 > 0) ? in1 : __QSUB16(0, in1)),
((in2 > 0) ? in2 : __QSUB16(0, in2)), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(((in2 > 0) ? in2 : __QSUB16(0, in2)),
((in1 > 0) ? in1 : __QSUB16(0, in1)), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ =
__PKHBT(((in1 > 0) ? in1 : __QSUB16(0, in1)),
((in2 > 0) ? in2 : __QSUB16(0, in2)), 16);
#else
*__SIMD32(pDst)++ =
__PKHBT(((in2 > 0) ? in2 : __QSUB16(0, in2)),
((in1 > 0) ? in1 : __QSUB16(0, in1)), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in1 = *pSrc++;
/* Calculate absolute value of input and then store the result in the destination buffer. */
*pDst++ = (in1 > 0) ? in1 : __QSUB16(0, in1);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t in; /* Temporary input variable */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in = *pSrc++;
/* Calculate absolute value of input and then store the result in the destination buffer. */
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,125 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_abs_q31.c
*
* Description: Q31 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q31 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_abs_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q31_t in; /* Input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
*pDst++ = (in1 > 0) ? in1 : __QSUB(0, in1);
*pDst++ = (in2 > 0) ? in2 : __QSUB(0, in2);
*pDst++ = (in3 > 0) ? in3 : __QSUB(0, in3);
*pDst++ = (in4 > 0) ? in4 : __QSUB(0, in4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = |A| */
/* Calculate absolute value of the input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */
in = *pSrc++;
*pDst++ = (in > 0) ? in : ((in == 0x80000000) ? 0x7fffffff : -in);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,152 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_abs_q7.c
*
* Description: Q7 vector absolute value.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAbs
* @{
*/
/**
* @brief Q7 vector absolute value.
* @param[in] *pSrc points to the input buffer
* @param[out] *pDst points to the output buffer
* @param[in] blockSize number of samples in each vector
* @return none.
*
* \par Conditions for optimum performance
* Input and output buffers should be aligned by 32-bit
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F.
*/
void arm_abs_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q7_t in; /* Input value1 */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4; /* temporary input variables */
q31_t out1, out2, out3, out4; /* temporary output variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = |A| */
/* Read inputs */
in1 = (q31_t) * pSrc;
in2 = (q31_t) * (pSrc + 1);
in3 = (q31_t) * (pSrc + 2);
/* find absolute value */
out1 = (in1 > 0) ? in1 : __QSUB8(0, in1);
/* read input */
in4 = (q31_t) * (pSrc + 3);
/* find absolute value */
out2 = (in2 > 0) ? in2 : __QSUB8(0, in2);
/* store result to destination */
*pDst = (q7_t) out1;
/* find absolute value */
out3 = (in3 > 0) ? in3 : __QSUB8(0, in3);
/* find absolute value */
out4 = (in4 > 0) ? in4 : __QSUB8(0, in4);
/* store result to destination */
*(pDst + 1) = (q7_t) out2;
/* store result to destination */
*(pDst + 2) = (q7_t) out3;
/* store result to destination */
*(pDst + 3) = (q7_t) out4;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = blockSize;
#endif // #define ARM_MATH_CM0
while(blkCnt > 0u)
{
/* C = |A| */
/* Read the input */
in = *pSrc++;
/* Store the Absolute result in the destination buffer */
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? 0x7f : -in);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAbs group
*/

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_add_f32.c
*
* Description: Floating-point vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicAdd Vector Addition
*
* Element-by-element addition of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] + pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Floating-point vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_add_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* temporary input variabels */
float32_t inB1, inB2, inB3, inB4; /* temporary input variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
/* read four inputs from sourceA and four inputs from sourceB */
inA1 = *pSrcA;
inB1 = *pSrcB;
inA2 = *(pSrcA + 1);
inB2 = *(pSrcB + 1);
inA3 = *(pSrcA + 2);
inB3 = *(pSrcB + 2);
inA4 = *(pSrcA + 3);
inB4 = *(pSrcB + 3);
/* C = A + B */
/* add and store result to destination */
*pDst = inA1 + inB1;
*(pDst + 1) = inA2 + inB2;
*(pDst + 2) = inA3 + inB3;
*(pDst + 3) = inA4 + inB4;
/* update pointers to process next samples */
pSrcA += 4u;
pSrcB += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (*pSrcA++) + (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_add_q15.c
*
* Description: Q15 vector addition
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q15 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_add_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inB1, inB2;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
inA1 = *__SIMD32(pSrcA)++;
inA2 = *__SIMD32(pSrcA)++;
inB1 = *__SIMD32(pSrcB)++;
inB2 = *__SIMD32(pSrcB)++;
*__SIMD32(pDst)++ = __QADD16(inA1, inB1);
*__SIMD32(pDst)++ = __QADD16(inA2, inB2);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q15_t) __QADD16(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ + *pSrcB++), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,143 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_add_q31.c
*
* Description: Q31 vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q31 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_add_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4;
q31_t inB1, inB2, inB3, inB4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
*pDst++ = __QADD(inA1, inB1);
*pDst++ = __QADD(inA2, inB2);
*pDst++ = __QADD(inA3, inB3);
*pDst++ = __QADD(inA4, inB4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = __QADD(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ + *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,129 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_add_q7.c
*
* Description: Q7 vector addition.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicAdd
* @{
*/
/**
* @brief Q7 vector addition.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_add_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q7_t) __SSAT(*pSrcA++ + *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + B */
/* Add and then store the results in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ + *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicAdd group
*/

View File

@ -0,0 +1,125 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_f32.c
*
* Description: Floating-point dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup dot_prod Vector Dot Product
*
* Computes the dot product of two vectors.
* The vectors are multiplied element-by-element and then summed.
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of floating-point vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*/
void arm_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t blockSize,
float32_t * result)
{
float32_t sum = 0.0f; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer */
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* Store the result back in the destination buffer */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q15.c
*
* Description: Q15 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q15 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.15 x 1.15 = 2.30 format and these
* results are added to a 64-bit accumulator in 34.30 format.
* Nonsaturating additions are used and given that there are 33 guard bits in the accumulator
* there is no risk of overflow.
* The return result is in 34.30 format.
*/
void arm_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t blockSize,
q63_t * result)
{
q63_t sum = 0; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum);
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the results in a temporary buffer. */
sum = __SMLALD(*pSrcA++, *pSrcB++, sum);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the results in a temporary buffer. */
sum += (q63_t) ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the result in the destination buffer in 34.30 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,138 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q31.c
*
* Description: Q31 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q31 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these
* are truncated to 2.48 format by discarding the lower 14 bits.
* The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format.
* There are 15 guard bits in the accumulator and there is no risk of overflow as long as
* the length of the vectors is less than 2^16 elements.
* The return result is in 16.48 format.
*/
void arm_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t blockSize,
q63_t * result)
{
q63_t sum = 0; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4;
q31_t inB1, inB2, inB3, inB4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
sum += ((q63_t) inA1 * inB1) >> 14u;
sum += ((q63_t) inA2 * inB2) >> 14u;
sum += ((q63_t) inA3 * inB3) >> 14u;
sum += ((q63_t) inA4 * inB4) >> 14u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
/* Decrement the loop counter */
blkCnt--;
}
/* Store the result in the destination buffer in 16.48 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,154 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q7.c
*
* Description: Q7 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q7 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.7 x 1.7 = 2.14 format and these
* results are added to an accumulator in 18.14 format.
* Nonsaturating additions are used and there is no danger of wrap around as long as
* the vectors are less than 2^18 elements long.
* The return result is in 18.14 format.
*/
void arm_dot_prod_q7(
q7_t * pSrcA,
q7_t * pSrcB,
uint32_t blockSize,
q31_t * result)
{
uint32_t blkCnt; /* loop counter */
q31_t sum = 0; /* Temporary variables to store output */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t input1, input2; /* Temporary variables to store input */
q31_t inA1, inA2, inB1, inB2; /* Temporary variables to store input */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read 4 samples at a time from sourceA */
input1 = *__SIMD32(pSrcA)++;
/* read 4 samples at a time from sourceB */
input2 = *__SIMD32(pSrcB)++;
/* extract two q7_t samples to q15_t samples */
inA1 = __SXTB16(__ROR(input1, 8));
/* extract reminaing two samples */
inA2 = __SXTB16(input1);
/* extract two q7_t samples to q15_t samples */
inB1 = __SXTB16(__ROR(input2, 8));
/* extract reminaing two samples */
inB2 = __SXTB16(input2);
/* multiply and accumulate two samples at a time */
sum = __SMLAD(inA1, inB1, sum);
sum = __SMLAD(inA2, inB2, sum);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Dot product and then store the results in a temporary buffer. */
sum = __SMLAD(*pSrcA++, *pSrcB++, sum);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Dot product and then store the results in a temporary buffer. */
sum += (q31_t) ((q15_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the result in the destination buffer in 18.14 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/

View File

@ -0,0 +1,172 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_mult_f32.c
*
* Description: Floating-point vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicMult Vector Multiplication
*
* Element-by-element multiplication of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] * pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Floating-point vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_mult_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* temporary input variables */
float32_t inB1, inB2, inB3, inB4; /* temporary input variables */
float32_t out1, out2, out3, out4; /* temporary output variables */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in output buffer */
/* read sample from sourceA */
inA1 = *pSrcA;
/* read sample from sourceB */
inB1 = *pSrcB;
/* read sample from sourceA */
inA2 = *(pSrcA + 1);
/* read sample from sourceB */
inB2 = *(pSrcB + 1);
/* out = sourceA * sourceB */
out1 = inA1 * inB1;
/* read sample from sourceA */
inA3 = *(pSrcA + 2);
/* read sample from sourceB */
inB3 = *(pSrcB + 2);
/* out = sourceA * sourceB */
out2 = inA2 * inB2;
/* read sample from sourceA */
inA4 = *(pSrcA + 3);
/* store result to destination buffer */
*pDst = out1;
/* read sample from sourceB */
inB4 = *(pSrcB + 3);
/* out = sourceA * sourceB */
out3 = inA3 * inB3;
/* store result to destination buffer */
*(pDst + 1) = out2;
/* out = sourceA * sourceB */
out4 = inA4 * inB4;
/* store result to destination buffer */
*(pDst + 2) = out3;
/* store result to destination buffer */
*(pDst + 3) = out4;
/* update pointers to process next samples */
pSrcA += 4u;
pSrcB += 4u;
pDst += 4u;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in output buffer */
*pDst++ = (*pSrcA++) * (*pSrcB++);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,152 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_mult_q15.c
*
* Description: Q15 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q15 vector multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_mult_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inB1, inB2; /* temporary input variables */
q15_t out1, out2, out3, out4; /* temporary output variables */
q31_t mul1, mul2, mul3, mul4; /* temporary variables */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read two samples at a time from sourceA */
inA1 = *__SIMD32(pSrcA)++;
/* read two samples at a time from sourceB */
inB1 = *__SIMD32(pSrcB)++;
/* read two samples at a time from sourceA */
inA2 = *__SIMD32(pSrcA)++;
/* read two samples at a time from sourceB */
inB2 = *__SIMD32(pSrcB)++;
/* multiply mul = sourceA * sourceB */
mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);
/* saturate result to 16 bit */
out1 = (q15_t) __SSAT(mul1 >> 15, 16);
out2 = (q15_t) __SSAT(mul2 >> 15, 16);
out3 = (q15_t) __SSAT(mul3 >> 15, 16);
out4 = (q15_t) __SSAT(mul4 >> 15, 16);
/* store the result */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
#else
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the result in the destination buffer */
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,143 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_mult_q31.c
*
* Description: Q31 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q31 vector multiplication.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_mult_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4; /* temporary input variables */
q31_t inB1, inB2, inB3, inB4; /* temporary input variables */
q31_t out1, out2, out3, out4; /* temporary output variables */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB2) >> 32;
out3 = ((q63_t) inA3 * inB3) >> 32;
out4 = ((q63_t) inA4 * inB4) >> 32;
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
out3 = __SSAT(out3, 31);
out4 = __SSAT(out4, 31);
*pDst++ = out1 << 1u;
*pDst++ = out2 << 1u;
*pDst++ = out3 << 1u;
*pDst++ = out4 << 1u;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and then store the results in the destination buffer. */
*pDst++ =
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,128 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_mult_q7.c
*
* Description: Q7 vector multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10 DP
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicMult
* @{
*/
/**
* @brief Q7 vector multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_mult_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t out1, out2, out3, out4; /* Temporary variables to store the product */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the results in temporary variables */
out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
/* Store the results of 4 inputs in the destination buffer in single cycle by packing */
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * B */
/* Multiply the inputs and store the result in the destination buffer */
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8);
/* Decrement the blockSize loop counter */
blkCnt--;
}
}
/**
* @} end of BasicMult group
*/

View File

@ -0,0 +1,137 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_negate_f32.c
*
* Description: Negates floating-point vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup negate Vector Negate
*
* Negates the elements of a vector.
*
* <pre>
* pDst[n] = -pSrc[n], 0 <= n < blockSize.
* </pre>
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4; /* temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read inputs from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* negate the input */
in1 = -in1;
in2 = -in2;
in3 = -in3;
in4 = -in4;
/* store the result to destination */
*pDst = in1;
*(pDst + 1) = in2;
*(pDst + 2) = in3;
*(pDst + 3) = in4;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,137 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_negate_q15.c
*
* Description: Negates Q15 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* \par Conditions for optimum performance
* Input and output buffers should be aligned by 32-bit
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_negate_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q15_t in;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2; /* Temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Read two inputs at a time */
in1 = _SIMD32_OFFSET(pSrc);
in2 = _SIMD32_OFFSET(pSrc + 2);
/* negate two samples at a time */
in1 = __QSUB16(0, in1);
/* negate two samples at a time */
in2 = __QSUB16(0, in2);
/* store the result to destination 2 samples at a time */
_SIMD32_OFFSET(pDst) = in1;
/* store the result to destination 2 samples at a time */
_SIMD32_OFFSET(pDst + 2) = in2;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the result in the destination buffer. */
in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,124 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_negate_q31.c
*
* Description: Negates Q31 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_negate_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t in; /* Temporary variable */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
*pDst++ = __QSUB(0, in1);
*pDst++ = __QSUB(0, in2);
*pDst++ = __QSUB(0, in3);
*pDst++ = __QSUB(0, in4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the result in the destination buffer. */
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,120 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_negate_q7.c
*
* Description: Negates Q7 vectors.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup negate
* @{
*/
/**
* @brief Negates the elements of a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F.
*/
void arm_negate_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
q7_t in;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t input; /* Input values1-4 */
q31_t zero = 0x00000000;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = -A */
/* Read four inputs */
input = *__SIMD32(pSrc)++;
/* Store the Negated results in the destination buffer in a single cycle by packing the results */
*__SIMD32(pDst)++ = __QSUB8(zero, input);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = -A */
/* Negate and then store the results in the destination buffer. */ \
in = *pSrc++;
*pDst++ = (in == (q7_t) 0x80) ? 0x7f : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of negate group
*/

View File

@ -0,0 +1,158 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_offset_f32.c
*
* Description: Floating-point vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup offset Vector Offset
*
* Adds a constant offset to each element of a vector.
*
* <pre>
* pDst[n] = pSrc[n] + offset, 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_f32(
float32_t * pSrc,
float32_t offset,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
/* read samples from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
/* add offset to input */
in1 = in1 + offset;
/* read samples from source */
in3 = *(pSrc + 2);
/* add offset to input */
in2 = in2 + offset;
/* read samples from source */
in4 = *(pSrc + 3);
/* add offset to input */
in3 = in3 + offset;
/* store result to destination */
*pDst = in1;
/* add offset to input */
in4 = in4 + offset;
/* store result to destination */
*(pDst + 1) = in2;
/* store result to destination */
*(pDst + 2) = in3;
/* store result to destination */
*(pDst + 3) = in4;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (*pSrc++) + offset;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,131 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_offset_q15.c
*
* Description: Q15 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
*/
void arm_offset_q15(
q15_t * pSrc,
q15_t offset,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t offset_packed; /* Offset packed to 32 bit */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Offset is packed to 32 bit in order to use SIMD32 for addition */
offset_packed = __PKHBT(offset, offset, 16);
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer, 2 samples at a time. */
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed);
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
*pDst++ = (q15_t) __QADD16(*pSrc++, offset);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrc++ + offset), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_offset_q31.c
*
* Description: Q31 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated.
*/
void arm_offset_q31(
q31_t * pSrc,
q31_t offset,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination buffer. */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
*pDst++ = __QADD(in1, offset);
*pDst++ = __QADD(in2, offset);
*pDst++ = __QADD(in3, offset);
*pDst++ = __QADD(in4, offset);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = __QADD(*pSrc++, offset);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,130 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_offset_q7.c
*
* Description: Q7 vector offset.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup offset
* @{
*/
/**
* @brief Adds a constant offset to a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] are saturated.
*/
void arm_offset_q7(
q7_t * pSrc,
q7_t offset,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t offset_packed; /* Offset packed to 32 bit */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Offset is packed to 32 bit in order to use SIMD32 for addition */
offset_packed = __PACKq7(offset, offset, offset, offset);
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the results in the destination bufferfor 4 samples at a time. */
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrc)++, offset_packed);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A + offset */
/* Add offset and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrc++ + offset, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of offset group
*/

View File

@ -0,0 +1,161 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_scale_f32.c
*
* Description: Multiplies a floating-point vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup scale Vector Scale
*
* Multiply a vector by a scalar value. For floating-point data, the algorithm used is:
*
* <pre>
* pDst[n] = pSrc[n] * scale, 0 <= n < blockSize.
* </pre>
*
* In the fixed-point Q7, Q15, and Q31 functions, <code>scale</code> is represented by
* a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
* The shift allows the gain of the scaling operation to exceed 1.0.
* The algorithm used with fixed-point data is:
*
* <pre>
* pDst[n] = (pSrc[n] * scaleFract) << shift, 0 <= n < blockSize.
* </pre>
*
* The overall scale factor applied to the fixed-point data is
* <pre>
* scale = scaleFract * 2^shift.
* </pre>
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a floating-point vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scale scale factor to be applied
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_scale_f32(
float32_t * pSrc,
float32_t scale,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t in1, in2, in3, in4; /* temporary variabels */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the results in the destination buffer. */
/* read input samples from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
/* multiply with scaling factor */
in1 = in1 * scale;
/* read input sample from source */
in3 = *(pSrc + 2);
/* multiply with scaling factor */
in2 = in2 * scale;
/* read input sample from source */
in4 = *(pSrc + 3);
/* multiply with scaling factor */
in3 = in3 * scale;
in4 = in4 * scale;
/* store the result to destination */
*pDst = in1;
*(pDst + 1) = in2;
*(pDst + 2) = in3;
*(pDst + 3) = in4;
/* update pointers to process next samples */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (*pSrc++) * scale;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,157 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_scale_q15.c
*
* Description: Multiplies a Q15 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q15 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format.
* These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
*/
void arm_scale_q15(
q15_t * pSrc,
q15_t scaleFract,
int8_t shift,
q15_t * pDst,
uint32_t blockSize)
{
int8_t kShift = 15 - shift; /* shift to apply after scaling */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1, in2, in3, in4;
q31_t inA1, inA2; /* Temporary variables */
q31_t out1, out2, out3, out4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Reading 2 inputs from memory */
inA1 = *__SIMD32(pSrc)++;
inA2 = *__SIMD32(pSrc)++;
/* C = A * scale */
/* Scale the inputs and then store the 2 results in the destination buffer
* in single cycle by packing the outputs */
out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
out2 = (q31_t) ((q15_t) inA1 * scaleFract);
out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
out4 = (q31_t) ((q15_t) inA2 * scaleFract);
/* apply shifting */
out1 = out1 >> kShift;
out2 = out2 >> kShift;
out3 = out3 >> kShift;
out4 = out4 >> kShift;
/* saturate the output */
in1 = (q15_t) (__SSAT(out1, 16));
in2 = (q15_t) (__SSAT(out2, 16));
in3 = (q15_t) (__SSAT(out3, 16));
in4 = (q15_t) (__SSAT(out4, 16));
/* store the result to destination */
*__SIMD32(pDst)++ = __PKHBT(in2, in1, 16);
*__SIMD32(pDst)++ = __PKHBT(in4, in3, 16);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q15_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 16));
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q15_t) (__SSAT(((q31_t) * pSrc++ * scaleFract) >> kShift, 16));
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,221 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_scale_q31.c
*
* Description: Multiplies a Q31 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q31 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format.
* These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format.
*/
void arm_scale_q31(
q31_t * pSrc,
q31_t scaleFract,
int8_t shift,
q31_t * pDst,
uint32_t blockSize)
{
int8_t kShift = shift + 1; /* Shift to apply after scaling */
int8_t sign = (kShift & 0x80);
uint32_t blkCnt; /* loop counter */
q31_t in, out;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t in1, in2, in3, in4; /* temporary input variables */
q31_t out1, out2, out3, out4; /* temporary output variabels */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read four inputs from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* multiply input with scaler value */
in1 = ((q63_t) in1 * scaleFract) >> 32;
in2 = ((q63_t) in2 * scaleFract) >> 32;
in3 = ((q63_t) in3 * scaleFract) >> 32;
in4 = ((q63_t) in4 * scaleFract) >> 32;
/* apply shifting */
out1 = in1 << kShift;
out2 = in2 << kShift;
/* saturate the results. */
if(in1 != (out1 >> kShift))
out1 = 0x7FFFFFFF ^ (in1 >> 31);
if(in2 != (out2 >> kShift))
out2 = 0x7FFFFFFF ^ (in2 >> 31);
out3 = in3 << kShift;
out4 = in4 << kShift;
*pDst = out1;
*(pDst + 1) = out2;
if(in3 != (out3 >> kShift))
out3 = 0x7FFFFFFF ^ (in3 >> 31);
if(in4 != (out4 >> kShift))
out4 = 0x7FFFFFFF ^ (in4 >> 31);
/* Store result destination */
*(pDst + 2) = out3;
*(pDst + 3) = out4;
/* Update pointers to process next sampels */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
kShift = -kShift;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read four inputs from source */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* multiply input with scaler value */
in1 = ((q63_t) in1 * scaleFract) >> 32;
in2 = ((q63_t) in2 * scaleFract) >> 32;
in3 = ((q63_t) in3 * scaleFract) >> 32;
in4 = ((q63_t) in4 * scaleFract) >> 32;
/* apply shifting */
out1 = in1 >> kShift;
out2 = in2 >> kShift;
out3 = in3 >> kShift;
out4 = in4 >> kShift;
/* Store result destination */
*pDst = out1;
*(pDst + 1) = out2;
*(pDst + 2) = out3;
*(pDst + 3) = out4;
/* Update pointers to process next sampels */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32;
if(sign == 0)
{
out = in << kShift;
if(in != (out >> kShift))
out = 0x7FFFFFFF ^ (in >> 31);
}
else
{
out = in >> kShift;
}
*pDst++ = out;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,144 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_scale_q7.c
*
* Description: Multiplies a Q7 vector by a scalar.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup scale
* @{
*/
/**
* @brief Multiplies a Q7 vector by a scalar.
* @param[in] *pSrc points to the input vector
* @param[in] scaleFract fractional portion of the scale value
* @param[in] shift number of bits to shift the result by
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.7 format.
* These are multiplied to yield a 2.14 intermediate result and this is shifted with saturation to 1.7 format.
*/
void arm_scale_q7(
q7_t * pSrc,
q7_t scaleFract,
int8_t shift,
q7_t * pDst,
uint32_t blockSize)
{
int8_t kShift = 7 - shift; /* shift to apply after scaling */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t in1, in2, in3, in4, out1, out2, out3, out4; /* Temporary variables to store input & output */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Reading 4 inputs from memory */
in1 = *pSrc++;
in2 = *pSrc++;
in3 = *pSrc++;
in4 = *pSrc++;
/* C = A * scale */
/* Scale the inputs and then store the results in the temporary variables. */
out1 = (q7_t) (__SSAT(((in1) * scaleFract) >> kShift, 8));
out2 = (q7_t) (__SSAT(((in2) * scaleFract) >> kShift, 8));
out3 = (q7_t) (__SSAT(((in3) * scaleFract) >> kShift, 8));
out4 = (q7_t) (__SSAT(((in4) * scaleFract) >> kShift, 8));
/* Packing the individual outputs into 32bit and storing in
* destination buffer in single write */
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 8));
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A * scale */
/* Scale the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) (__SSAT((((q15_t) * pSrc++ * scaleFract) >> kShift), 8));
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of scale group
*/

View File

@ -0,0 +1,243 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_shift_q15.c
*
* Description: Shifts the elements of a Q15 vector by a specified number of bits.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q15 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_shift_q15(
q15_t * pSrc,
int8_t shiftBits,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign; /* Sign of shiftBits */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1, in2; /* Temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Read 2 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A << shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift and then store the results in the destination buffer. */
*pDst++ = __SSAT((*pSrc++ << shiftBits), 16);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* Read 2 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
(in2 >> -shiftBits), 16);
#else
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
(in1 >> -shiftBits), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
(in2 >> -shiftBits), 16);
#else
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
(in1 >> -shiftBits), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#else
/* Run the below code for Cortex-M0 */
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift and then store the results in the destination buffer. */
*pDst++ = __SSAT(((q31_t) * pSrc++ << shiftBits), 16);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,195 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_shift_q31.c
*
* Description: Shifts the elements of a Q31 vector by a specified number of bits.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup shift Vector Shift
*
* Shifts the elements of a fixed-point vector by a specified number of bits.
* There are separate functions for Q7, Q15, and Q31 data types.
* The underlying algorithm used is:
*
* <pre>
* pDst[n] = pSrc[n] << shift, 0 <= n < blockSize.
* </pre>
*
* If <code>shift</code> is positive then the elements of the vector are shifted to the left.
* If <code>shift</code> is negative then the elements of the vector are shifted to the right.
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q31 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_shift_q31(
q31_t * pSrc,
int8_t shiftBits,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign = (shiftBits & 0x80); /* Sign of shiftBits */
#ifndef ARM_MATH_CM0
q31_t in1, in2, in3, in4; /* Temporary input variables */
q31_t out1, out2, out3, out4; /* Temporary output variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift the input and then store the results in the destination buffer. */
in1 = *pSrc;
in2 = *(pSrc + 1);
out1 = in1 << shiftBits;
in3 = *(pSrc + 2);
out2 = in2 << shiftBits;
in4 = *(pSrc + 3);
if(in1 != (out1 >> shiftBits))
out1 = 0x7FFFFFFF ^ (in1 >> 31);
if(in2 != (out2 >> shiftBits))
out2 = 0x7FFFFFFF ^ (in2 >> 31);
*pDst = out1;
out3 = in3 << shiftBits;
*(pDst + 1) = out2;
out4 = in4 << shiftBits;
if(in3 != (out3 >> shiftBits))
out3 = 0x7FFFFFFF ^ (in3 >> 31);
if(in4 != (out4 >> shiftBits))
out4 = 0x7FFFFFFF ^ (in4 >> 31);
*(pDst + 2) = out3;
*(pDst + 3) = out4;
/* Update destination pointer to process next sampels */
pSrc += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the input and then store the results in the destination buffer. */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
*pDst = (in1 >> -shiftBits);
*(pDst + 1) = (in2 >> -shiftBits);
*(pDst + 2) = (in3 >> -shiftBits);
*(pDst + 3) = (in4 >> -shiftBits);
pSrc += 4u;
pDst += 4u;
blkCnt--;
}
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A (>> or <<) shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) :
(*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,215 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_shift_q7.c
*
* Description: Processing function for the Q7 Shifting
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q7 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* \par Conditions for optimum performance
* Input and output buffers should be aligned by 32-bit
*
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x8 0x7F] will be saturated.
*/
void arm_shift_q7(
q7_t * pSrc,
int8_t shiftBits,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign; /* Sign of shiftBits */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q7_t in1; /* Input value1 */
q7_t in2; /* Input value2 */
q7_t in3; /* Input value3 */
q7_t in4; /* Input value4 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Read 4 inputs */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */
*__SIMD32(pDst)++ = __PACKq7(__SSAT((in1 << shiftBits), 8),
__SSAT((in2 << shiftBits), 8),
__SSAT((in3 << shiftBits), 8),
__SSAT((in4 << shiftBits), 8));
/* Update source pointer to process next sampels */
pSrc += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((*pSrc++ << shiftBits), 8);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
shiftBits = -shiftBits;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Read 4 inputs */
in1 = *pSrc;
in2 = *(pSrc + 1);
in3 = *(pSrc + 2);
in4 = *(pSrc + 3);
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */
*__SIMD32(pDst)++ = __PACKq7((in1 >> shiftBits), (in2 >> shiftBits),
(in3 >> shiftBits), (in4 >> shiftBits));
pSrc += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the input and then store the result in the destination buffer. */
in1 = *pSrc++;
*pDst++ = (in1 >> shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#else
/* Run the below code for Cortex-M0 */
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if(sign == 0u)
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A << shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT(((q15_t) * pSrc++ << shiftBits), 8);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A >> shiftBits */
/* Shift the input and then store the result in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of shift group
*/

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sub_f32.c
*
* Description: Floating-point vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @defgroup BasicSub Vector Subtraction
*
* Element-by-element subtraction of two vectors.
*
* <pre>
* pDst[n] = pSrcA[n] - pSrcB[n], 0 <= n < blockSize.
* </pre>
*
* There are separate functions for floating-point, Q7, Q15, and Q31 data types.
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Floating-point vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*/
void arm_sub_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* temporary variables */
float32_t inB1, inB2, inB3, inB4; /* temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
/* Read 4 input samples from sourceA and sourceB */
inA1 = *pSrcA;
inB1 = *pSrcB;
inA2 = *(pSrcA + 1);
inB2 = *(pSrcB + 1);
inA3 = *(pSrcA + 2);
inB3 = *(pSrcB + 2);
inA4 = *(pSrcA + 3);
inB4 = *(pSrcB + 3);
/* dst = srcA - srcB */
/* subtract and store the result */
*pDst = inA1 - inB1;
*(pDst + 1) = inA2 - inB2;
*(pDst + 2) = inA3 - inB3;
*(pDst + 3) = inA4 - inB4;
/* Update pointers to process next sampels */
pSrcA += 4u;
pSrcB += 4u;
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
*pDst++ = (*pSrcA++) - (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sub_q15.c
*
* Description: Q15 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q15 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_sub_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2;
q31_t inB1, inB2;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer two samples at a time. */
inA1 = *__SIMD32(pSrcA)++;
inA2 = *__SIMD32(pSrcA)++;
inB1 = *__SIMD32(pSrcB)++;
inB2 = *__SIMD32(pSrcB)++;
*__SIMD32(pDst)++ = __QSUB16(inA1, inB1);
*__SIMD32(pDst)++ = __QSUB16(inA2, inB2);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q15_t) __QSUB16(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ - *pSrcB++), 16);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,141 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sub_q31.c
*
* Description: Q31 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q31 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_sub_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inA1, inA2, inA3, inA4;
q31_t inB1, inB2, inB3, inB4;
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer. */
inA1 = *pSrcA++;
inA2 = *pSrcA++;
inB1 = *pSrcB++;
inB2 = *pSrcB++;
inA3 = *pSrcA++;
inA4 = *pSrcA++;
inB3 = *pSrcB++;
inB4 = *pSrcB++;
*pDst++ = __QSUB(inA1, inB1);
*pDst++ = __QSUB(inA2, inB2);
*pDst++ = __QSUB(inA3, inB3);
*pDst++ = __QSUB(inA4, inB4);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = __QSUB(*pSrcA++, *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ - *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

View File

@ -0,0 +1,126 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sub_q7.c
*
* Description: Q7 vector subtraction.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup BasicSub
* @{
*/
/**
* @brief Q7 vector subtraction.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
*/
void arm_sub_q7(
q7_t * pSrcA,
q7_t * pSrcB,
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the results in the destination buffer 4 samples at a time. */
*__SIMD32(pDst)++ = __QSUB8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = __SSAT(*pSrcA++ - *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while(blkCnt > 0u)
{
/* C = A - B */
/* Subtract and then store the result in the destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ - *pSrcB++, 8);
/* Decrement the loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BasicSub group
*/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,174 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_f32.c
*
* Description: Floating-point complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_conj Complex Conjugate
*
* Conjugates the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of <code>2*numSamples</code> values.
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[(2*n)+0)] = pSrc[(2*n)+0]; // real part
* pDst[(2*n)+1)] = -pSrc[(2*n)+1]; // imag part
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Floating-point complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*/
void arm_cmplx_conj_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inR1, inR2, inR3, inR4;
float32_t inI1, inI2, inI3, inI4;
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
/* read real input samples */
inR1 = pSrc[0];
/* store real samples to destination */
pDst[0] = inR1;
inR2 = pSrc[2];
pDst[2] = inR2;
inR3 = pSrc[4];
pDst[4] = inR3;
inR4 = pSrc[6];
pDst[6] = inR4;
/* read imaginary input samples */
inI1 = pSrc[1];
inI2 = pSrc[3];
/* conjugate input */
inI1 = -inI1;
/* read imaginary input samples */
inI3 = pSrc[5];
/* conjugate input */
inI2 = -inI2;
/* read imaginary input samples */
inI4 = pSrc[7];
/* conjugate input */
inI3 = -inI3;
/* store imaginary samples to destination */
pDst[1] = inI1;
pDst[3] = inI2;
/* conjugate input */
inI4 = -inI4;
/* store imaginary samples to destination */
pDst[5] = inI3;
/* increment source pointer by 8 to process next sampels */
pSrc += 8u;
/* store imaginary sample to destination */
pDst[7] = inI4;
/* increment destination pointer by 8 to store next samples */
pDst += 8u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* realOut + j (imagOut) = realIn + j (-1) imagIn */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = -*pSrc++;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,153 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_q15.c
*
* Description: Q15 complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Q15 complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF.
*/
void arm_cmplx_conj_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
q31_t in1, in2, in3, in4;
q31_t zero = 0;
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
in1 = *__SIMD32(pSrc)++;
in2 = *__SIMD32(pSrc)++;
in3 = *__SIMD32(pSrc)++;
in4 = *__SIMD32(pSrc)++;
#ifndef ARM_MATH_BIG_ENDIAN
in1 = __QASX(zero, in1);
in2 = __QASX(zero, in2);
in3 = __QASX(zero, in3);
in4 = __QASX(zero, in4);
#else
in1 = __QSAX(zero, in1);
in2 = __QSAX(zero, in2);
in3 = __QSAX(zero, in3);
in4 = __QSAX(zero, in4);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
in1 = ((uint32_t) in1 >> 16) | ((uint32_t) in1 << 16);
in2 = ((uint32_t) in2 >> 16) | ((uint32_t) in2 << 16);
in3 = ((uint32_t) in3 >> 16) | ((uint32_t) in3 << 16);
in4 = ((uint32_t) in4 >> 16) | ((uint32_t) in4 << 16);
*__SIMD32(pDst)++ = in1;
*__SIMD32(pDst)++ = in2;
*__SIMD32(pDst)++ = in3;
*__SIMD32(pDst)++ = in4;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
*pDst++ = __SSAT(-*pSrc++, 16);
/* Decrement the loop counter */
blkCnt--;
}
#else
q15_t in;
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut + j (imagOut) = realIn+ j (-1) imagIn */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,172 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_q31.c
*
* Description: Q31 complex conjugate.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_conj
* @{
*/
/**
* @brief Q31 complex conjugate.
* @param *pSrc points to the input vector
* @param *pDst points to the output vector
* @param numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF.
*/
void arm_cmplx_conj_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
uint32_t blkCnt; /* loop counter */
q31_t in; /* Input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t inR1, inR2, inR3, inR4; /* Temporary real variables */
q31_t inI1, inI2, inI3, inI4; /* Temporary imaginary variables */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */
/* read real input sample */
inR1 = pSrc[0];
/* store real input sample */
pDst[0] = inR1;
/* read imaginary input sample */
inI1 = pSrc[1];
/* read real input sample */
inR2 = pSrc[2];
/* store real input sample */
pDst[2] = inR2;
/* read imaginary input sample */
inI2 = pSrc[3];
/* negate imaginary input sample */
inI1 = __QSUB(0, inI1);
/* read real input sample */
inR3 = pSrc[4];
/* store real input sample */
pDst[4] = inR3;
/* read imaginary input sample */
inI3 = pSrc[5];
/* negate imaginary input sample */
inI2 = __QSUB(0, inI2);
/* read real input sample */
inR4 = pSrc[6];
/* store real input sample */
pDst[6] = inR4;
/* negate imaginary input sample */
inI3 = __QSUB(0, inI3);
/* store imaginary input sample */
inI4 = pSrc[7];
/* store imaginary input samples */
pDst[1] = inI1;
/* negate imaginary input sample */
inI4 = __QSUB(0, inI4);
/* store imaginary input samples */
pDst[3] = inI2;
/* increment source pointer by 8 to proecess next samples */
pSrc += 8u;
/* store imaginary input samples */
pDst[5] = inI3;
pDst[7] = inI4;
/* increment destination pointer by 8 to process next samples */
pDst += 8u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */
/* Calculate Complex Conjugate and then store the results in the destination buffer. */
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */
*pDst++ = *pSrc++;
in = *pSrc++;
*pDst++ = (in == 0x80000000) ? 0x7fffffff : -in;
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of cmplx_conj group
*/

View File

@ -0,0 +1,160 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_f32.c
*
* Description: Floating-point complex dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_dot_prod Complex Dot Product
*
* Computes the dot product of two complex vectors.
* The vectors are multiplied element-by-element and then summed.
*
* The <code>pSrcA</code> points to the first complex input vector and
* <code>pSrcB</code> points to the second complex input vector.
* <code>numSamples</code> specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of <code>2*numSamples</code> values.
*
* The underlying algorithm is used:
* <pre>
* realResult=0;
* imagResult=0;
* for(n=0; n<numSamples; n++) {
* realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1];
* imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Floating-point complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*/
void arm_cmplx_dot_prod_f32(
float32_t * pSrcA,
float32_t * pSrcB,
uint32_t numSamples,
float32_t * realResult,
float32_t * imagResult)
{
float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
real_sum += (*pSrcA++) * (*pSrcB++);
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (*pSrcA++) * (*pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (*pSrcA++) * (*pSrcB++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in the destination buffers */
*realResult = real_sum;
*imagResult = imag_sum;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,144 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_q15.c
*
* Description: Processing function for the Q15 Complex Dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Q15 complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result.
* These are accumulated in a 64-bit accumulator with 34.30 precision.
* As a final step, the accumulators are converted to 8.24 format.
* The return results <code>realResult</code> and <code>imagResult</code> are in 8.24 format.
*/
void arm_cmplx_dot_prod_q15(
q15_t * pSrcA,
q15_t * pSrcB,
uint32_t numSamples,
q31_t * realResult,
q31_t * imagResult)
{
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += ((q31_t) * pSrcA++ * *pSrcB++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in 8.24 format */
/* Convert real data in 34.30 to 8.24 by 6 right shifts */
*realResult = (q31_t) (real_sum) >> 6;
/* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */
*imagResult = (q31_t) (imag_sum) >> 6;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_q31.c
*
* Description: Q31 complex dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Q31 complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function is implemented using an internal 64-bit accumulator.
* The intermediate 1.31 by 1.31 multiplications are performed with 64-bit precision and then shifted to 16.48 format.
* The internal real and imaginary accumulators are in 16.48 format and provide 15 guard bits.
* Additions are nonsaturating and no overflow will occur as long as <code>numSamples</code> is less than 32768.
* The return results <code>realResult</code> and <code>imagResult</code> are in 16.48 format.
* Input down scaling is not required.
*/
void arm_cmplx_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t numSamples,
q63_t * realResult,
q63_t * imagResult)
{
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
/* Convert real data in 2.62 to 16.48 by 14 right shifts */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
/* Convert imag data in 2.62 to 16.48 by 14 right shifts */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* outReal = realA[0]* realB[0] + realA[2]* realB[2] + realA[4]* realB[4] + .....+ realA[numSamples-2]* realB[numSamples-2] */
real_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* outImag = imagA[1]* imagB[1] + imagA[3]* imagB[3] + imagA[5]* imagB[5] + .....+ imagA[numSamples-1]* imagB[numSamples-1] */
imag_sum += (q63_t) * pSrcA++ * (*pSrcB++) >> 14;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
/* Store the real and imaginary results in 16.48 format */
*realResult = real_sum;
*imagResult = imag_sum;
}
/**
* @} end of cmplx_dot_prod group
*/

View File

@ -0,0 +1,157 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_f32.c
*
* Description: Floating-point complex magnitude.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_mag Complex Magnitude
*
* Computes the magnitude of the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* in the input array and the data is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The input array has a total of <code>2*numSamples</code> values;
* the output array has a total of <code>numSamples</code> values.
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Floating-point complex magnitude.
* @param[in] *pSrc points to complex input buffer
* @param[out] *pDst points to real output buffer
* @param[in] numSamples number of complex samples in the input vector
* @return none.
*
*/
void arm_cmplx_mag_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
float32_t realIn, imagIn; /* Temporary variables to hold input values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
realIn = *pSrc++;
imagIn = *pSrc++;
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = sqrt((real * real) + (imag * imag)) */
realIn = *pSrc++;
imagIn = *pSrc++;
/* store the result in the destination buffer. */
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,145 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_q15.c
*
* Description: Q15 complex magnitude.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Q15 complex magnitude
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 2.14 format.
*/
void arm_cmplx_mag_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
q31_t in1, in2, in3, in4;
q31_t acc2, acc3;
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
in2 = *__SIMD32(pSrc)++;
in3 = *__SIMD32(pSrc)++;
in4 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
acc1 = __SMUAD(in2, in2);
acc2 = __SMUAD(in3, in3);
acc3 = __SMUAD(in4, in4);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) ((acc0) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc1) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc2) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc3) >> 17), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (acc0 >> 17), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t real, imag; /* Temporary variables to hold input values */
while(numSamples > 0u)
{
/* out = sqrt(real * real + imag * imag) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (real * real);
acc1 = (imag * imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,177 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_q31.c
*
* Description: Q31 complex magnitude
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Q31 complex magnitude
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 2.30 format.
* Input down scaling is not required.
*/
void arm_cmplx_mag_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
q31_t real, imag; /* Temporary variables to hold input values */
q31_t acc0, acc1; /* Accumulators */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
q31_t real1, real2, imag1, imag2; /* Temporary variables to hold input values */
q31_t out1, out2, out3, out4; /* Accumulators */
q63_t mul1, mul2, mul3, mul4; /* Temporary variables */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* read complex input from source buffer */
real1 = pSrc[0];
imag1 = pSrc[1];
real2 = pSrc[2];
imag2 = pSrc[3];
/* calculate power of input values */
mul1 = (q63_t) real1 *real1;
mul2 = (q63_t) imag1 *imag1;
mul3 = (q63_t) real2 *real2;
mul4 = (q63_t) imag2 *imag2;
/* get the result to 3.29 format */
out1 = (q31_t) (mul1 >> 33);
out2 = (q31_t) (mul2 >> 33);
out3 = (q31_t) (mul3 >> 33);
out4 = (q31_t) (mul4 >> 33);
/* add real and imaginary accumulators */
out1 = out1 + out2;
out3 = out3 + out4;
/* read complex input from source buffer */
real1 = pSrc[4];
imag1 = pSrc[5];
real2 = pSrc[6];
imag2 = pSrc[7];
/* calculate square root */
arm_sqrt_q31(out1, &pDst[0]);
/* calculate power of input values */
mul1 = (q63_t) real1 *real1;
/* calculate square root */
arm_sqrt_q31(out3, &pDst[1]);
/* calculate power of input values */
mul2 = (q63_t) imag1 *imag1;
mul3 = (q63_t) real2 *real2;
mul4 = (q63_t) imag2 *imag2;
/* get the result to 3.29 format */
out1 = (q31_t) (mul1 >> 33);
out2 = (q31_t) (mul2 >> 33);
out3 = (q31_t) (mul3 >> 33);
out4 = (q31_t) (mul4 >> 33);
/* add real and imaginary accumulators */
out1 = out1 + out2;
out3 = out3 + out4;
/* calculate square root */
arm_sqrt_q31(out1, &pDst[2]);
/* increment destination by 8 to process next samples */
pSrc += 8u;
/* calculate square root */
arm_sqrt_q31(out3, &pDst[3]);
/* increment destination by 4 to process next samples */
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 2.30 format in the destination buffer. */
arm_sqrt_q31(acc0 + acc1, pDst++);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of cmplx_mag group
*/

View File

@ -0,0 +1,207 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_f32.c
*
* Description: Floating-point complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_mag_squared Complex Magnitude Squared
*
* Computes the magnitude squared of the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* in the input array and the data is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The input array has a total of <code>2*numSamples</code> values;
* the output array has a total of <code>numSamples</code> values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2;
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Floating-point complex magnitude squared
* @param[in] *pSrc points to the complex input vector
* @param[out] *pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
* @return none.
*/
void arm_cmplx_mag_squared_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
float32_t real, imag; /* Temporary variables to store real and imaginary values */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
float32_t real1, real2, real3, real4; /* Temporary variables to hold real values */
float32_t imag1, imag2, imag3, imag4; /* Temporary variables to hold imaginary values */
float32_t mul1, mul2, mul3, mul4; /* Temporary variables */
float32_t mul5, mul6, mul7, mul8; /* Temporary variables */
float32_t out1, out2, out3, out4; /* Temporary variables to hold output values */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
/* read real input sample from source buffer */
real1 = pSrc[0];
/* read imaginary input sample from source buffer */
imag1 = pSrc[1];
/* calculate power of real value */
mul1 = real1 * real1;
/* read real input sample from source buffer */
real2 = pSrc[2];
/* calculate power of imaginary value */
mul2 = imag1 * imag1;
/* read imaginary input sample from source buffer */
imag2 = pSrc[3];
/* calculate power of real value */
mul3 = real2 * real2;
/* read real input sample from source buffer */
real3 = pSrc[4];
/* calculate power of imaginary value */
mul4 = imag2 * imag2;
/* read imaginary input sample from source buffer */
imag3 = pSrc[5];
/* calculate power of real value */
mul5 = real3 * real3;
/* calculate power of imaginary value */
mul6 = imag3 * imag3;
/* read real input sample from source buffer */
real4 = pSrc[6];
/* accumulate real and imaginary powers */
out1 = mul1 + mul2;
/* read imaginary input sample from source buffer */
imag4 = pSrc[7];
/* accumulate real and imaginary powers */
out2 = mul3 + mul4;
/* calculate power of real value */
mul7 = real4 * real4;
/* calculate power of imaginary value */
mul8 = imag4 * imag4;
/* store output to destination */
pDst[0] = out1;
/* accumulate real and imaginary powers */
out3 = mul5 + mul6;
/* store output to destination */
pDst[1] = out2;
/* accumulate real and imaginary powers */
out4 = mul7 + mul8;
/* store output to destination */
pDst[2] = out3;
/* increment destination pointer by 8 to process next samples */
pSrc += 8u;
/* store output to destination */
pDst[3] = out4;
/* increment destination pointer by 4 to process next samples */
pDst += 4u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
/* out = (real * real) + (imag * imag) */
/* store the result in the destination buffer. */
*pDst++ = (real * real) + (imag * imag);
/* Decrement the loop counter */
blkCnt--;
}
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,140 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_q15.c
*
* Description: Q15 complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Q15 complex magnitude squared
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.
*/
void arm_cmplx_mag_squared_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
q31_t in1, in2, in3, in4;
q31_t acc2, acc3;
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
in2 = *__SIMD32(pSrc)++;
in3 = *__SIMD32(pSrc)++;
in4 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
acc1 = __SMUAD(in2, in2);
acc2 = __SMUAD(in3, in3);
acc3 = __SMUAD(in4, in4);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (acc0 >> 17);
*pDst++ = (q15_t) (acc1 >> 17);
*pDst++ = (q15_t) (acc2 >> 17);
*pDst++ = (q15_t) (acc3 >> 17);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (acc0 >> 17);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t real, imag; /* Temporary variables to store real and imaginary values */
while(numSamples > 0u)
{
/* out = ((real * real) + (imag * imag)) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (real * real);
acc1 = (imag * imag);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,153 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_q31.c
*
* Description: Q31 complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Q31 complex magnitude squared
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
* Input down scaling is not required.
*/
void arm_cmplx_mag_squared_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
{
q31_t real, imag; /* Temporary variables to store real and imaginary values */
q31_t acc0, acc1; /* Accumulators */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* out = ((real * real) + (imag * imag)) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (q31_t) (((q63_t) real * real) >> 33);
acc1 = (q31_t) (((q63_t) imag * imag) >> 33);
/* store the result in 3.29 format in the destination buffer. */
*pDst++ = acc0 + acc1;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag_squared group
*/

View File

@ -0,0 +1,199 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_f32.c
*
* Description: Floating-point complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup CmplxByCmplxMult Complex-by-Complex Multiplication
*
* Multiplies a complex vector by another complex vector and generates a complex result.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The parameter <code>numSamples</code> represents the number of complex
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
* real values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
* pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Floating-point complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*/
void arm_cmplx_mult_cmplx_f32(
float32_t * pSrcA,
float32_t * pSrcB,
float32_t * pDst,
uint32_t numSamples)
{
float32_t a1, b1, c1, d1; /* Temporary variables to store real and imaginary values */
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t a2, b2, c2, d2; /* Temporary variables to store real and imaginary values */
float32_t acc1, acc2, acc3, acc4;
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a1 = *pSrcA; /* A[2 * i] */
c1 = *pSrcB; /* B[2 * i] */
b1 = *(pSrcA + 1); /* A[2 * i + 1] */
acc1 = a1 * c1; /* acc1 = A[2 * i] * B[2 * i] */
a2 = *(pSrcA + 2); /* A[2 * i + 2] */
acc2 = (b1 * c1); /* acc2 = A[2 * i + 1] * B[2 * i] */
d1 = *(pSrcB + 1); /* B[2 * i + 1] */
c2 = *(pSrcB + 2); /* B[2 * i + 2] */
acc1 -= b1 * d1; /* acc1 = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
d2 = *(pSrcB + 3); /* B[2 * i + 3] */
acc3 = a2 * c2; /* acc3 = A[2 * i + 2] * B[2 * i + 2] */
b2 = *(pSrcA + 3); /* A[2 * i + 3] */
acc2 += (a1 * d1); /* acc2 = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
a1 = *(pSrcA + 4); /* A[2 * i + 4] */
acc4 = (a2 * d2); /* acc4 = A[2 * i + 2] * B[2 * i + 3] */
c1 = *(pSrcB + 4); /* B[2 * i + 4] */
acc3 -= (b2 * d2); /* acc3 = A[2 * i + 2] * B[2 * i + 2] - A[2 * i + 3] * B[2 * i + 3] */
*pDst = acc1; /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */
b1 = *(pSrcA + 5); /* A[2 * i + 5] */
acc4 += b2 * c2; /* acc4 = A[2 * i + 2] * B[2 * i + 3] + A[2 * i + 3] * B[2 * i + 2] */
*(pDst + 1) = acc2; /* C[2 * i + 1] = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */
acc1 = (a1 * c1);
d1 = *(pSrcB + 5);
acc2 = (b1 * c1);
*(pDst + 2) = acc3;
*(pDst + 3) = acc4;
a2 = *(pSrcA + 6);
acc1 -= (b1 * d1);
c2 = *(pSrcB + 6);
acc2 += (a1 * d1);
b2 = *(pSrcA + 7);
acc3 = (a2 * c2);
d2 = *(pSrcB + 7);
acc4 = (b2 * c2);
*(pDst + 4) = acc1;
pSrcA += 8u;
acc3 -= (b2 * d2);
acc4 += (a2 * d2);
*(pDst + 5) = acc2;
pSrcB += 8u;
*(pDst + 6) = acc3;
*(pDst + 7) = acc4;
pDst += 8u;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a1 = *pSrcA++;
b1 = *pSrcA++;
c1 = *pSrcB++;
d1 = *pSrcB++;
/* store the result in the destination buffer. */
*pDst++ = (a1 * c1) - (b1 * d1);
*pDst++ = (a1 * d1) + (b1 * c1);
/* Decrement the numSamples loop counter */
blkCnt--;
}
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,185 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_q15.c
*
* Description: Q15 complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Q15 complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format.
*/
void arm_cmplx_mult_cmplx_q15(
q15_t * pSrcA,
q15_t * pSrcB,
q15_t * pDst,
uint32_t numSamples)
{
q15_t a, b, c, d; /* Temporary variables to store real and imaginary values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17);
/* store the result in 3.13 format in the destination buffer. */
*pDst++ =
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17);
/* Decrement the blockSize loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,318 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_q31.c
*
* Description: Q31 complex-by-complex multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByCmplxMult
* @{
*/
/**
* @brief Q31 complex-by-complex multiplication
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[out] *pDst points to the output vector
* @param[in] numSamples number of complex samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
* Input down scaling is not required.
*/
void arm_cmplx_mult_cmplx_q31(
q31_t * pSrcA,
q31_t * pSrcB,
q31_t * pDst,
uint32_t numSamples)
{
q31_t a, b, c, d; /* Temporary variables to store real and imaginary values */
uint32_t blkCnt; /* loop counters */
q31_t mul1, mul2, mul3, mul4;
q31_t out1, out2;
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
/* Decrement the blockSize loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
/* loop Unrolling */
blkCnt = numSamples >> 1u;
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
** a second loop below computes the remaining 1 sample. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
/* Decrement the blockSize loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x2u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
mul1 = (q31_t) (((q63_t) a * c) >> 32);
mul2 = (q31_t) (((q63_t) b * d) >> 32);
mul3 = (q31_t) (((q63_t) a * d) >> 32);
mul4 = (q31_t) (((q63_t) b * c) >> 32);
mul1 = (mul1 >> 1);
mul2 = (mul2 >> 1);
mul3 = (mul3 >> 1);
mul4 = (mul4 >> 1);
out1 = mul1 - mul2;
out2 = mul3 + mul4;
/* store the real result in 3.29 format in the destination buffer. */
*pDst++ = out1;
/* store the imag result in 3.29 format in the destination buffer. */
*pDst++ = out2;
/* Decrement the blockSize loop counter */
blkCnt--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByCmplxMult group
*/

View File

@ -0,0 +1,217 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_f32.c
*
* Description: Floating-point complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup CmplxByRealMult Complex-by-Real Multiplication
*
* Multiplies a complex vector by a real vector and generates a complex result.
* The data in the complex arrays is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The parameter <code>numSamples</code> represents the number of complex
* samples processed. The complex arrays have a total of <code>2*numSamples</code>
* real values while the real array has a total of <code>numSamples</code>
* real values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n];
* pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n];
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Floating-point complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*/
void arm_cmplx_mult_real_f32(
float32_t * pSrcCmplx,
float32_t * pSrcReal,
float32_t * pCmplxDst,
uint32_t numSamples)
{
float32_t in; /* Temporary variable to store input value */
uint32_t blkCnt; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
float32_t inA1, inA2, inA3, inA4; /* Temporary variables to hold input data */
float32_t inA5, inA6, inA7, inA8; /* Temporary variables to hold input data */
float32_t inB1, inB2, inB3, inB4; /* Temporary variables to hold input data */
float32_t out1, out2, out3, out4; /* Temporary variables to hold output data */
float32_t out5, out6, out7, out8; /* Temporary variables to hold output data */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read input from complex input buffer */
inA1 = pSrcCmplx[0];
inA2 = pSrcCmplx[1];
/* read input from real input buffer */
inB1 = pSrcReal[0];
/* read input from complex input buffer */
inA3 = pSrcCmplx[2];
/* multiply complex buffer real input with real buffer input */
out1 = inA1 * inB1;
/* read input from complex input buffer */
inA4 = pSrcCmplx[3];
/* multiply complex buffer imaginary input with real buffer input */
out2 = inA2 * inB1;
/* read input from real input buffer */
inB2 = pSrcReal[1];
/* read input from complex input buffer */
inA5 = pSrcCmplx[4];
/* multiply complex buffer real input with real buffer input */
out3 = inA3 * inB2;
/* read input from complex input buffer */
inA6 = pSrcCmplx[5];
/* read input from real input buffer */
inB3 = pSrcReal[2];
/* multiply complex buffer imaginary input with real buffer input */
out4 = inA4 * inB2;
/* read input from complex input buffer */
inA7 = pSrcCmplx[6];
/* multiply complex buffer real input with real buffer input */
out5 = inA5 * inB3;
/* read input from complex input buffer */
inA8 = pSrcCmplx[7];
/* multiply complex buffer imaginary input with real buffer input */
out6 = inA6 * inB3;
/* read input from real input buffer */
inB4 = pSrcReal[3];
/* store result to destination bufer */
pCmplxDst[0] = out1;
/* multiply complex buffer real input with real buffer input */
out7 = inA7 * inB4;
/* store result to destination bufer */
pCmplxDst[1] = out2;
/* multiply complex buffer imaginary input with real buffer input */
out8 = inA8 * inB4;
/* store result to destination bufer */
pCmplxDst[2] = out3;
pCmplxDst[3] = out4;
pCmplxDst[4] = out5;
/* incremnet complex input buffer by 8 to process next samples */
pSrcCmplx += 8u;
/* store result to destination bufer */
pCmplxDst[5] = out6;
/* increment real input buffer by 4 to process next samples */
pSrcReal += 4u;
/* store result to destination bufer */
pCmplxDst[6] = out7;
pCmplxDst[7] = out8;
/* increment destination buffer by 8 to process next sampels */
pCmplxDst += 8u;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
#else
/* Run the below code for Cortex-M0 */
blkCnt = numSamples;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ = (*pSrcCmplx++) * (in);
*pCmplxDst++ = (*pSrcCmplx++) * (in);
/* Decrement the numSamples loop counter */
blkCnt--;
}
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,195 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_q15.c
*
* Description: Q15 complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Q15 complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_cmplx_mult_real_q15(
q15_t * pSrcCmplx,
q15_t * pSrcReal,
q15_t * pCmplxDst,
uint32_t numSamples)
{
q15_t in; /* Temporary variable to store input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
q31_t inA1, inA2; /* Temporary variables to hold input data */
q31_t inB1; /* Temporary variables to hold input data */
q15_t out1, out2, out3, out4; /* Temporary variables to hold output data */
q31_t mul1, mul2, mul3, mul4; /* Temporary variables to hold intermediate data */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read complex number both real and imaginary from complex input buffer */
inA1 = *__SIMD32(pSrcCmplx)++;
/* read two real values at a time from real input buffer */
inB1 = *__SIMD32(pSrcReal)++;
/* read complex number both real and imaginary from complex input buffer */
inA2 = *__SIMD32(pSrcCmplx)++;
/* multiply complex number with real numbers */
#ifndef ARM_MATH_BIG_ENDIAN
mul1 = (q31_t) ((q15_t) (inA1) * (q15_t) (inB1));
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1));
mul3 = (q31_t) ((q15_t) (inA2) * (q15_t) (inB1 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB1 >> 16));
#else
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
mul1 = (q31_t) ((q15_t) inA1 * (q15_t) (inB1 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) inB1);
mul3 = (q31_t) ((q15_t) inA2 * (q15_t) inB1);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
/* saturate the result */
out1 = (q15_t) __SSAT(mul1 >> 15u, 16);
out2 = (q15_t) __SSAT(mul2 >> 15u, 16);
out3 = (q15_t) __SSAT(mul3 >> 15u, 16);
out4 = (q15_t) __SSAT(mul4 >> 15u, 16);
/* pack real and imaginary outputs and store them to destination */
*__SIMD32(pCmplxDst)++ = __PKHBT(out1, out2, 16);
*__SIMD32(pCmplxDst)++ = __PKHBT(out3, out4, 16);
inA1 = *__SIMD32(pSrcCmplx)++;
inB1 = *__SIMD32(pSrcReal)++;
inA2 = *__SIMD32(pSrcCmplx)++;
#ifndef ARM_MATH_BIG_ENDIAN
mul1 = (q31_t) ((q15_t) (inA1) * (q15_t) (inB1));
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1));
mul3 = (q31_t) ((q15_t) (inA2) * (q15_t) (inB1 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB1 >> 16));
#else
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
mul1 = (q31_t) ((q15_t) inA1 * (q15_t) (inB1 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) inB1);
mul3 = (q31_t) ((q15_t) inA2 * (q15_t) inB1);
#endif // #ifndef ARM_MATH_BIG_ENDIAN
out1 = (q15_t) __SSAT(mul1 >> 15u, 16);
out2 = (q15_t) __SSAT(mul2 >> 15u, 16);
out3 = (q15_t) __SSAT(mul3 >> 15u, 16);
out4 = (q15_t) __SSAT(mul4 >> 15u, 16);
*__SIMD32(pCmplxDst)++ = __PKHBT(out1, out2, 16);
*__SIMD32(pCmplxDst)++ = __PKHBT(out3, out4, 16);
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
/* Decrement the numSamples loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut = realA * realB. */
/* imagOut = imagA * realB. */
in = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
*pCmplxDst++ =
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16);
/* Decrement the numSamples loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,215 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_q31.c
*
* Description: Q31 complex by real multiplication
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup CmplxByRealMult
* @{
*/
/**
* @brief Q31 complex-by-real multiplication
* @param[in] *pSrcCmplx points to the complex input vector
* @param[in] *pSrcReal points to the real input vector
* @param[out] *pCmplxDst points to the complex output vector
* @param[in] numSamples number of samples in each vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated.
*/
void arm_cmplx_mult_real_q31(
q31_t * pSrcCmplx,
q31_t * pSrcReal,
q31_t * pCmplxDst,
uint32_t numSamples)
{
q31_t inA1; /* Temporary variable to store input value */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counters */
q31_t inA2, inA3, inA4; /* Temporary variables to hold input data */
q31_t inB1, inB2; /* Temporary variabels to hold input data */
q31_t out1, out2, out3, out4; /* Temporary variables to hold output data */
/* loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read real input from complex input buffer */
inA1 = *pSrcCmplx++;
inA2 = *pSrcCmplx++;
/* read input from real input bufer */
inB1 = *pSrcReal++;
inB2 = *pSrcReal++;
/* read imaginary input from complex input buffer */
inA3 = *pSrcCmplx++;
inA4 = *pSrcCmplx++;
/* multiply complex input with real input */
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB1) >> 32;
out3 = ((q63_t) inA3 * inB2) >> 32;
out4 = ((q63_t) inA4 * inB2) >> 32;
/* sature the result */
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
out3 = __SSAT(out3, 31);
out4 = __SSAT(out4, 31);
/* get result in 1.31 format */
out1 = out1 << 1;
out2 = out2 << 1;
out3 = out3 << 1;
out4 = out4 << 1;
/* store the result to destination buffer */
*pCmplxDst++ = out1;
*pCmplxDst++ = out2;
*pCmplxDst++ = out3;
*pCmplxDst++ = out4;
/* read real input from complex input buffer */
inA1 = *pSrcCmplx++;
inA2 = *pSrcCmplx++;
/* read input from real input bufer */
inB1 = *pSrcReal++;
inB2 = *pSrcReal++;
/* read imaginary input from complex input buffer */
inA3 = *pSrcCmplx++;
inA4 = *pSrcCmplx++;
/* multiply complex input with real input */
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB1) >> 32;
out3 = ((q63_t) inA3 * inB2) >> 32;
out4 = ((q63_t) inA4 * inB2) >> 32;
/* sature the result */
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
out3 = __SSAT(out3, 31);
out4 = __SSAT(out4, 31);
/* get result in 1.31 format */
out1 = out1 << 1;
out2 = out2 << 1;
out3 = out3 << 1;
out4 = out4 << 1;
/* store the result to destination buffer */
*pCmplxDst++ = out1;
*pCmplxDst++ = out2;
*pCmplxDst++ = out3;
*pCmplxDst++ = out4;
/* Decrement the numSamples loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[2 * i] = A[2 * i] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
/* read real input from complex input buffer */
inA1 = *pSrcCmplx++;
inA2 = *pSrcCmplx++;
/* read input from real input bufer */
inB1 = *pSrcReal++;
/* multiply complex input with real input */
out1 = ((q63_t) inA1 * inB1) >> 32;
out2 = ((q63_t) inA2 * inB1) >> 32;
/* sature the result */
out1 = __SSAT(out1, 31);
out2 = __SSAT(out2, 31);
/* get result in 1.31 format */
out1 = out1 << 1;
out2 = out2 << 1;
/* store the result to destination buffer */
*pCmplxDst++ = out1;
*pCmplxDst++ = out2;
/* Decrement the numSamples loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* realOut = realA * realB. */
/* imagReal = imagA * realB. */
inA1 = *pSrcReal++;
/* store the result in the destination buffer. */
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31);
*pCmplxDst++ =
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31);
/* Decrement the numSamples loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of CmplxByRealMult group
*/

View File

@ -0,0 +1,79 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_f32.c
*
* Description: Floating-point PID Control initialization function
*
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Initialization function for the floating-point PID Control.
* @param[in,out] *S points to an instance of the PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state & 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_f32(
arm_pid_instance_f32 * S,
int32_t resetStateFlag)
{
/* Derived coefficient A0 */
S->A0 = S->Kp + S->Ki + S->Kd;
/* Derived coefficient A1 */
S->A1 = (-S->Kp) - ((float32_t) 2.0 * S->Kd);
/* Derived coefficient A2 */
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(float32_t));
}
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,114 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_q15.c
*
* Description: Q15 PID Control initialization function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @details
* @param[in,out] *S points to an instance of the Q15 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_q15(
arm_pid_instance_q15 * S,
int32_t resetStateFlag)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Derived coefficient A0 */
S->A0 = __QADD16(__QADD16(S->Kp, S->Ki), S->Kd);
/* Derived coefficients and pack into A1 */
#ifndef ARM_MATH_BIG_ENDIAN
S->A1 = __PKHBT(-__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), S->Kd, 16);
#else
S->A1 = __PKHBT(S->Kd, -__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
#else
/* Run the below code for Cortex-M0 */
q31_t temp; /*to store the sum */
/* Derived coefficient A0 */
temp = S->Kp + S->Ki + S->Kd;
S->A0 = (q15_t) __SSAT(temp, 16);
/* Derived coefficients and pack into A1 */
temp = -(S->Kd + S->Kd + S->Kp);
S->A1 = (q15_t) __SSAT(temp, 16);
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,99 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_init_q31.c
*
* Description: Q31 PID Control initialization function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Initialization function for the Q31 PID Control.
* @param[in,out] *S points to an instance of the Q31 PID structure.
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
* @return none.
* \par Description:
* \par
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
* also sets the state variables to all zeros.
*/
void arm_pid_init_q31(
arm_pid_instance_q31 * S,
int32_t resetStateFlag)
{
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* Derived coefficient A0 */
S->A0 = __QADD(__QADD(S->Kp, S->Ki), S->Kd);
/* Derived coefficient A1 */
S->A1 = -__QADD(__QADD(S->Kd, S->Kd), S->Kp);
#else
/* Run the below code for Cortex-M0 */
q31_t temp;
/* Derived coefficient A0 */
temp = clip_q63_to_q31((q63_t) S->Kp + S->Ki);
S->A0 = clip_q63_to_q31((q63_t) temp + S->Kd);
/* Derived coefficient A1 */
temp = clip_q63_to_q31((q63_t) S->Kd + S->Kd);
S->A1 = -clip_q63_to_q31((q63_t) temp + S->Kp);
#endif /* #ifndef ARM_MATH_CM0 */
/* Derived coefficient A2 */
S->A2 = S->Kd;
/* Check whether state needs reset or not */
if(resetStateFlag)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q31_t));
}
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,57 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_reset_f32.c
*
* Description: Floating-point PID Control reset function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Reset function for the floating-point PID Control.
* @param[in] *S Instance pointer of PID control data structure.
* @return none.
* \par Description:
* The function resets the state buffer to zeros.
*/
void arm_pid_reset_f32(
arm_pid_instance_f32 * S)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(float32_t));
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,56 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_reset_q15.c
*
* Description: Q15 PID Control reset function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Reset function for the Q15 PID Control.
* @param[in] *S Instance pointer of PID control data structure.
* @return none.
* \par Description:
* The function resets the state buffer to zeros.
*/
void arm_pid_reset_q15(
arm_pid_instance_q15 * S)
{
/* Reset state to zero, The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q15_t));
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,57 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_pid_reset_q31.c
*
* Description: Q31 PID Control reset function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @addtogroup PID
* @{
*/
/**
* @brief Reset function for the Q31 PID Control.
* @param[in] *S Instance pointer of PID control data structure.
* @return none.
* \par Description:
* The function resets the state buffer to zeros.
*/
void arm_pid_reset_q31(
arm_pid_instance_q31 * S)
{
/* Clear the state buffer. The size will be always 3 samples */
memset(S->state, 0, 3u * sizeof(q31_t));
}
/**
* @} end of PID group
*/

View File

@ -0,0 +1,428 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sin_cos_f32.c
*
* Description: Sine and Cosine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupController
*/
/**
* @defgroup SinCos Sine Cosine
*
* Computes the trigonometric sine and cosine values using a combination of table lookup
* and linear interpolation.
* There are separate functions for Q31 and floating-point data types.
* The input to the floating-point version is in degrees while the
* fixed-point Q31 have a scaled input with the range
* [-1 0.9999] mapping to [-180 179] degrees.
*
* The implementation is based on table lookup using 360 values together with linear interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index.
* -# Compute the fractional portion (fract) of the input.
* -# Fetch the value corresponding to \c index from sine table to \c y0 and also value from \c index+1 to \c y1.
* -# Sine value is computed as <code> *psinVal = y0 + (fract * (y1 - y0))</code>.
* -# Fetch the value corresponding to \c index from cosine table to \c y0 and also value from \c index+1 to \c y1.
* -# Cosine value is computed as <code> *pcosVal = y0 + (fract * (y1 - y0))</code>.
*/
/**
* @addtogroup SinCos
* @{
*/
/**
* \par
* Cosine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* cosTable[i]= cos((i-180) * PI/180.0);
* } </pre>
*/
static const float32_t cosTable[360] = {
-0.999847695156391270f, -0.999390827019095760f, -0.998629534754573830f,
-0.997564050259824200f, -0.996194698091745550f, -0.994521895368273290f,
-0.992546151641321980f, -0.990268068741570250f,
-0.987688340595137660f, -0.984807753012208020f, -0.981627183447663980f,
-0.978147600733805690f, -0.974370064785235250f, -0.970295726275996470f,
-0.965925826289068200f, -0.961261695938318670f,
-0.956304755963035440f, -0.951056516295153530f, -0.945518575599316740f,
-0.939692620785908320f, -0.933580426497201740f, -0.927183854566787310f,
-0.920504853452440150f, -0.913545457642600760f,
-0.906307787036649940f, -0.898794046299167040f, -0.891006524188367790f,
-0.882947592858926770f, -0.874619707139395740f, -0.866025403784438710f,
-0.857167300702112220f, -0.848048096156425960f,
-0.838670567945424160f, -0.829037572555041620f, -0.819152044288991580f,
-0.809016994374947340f, -0.798635510047292940f, -0.788010753606721900f,
-0.777145961456970680f, -0.766044443118977900f,
-0.754709580222772010f, -0.743144825477394130f, -0.731353701619170460f,
-0.719339800338651300f, -0.707106781186547460f, -0.694658370458997030f,
-0.681998360062498370f, -0.669130606358858240f,
-0.656059028990507500f, -0.642787609686539360f, -0.629320391049837280f,
-0.615661475325658290f, -0.601815023152048380f, -0.587785252292473030f,
-0.573576436351045830f, -0.559192903470746680f,
-0.544639035015027080f, -0.529919264233204790f, -0.515038074910054270f,
-0.499999999999999780f, -0.484809620246337000f, -0.469471562785890530f,
-0.453990499739546750f, -0.438371146789077510f,
-0.422618261740699330f, -0.406736643075800100f, -0.390731128489273600f,
-0.374606593415912070f, -0.358367949545300270f, -0.342020143325668710f,
-0.325568154457156420f, -0.309016994374947340f,
-0.292371704722736660f, -0.275637355816999050f, -0.258819045102520850f,
-0.241921895599667790f, -0.224951054343864810f, -0.207911690817759120f,
-0.190808995376544800f, -0.173648177666930300f,
-0.156434465040231040f, -0.139173100960065350f, -0.121869343405147370f,
-0.104528463267653330f, -0.087155742747658235f, -0.069756473744125330f,
-0.052335956242943620f, -0.034899496702500733f,
-0.017452406437283477f, 0.000000000000000061f, 0.017452406437283376f,
0.034899496702501080f, 0.052335956242943966f, 0.069756473744125455f,
0.087155742747658138f, 0.104528463267653460f,
0.121869343405147490f, 0.139173100960065690f, 0.156434465040230920f,
0.173648177666930410f, 0.190808995376544920f, 0.207911690817759450f,
0.224951054343864920f, 0.241921895599667900f,
0.258819045102520740f, 0.275637355816999160f, 0.292371704722736770f,
0.309016994374947450f, 0.325568154457156760f, 0.342020143325668820f,
0.358367949545300380f, 0.374606593415911960f,
0.390731128489273940f, 0.406736643075800210f, 0.422618261740699440f,
0.438371146789077460f, 0.453990499739546860f, 0.469471562785890860f,
0.484809620246337110f, 0.500000000000000110f,
0.515038074910054380f, 0.529919264233204900f, 0.544639035015027200f,
0.559192903470746790f, 0.573576436351046050f, 0.587785252292473140f,
0.601815023152048270f, 0.615661475325658290f,
0.629320391049837500f, 0.642787609686539360f, 0.656059028990507280f,
0.669130606358858240f, 0.681998360062498480f, 0.694658370458997370f,
0.707106781186547570f, 0.719339800338651190f,
0.731353701619170570f, 0.743144825477394240f, 0.754709580222772010f,
0.766044443118978010f, 0.777145961456970900f, 0.788010753606722010f,
0.798635510047292830f, 0.809016994374947450f,
0.819152044288991800f, 0.829037572555041620f, 0.838670567945424050f,
0.848048096156425960f, 0.857167300702112330f, 0.866025403784438710f,
0.874619707139395740f, 0.882947592858926990f,
0.891006524188367900f, 0.898794046299167040f, 0.906307787036649940f,
0.913545457642600870f, 0.920504853452440370f, 0.927183854566787420f,
0.933580426497201740f, 0.939692620785908430f,
0.945518575599316850f, 0.951056516295153530f, 0.956304755963035440f,
0.961261695938318890f, 0.965925826289068310f, 0.970295726275996470f,
0.974370064785235250f, 0.978147600733805690f,
0.981627183447663980f, 0.984807753012208020f, 0.987688340595137770f,
0.990268068741570360f, 0.992546151641321980f, 0.994521895368273290f,
0.996194698091745550f, 0.997564050259824200f,
0.998629534754573830f, 0.999390827019095760f, 0.999847695156391270f,
1.000000000000000000f, 0.999847695156391270f, 0.999390827019095760f,
0.998629534754573830f, 0.997564050259824200f,
0.996194698091745550f, 0.994521895368273290f, 0.992546151641321980f,
0.990268068741570360f, 0.987688340595137770f, 0.984807753012208020f,
0.981627183447663980f, 0.978147600733805690f,
0.974370064785235250f, 0.970295726275996470f, 0.965925826289068310f,
0.961261695938318890f, 0.956304755963035440f, 0.951056516295153530f,
0.945518575599316850f, 0.939692620785908430f,
0.933580426497201740f, 0.927183854566787420f, 0.920504853452440370f,
0.913545457642600870f, 0.906307787036649940f, 0.898794046299167040f,
0.891006524188367900f, 0.882947592858926990f,
0.874619707139395740f, 0.866025403784438710f, 0.857167300702112330f,
0.848048096156425960f, 0.838670567945424050f, 0.829037572555041620f,
0.819152044288991800f, 0.809016994374947450f,
0.798635510047292830f, 0.788010753606722010f, 0.777145961456970900f,
0.766044443118978010f, 0.754709580222772010f, 0.743144825477394240f,
0.731353701619170570f, 0.719339800338651190f,
0.707106781186547570f, 0.694658370458997370f, 0.681998360062498480f,
0.669130606358858240f, 0.656059028990507280f, 0.642787609686539360f,
0.629320391049837500f, 0.615661475325658290f,
0.601815023152048270f, 0.587785252292473140f, 0.573576436351046050f,
0.559192903470746790f, 0.544639035015027200f, 0.529919264233204900f,
0.515038074910054380f, 0.500000000000000110f,
0.484809620246337110f, 0.469471562785890860f, 0.453990499739546860f,
0.438371146789077460f, 0.422618261740699440f, 0.406736643075800210f,
0.390731128489273940f, 0.374606593415911960f,
0.358367949545300380f, 0.342020143325668820f, 0.325568154457156760f,
0.309016994374947450f, 0.292371704722736770f, 0.275637355816999160f,
0.258819045102520740f, 0.241921895599667900f,
0.224951054343864920f, 0.207911690817759450f, 0.190808995376544920f,
0.173648177666930410f, 0.156434465040230920f, 0.139173100960065690f,
0.121869343405147490f, 0.104528463267653460f,
0.087155742747658138f, 0.069756473744125455f, 0.052335956242943966f,
0.034899496702501080f, 0.017452406437283376f, 0.000000000000000061f,
-0.017452406437283477f, -0.034899496702500733f,
-0.052335956242943620f, -0.069756473744125330f, -0.087155742747658235f,
-0.104528463267653330f, -0.121869343405147370f, -0.139173100960065350f,
-0.156434465040231040f, -0.173648177666930300f,
-0.190808995376544800f, -0.207911690817759120f, -0.224951054343864810f,
-0.241921895599667790f, -0.258819045102520850f, -0.275637355816999050f,
-0.292371704722736660f, -0.309016994374947340f,
-0.325568154457156420f, -0.342020143325668710f, -0.358367949545300270f,
-0.374606593415912070f, -0.390731128489273600f, -0.406736643075800100f,
-0.422618261740699330f, -0.438371146789077510f,
-0.453990499739546750f, -0.469471562785890530f, -0.484809620246337000f,
-0.499999999999999780f, -0.515038074910054270f, -0.529919264233204790f,
-0.544639035015027080f, -0.559192903470746680f,
-0.573576436351045830f, -0.587785252292473030f, -0.601815023152048380f,
-0.615661475325658290f, -0.629320391049837280f, -0.642787609686539360f,
-0.656059028990507500f, -0.669130606358858240f,
-0.681998360062498370f, -0.694658370458997030f, -0.707106781186547460f,
-0.719339800338651300f, -0.731353701619170460f, -0.743144825477394130f,
-0.754709580222772010f, -0.766044443118977900f,
-0.777145961456970680f, -0.788010753606721900f, -0.798635510047292940f,
-0.809016994374947340f, -0.819152044288991580f, -0.829037572555041620f,
-0.838670567945424160f, -0.848048096156425960f,
-0.857167300702112220f, -0.866025403784438710f, -0.874619707139395740f,
-0.882947592858926770f, -0.891006524188367790f, -0.898794046299167040f,
-0.906307787036649940f, -0.913545457642600760f,
-0.920504853452440150f, -0.927183854566787310f, -0.933580426497201740f,
-0.939692620785908320f, -0.945518575599316740f, -0.951056516295153530f,
-0.956304755963035440f, -0.961261695938318670f,
-0.965925826289068200f, -0.970295726275996470f, -0.974370064785235250f,
-0.978147600733805690f, -0.981627183447663980f, -0.984807753012208020f,
-0.987688340595137660f, -0.990268068741570250f,
-0.992546151641321980f, -0.994521895368273290f, -0.996194698091745550f,
-0.997564050259824200f, -0.998629534754573830f, -0.999390827019095760f,
-0.999847695156391270f, -1.000000000000000000f
};
/**
* \par
* Sine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* sinTable[i]= sin((i-180) * PI/180.0);
* } </pre>
*/
static const float32_t sinTable[360] = {
-0.017452406437283439f, -0.034899496702500699f, -0.052335956242943807f,
-0.069756473744125524f, -0.087155742747658638f, -0.104528463267653730f,
-0.121869343405147550f, -0.139173100960065740f,
-0.156434465040230980f, -0.173648177666930280f, -0.190808995376544970f,
-0.207911690817759310f, -0.224951054343864780f, -0.241921895599667730f,
-0.258819045102521020f, -0.275637355816999660f,
-0.292371704722737050f, -0.309016994374947510f, -0.325568154457156980f,
-0.342020143325668880f, -0.358367949545300210f, -0.374606593415912240f,
-0.390731128489274160f, -0.406736643075800430f,
-0.422618261740699500f, -0.438371146789077290f, -0.453990499739546860f,
-0.469471562785891080f, -0.484809620246337170f, -0.499999999999999940f,
-0.515038074910054380f, -0.529919264233204900f,
-0.544639035015026860f, -0.559192903470746900f, -0.573576436351046380f,
-0.587785252292473250f, -0.601815023152048160f, -0.615661475325658400f,
-0.629320391049837720f, -0.642787609686539470f,
-0.656059028990507280f, -0.669130606358858350f, -0.681998360062498590f,
-0.694658370458997140f, -0.707106781186547570f, -0.719339800338651410f,
-0.731353701619170570f, -0.743144825477394240f,
-0.754709580222771790f, -0.766044443118978010f, -0.777145961456971010f,
-0.788010753606722010f, -0.798635510047292720f, -0.809016994374947450f,
-0.819152044288992020f, -0.829037572555041740f,
-0.838670567945424050f, -0.848048096156426070f, -0.857167300702112330f,
-0.866025403784438710f, -0.874619707139395850f, -0.882947592858927100f,
-0.891006524188367900f, -0.898794046299166930f,
-0.906307787036650050f, -0.913545457642600980f, -0.920504853452440370f,
-0.927183854566787420f, -0.933580426497201740f, -0.939692620785908430f,
-0.945518575599316850f, -0.951056516295153640f,
-0.956304755963035550f, -0.961261695938318890f, -0.965925826289068310f,
-0.970295726275996470f, -0.974370064785235250f, -0.978147600733805690f,
-0.981627183447663980f, -0.984807753012208020f,
-0.987688340595137660f, -0.990268068741570360f, -0.992546151641322090f,
-0.994521895368273400f, -0.996194698091745550f, -0.997564050259824200f,
-0.998629534754573830f, -0.999390827019095760f,
-0.999847695156391270f, -1.000000000000000000f, -0.999847695156391270f,
-0.999390827019095760f, -0.998629534754573830f, -0.997564050259824200f,
-0.996194698091745550f, -0.994521895368273290f,
-0.992546151641321980f, -0.990268068741570250f, -0.987688340595137770f,
-0.984807753012208020f, -0.981627183447663980f, -0.978147600733805580f,
-0.974370064785235250f, -0.970295726275996470f,
-0.965925826289068310f, -0.961261695938318890f, -0.956304755963035440f,
-0.951056516295153530f, -0.945518575599316740f, -0.939692620785908320f,
-0.933580426497201740f, -0.927183854566787420f,
-0.920504853452440260f, -0.913545457642600870f, -0.906307787036649940f,
-0.898794046299167040f, -0.891006524188367790f, -0.882947592858926880f,
-0.874619707139395740f, -0.866025403784438600f,
-0.857167300702112220f, -0.848048096156426070f, -0.838670567945423940f,
-0.829037572555041740f, -0.819152044288991800f, -0.809016994374947450f,
-0.798635510047292830f, -0.788010753606722010f,
-0.777145961456970790f, -0.766044443118978010f, -0.754709580222772010f,
-0.743144825477394240f, -0.731353701619170460f, -0.719339800338651080f,
-0.707106781186547460f, -0.694658370458997250f,
-0.681998360062498480f, -0.669130606358858240f, -0.656059028990507160f,
-0.642787609686539250f, -0.629320391049837390f, -0.615661475325658180f,
-0.601815023152048270f, -0.587785252292473140f,
-0.573576436351046050f, -0.559192903470746900f, -0.544639035015027080f,
-0.529919264233204900f, -0.515038074910054160f, -0.499999999999999940f,
-0.484809620246337060f, -0.469471562785890810f,
-0.453990499739546750f, -0.438371146789077400f, -0.422618261740699440f,
-0.406736643075800150f, -0.390731128489273720f, -0.374606593415912010f,
-0.358367949545300270f, -0.342020143325668710f,
-0.325568154457156640f, -0.309016994374947400f, -0.292371704722736770f,
-0.275637355816999160f, -0.258819045102520740f, -0.241921895599667730f,
-0.224951054343865000f, -0.207911690817759310f,
-0.190808995376544800f, -0.173648177666930330f, -0.156434465040230870f,
-0.139173100960065440f, -0.121869343405147480f, -0.104528463267653460f,
-0.087155742747658166f, -0.069756473744125302f,
-0.052335956242943828f, -0.034899496702500969f, -0.017452406437283512f,
0.000000000000000000f, 0.017452406437283512f, 0.034899496702500969f,
0.052335956242943828f, 0.069756473744125302f,
0.087155742747658166f, 0.104528463267653460f, 0.121869343405147480f,
0.139173100960065440f, 0.156434465040230870f, 0.173648177666930330f,
0.190808995376544800f, 0.207911690817759310f,
0.224951054343865000f, 0.241921895599667730f, 0.258819045102520740f,
0.275637355816999160f, 0.292371704722736770f, 0.309016994374947400f,
0.325568154457156640f, 0.342020143325668710f,
0.358367949545300270f, 0.374606593415912010f, 0.390731128489273720f,
0.406736643075800150f, 0.422618261740699440f, 0.438371146789077400f,
0.453990499739546750f, 0.469471562785890810f,
0.484809620246337060f, 0.499999999999999940f, 0.515038074910054160f,
0.529919264233204900f, 0.544639035015027080f, 0.559192903470746900f,
0.573576436351046050f, 0.587785252292473140f,
0.601815023152048270f, 0.615661475325658180f, 0.629320391049837390f,
0.642787609686539250f, 0.656059028990507160f, 0.669130606358858240f,
0.681998360062498480f, 0.694658370458997250f,
0.707106781186547460f, 0.719339800338651080f, 0.731353701619170460f,
0.743144825477394240f, 0.754709580222772010f, 0.766044443118978010f,
0.777145961456970790f, 0.788010753606722010f,
0.798635510047292830f, 0.809016994374947450f, 0.819152044288991800f,
0.829037572555041740f, 0.838670567945423940f, 0.848048096156426070f,
0.857167300702112220f, 0.866025403784438600f,
0.874619707139395740f, 0.882947592858926880f, 0.891006524188367790f,
0.898794046299167040f, 0.906307787036649940f, 0.913545457642600870f,
0.920504853452440260f, 0.927183854566787420f,
0.933580426497201740f, 0.939692620785908320f, 0.945518575599316740f,
0.951056516295153530f, 0.956304755963035440f, 0.961261695938318890f,
0.965925826289068310f, 0.970295726275996470f,
0.974370064785235250f, 0.978147600733805580f, 0.981627183447663980f,
0.984807753012208020f, 0.987688340595137770f, 0.990268068741570250f,
0.992546151641321980f, 0.994521895368273290f,
0.996194698091745550f, 0.997564050259824200f, 0.998629534754573830f,
0.999390827019095760f, 0.999847695156391270f, 1.000000000000000000f,
0.999847695156391270f, 0.999390827019095760f,
0.998629534754573830f, 0.997564050259824200f, 0.996194698091745550f,
0.994521895368273400f, 0.992546151641322090f, 0.990268068741570360f,
0.987688340595137660f, 0.984807753012208020f,
0.981627183447663980f, 0.978147600733805690f, 0.974370064785235250f,
0.970295726275996470f, 0.965925826289068310f, 0.961261695938318890f,
0.956304755963035550f, 0.951056516295153640f,
0.945518575599316850f, 0.939692620785908430f, 0.933580426497201740f,
0.927183854566787420f, 0.920504853452440370f, 0.913545457642600980f,
0.906307787036650050f, 0.898794046299166930f,
0.891006524188367900f, 0.882947592858927100f, 0.874619707139395850f,
0.866025403784438710f, 0.857167300702112330f, 0.848048096156426070f,
0.838670567945424050f, 0.829037572555041740f,
0.819152044288992020f, 0.809016994374947450f, 0.798635510047292720f,
0.788010753606722010f, 0.777145961456971010f, 0.766044443118978010f,
0.754709580222771790f, 0.743144825477394240f,
0.731353701619170570f, 0.719339800338651410f, 0.707106781186547570f,
0.694658370458997140f, 0.681998360062498590f, 0.669130606358858350f,
0.656059028990507280f, 0.642787609686539470f,
0.629320391049837720f, 0.615661475325658400f, 0.601815023152048160f,
0.587785252292473250f, 0.573576436351046380f, 0.559192903470746900f,
0.544639035015026860f, 0.529919264233204900f,
0.515038074910054380f, 0.499999999999999940f, 0.484809620246337170f,
0.469471562785891080f, 0.453990499739546860f, 0.438371146789077290f,
0.422618261740699500f, 0.406736643075800430f,
0.390731128489274160f, 0.374606593415912240f, 0.358367949545300210f,
0.342020143325668880f, 0.325568154457156980f, 0.309016994374947510f,
0.292371704722737050f, 0.275637355816999660f,
0.258819045102521020f, 0.241921895599667730f, 0.224951054343864780f,
0.207911690817759310f, 0.190808995376544970f, 0.173648177666930280f,
0.156434465040230980f, 0.139173100960065740f,
0.121869343405147550f, 0.104528463267653730f, 0.087155742747658638f,
0.069756473744125524f, 0.052335956242943807f, 0.034899496702500699f,
0.017452406437283439f, 0.000000000000000122f
};
/**
* @brief Floating-point sin_cos function.
* @param[in] theta input value in degrees
* @param[out] *pSinVal points to the processed sine output.
* @param[out] *pCosVal points to the processed cos output.
* @return none.
*/
void arm_sin_cos_f32(
float32_t theta,
float32_t * pSinVal,
float32_t * pCosVal)
{
int32_t i; /* Index for reading nearwst output values */
float32_t x1 = -179.0f; /* Initial input value */
float32_t y0, y1; /* nearest output values */
float32_t y2, y3;
float32_t fract; /* fractional part of input */
/* Calculation of fractional part */
if(theta > 0.0f)
{
fract = theta - (float32_t) ((int32_t) theta);
}
else
{
fract = (theta - (float32_t) ((int32_t) theta)) + 1.0f;
}
/* index calculation for reading nearest output values */
i = (uint32_t) (theta - x1);
/* Checking min and max index of table */
if(i < 0)
{
i = 0;
}
else if(i >= 359)
{
i = 358;
}
/* reading nearest sine output values */
y0 = sinTable[i];
y1 = sinTable[i + 1u];
/* reading nearest cosine output values */
y2 = cosTable[i];
y3 = cosTable[i + 1u];
y1 = y1 - y0;
y3 = y3 - y2;
y1 = fract * y1;
y3 = fract * y3;
/* Calculation of sine value */
*pSinVal = y0 + y1;
/* Calculation of cosine value */
*pCosVal = y2 + y3;
}
/**
* @} end of SinCos group
*/

View File

@ -0,0 +1,324 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sin_cos_q31.c
*
* Description: Cosine & Sine calculation for Q31 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupController
*/
/**
* @addtogroup SinCos
* @{
*/
/**
* \par
* Sine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* sinTable[i]= sin((i-180) * PI/180.0);
* } </pre>
* Convert above coefficients to fixed point 1.31 format.
*/
static const int32_t sinTableQ31[360] = {
0x0, 0xfdc41e9b, 0xfb8869ce, 0xf94d0e2e, 0xf7123849, 0xf4d814a4, 0xf29ecfb2,
0xf06695da,
0xee2f9369, 0xebf9f498, 0xe9c5e582, 0xe7939223, 0xe5632654, 0xe334cdc9,
0xe108b40d, 0xdedf047d,
0xdcb7ea46, 0xda939061, 0xd8722192, 0xd653c860, 0xd438af17, 0xd220ffc0,
0xd00ce422, 0xcdfc85bb,
0xcbf00dbe, 0xc9e7a512, 0xc7e3744b, 0xc5e3a3a9, 0xc3e85b18, 0xc1f1c224,
0xc0000000, 0xbe133b7c,
0xbc2b9b05, 0xba4944a2, 0xb86c5df0, 0xb6950c1e, 0xb4c373ee, 0xb2f7b9af,
0xb1320139, 0xaf726def,
0xadb922b7, 0xac0641fb, 0xaa59eda4, 0xa8b4471a, 0xa7156f3c, 0xa57d8666,
0xa3ecac65, 0xa263007d,
0xa0e0a15f, 0x9f65ad2d, 0x9df24175, 0x9c867b2c, 0x9b2276b0, 0x99c64fc5,
0x98722192, 0x9726069c,
0x95e218c9, 0x94a6715d, 0x937328f5, 0x92485786, 0x9126145f, 0x900c7621,
0x8efb92c2, 0x8df37f8b,
0x8cf45113, 0x8bfe1b3f, 0x8b10f144, 0x8a2ce59f, 0x89520a1a, 0x88806fc4,
0x87b826f7, 0x86f93f50,
0x8643c7b3, 0x8597ce46, 0x84f56073, 0x845c8ae3, 0x83cd5982, 0x8347d77b,
0x82cc0f36, 0x825a0a5b,
0x81f1d1ce, 0x81936daf, 0x813ee55b, 0x80f43f69, 0x80b381ac, 0x807cb130,
0x804fd23a, 0x802ce84c,
0x8013f61d, 0x8004fda0, 0x80000000, 0x8004fda0, 0x8013f61d, 0x802ce84c,
0x804fd23a, 0x807cb130,
0x80b381ac, 0x80f43f69, 0x813ee55b, 0x81936daf, 0x81f1d1ce, 0x825a0a5b,
0x82cc0f36, 0x8347d77b,
0x83cd5982, 0x845c8ae3, 0x84f56073, 0x8597ce46, 0x8643c7b3, 0x86f93f50,
0x87b826f7, 0x88806fc4,
0x89520a1a, 0x8a2ce59f, 0x8b10f144, 0x8bfe1b3f, 0x8cf45113, 0x8df37f8b,
0x8efb92c2, 0x900c7621,
0x9126145f, 0x92485786, 0x937328f5, 0x94a6715d, 0x95e218c9, 0x9726069c,
0x98722192, 0x99c64fc5,
0x9b2276b0, 0x9c867b2c, 0x9df24175, 0x9f65ad2d, 0xa0e0a15f, 0xa263007d,
0xa3ecac65, 0xa57d8666,
0xa7156f3c, 0xa8b4471a, 0xaa59eda4, 0xac0641fb, 0xadb922b7, 0xaf726def,
0xb1320139, 0xb2f7b9af,
0xb4c373ee, 0xb6950c1e, 0xb86c5df0, 0xba4944a2, 0xbc2b9b05, 0xbe133b7c,
0xc0000000, 0xc1f1c224,
0xc3e85b18, 0xc5e3a3a9, 0xc7e3744b, 0xc9e7a512, 0xcbf00dbe, 0xcdfc85bb,
0xd00ce422, 0xd220ffc0,
0xd438af17, 0xd653c860, 0xd8722192, 0xda939061, 0xdcb7ea46, 0xdedf047d,
0xe108b40d, 0xe334cdc9,
0xe5632654, 0xe7939223, 0xe9c5e582, 0xebf9f498, 0xee2f9369, 0xf06695da,
0xf29ecfb2, 0xf4d814a4,
0xf7123849, 0xf94d0e2e, 0xfb8869ce, 0xfdc41e9b, 0x0, 0x23be165, 0x4779632,
0x6b2f1d2,
0x8edc7b7, 0xb27eb5c, 0xd61304e, 0xf996a26, 0x11d06c97, 0x14060b68,
0x163a1a7e, 0x186c6ddd,
0x1a9cd9ac, 0x1ccb3237, 0x1ef74bf3, 0x2120fb83, 0x234815ba, 0x256c6f9f,
0x278dde6e, 0x29ac37a0,
0x2bc750e9, 0x2ddf0040, 0x2ff31bde, 0x32037a45, 0x340ff242, 0x36185aee,
0x381c8bb5, 0x3a1c5c57,
0x3c17a4e8, 0x3e0e3ddc, 0x40000000, 0x41ecc484, 0x43d464fb, 0x45b6bb5e,
0x4793a210, 0x496af3e2,
0x4b3c8c12, 0x4d084651, 0x4ecdfec7, 0x508d9211, 0x5246dd49, 0x53f9be05,
0x55a6125c, 0x574bb8e6,
0x58ea90c4, 0x5a82799a, 0x5c13539b, 0x5d9cff83, 0x5f1f5ea1, 0x609a52d3,
0x620dbe8b, 0x637984d4,
0x64dd8950, 0x6639b03b, 0x678dde6e, 0x68d9f964, 0x6a1de737, 0x6b598ea3,
0x6c8cd70b, 0x6db7a87a,
0x6ed9eba1, 0x6ff389df, 0x71046d3e, 0x720c8075, 0x730baeed, 0x7401e4c1,
0x74ef0ebc, 0x75d31a61,
0x76adf5e6, 0x777f903c, 0x7847d909, 0x7906c0b0, 0x79bc384d, 0x7a6831ba,
0x7b0a9f8d, 0x7ba3751d,
0x7c32a67e, 0x7cb82885, 0x7d33f0ca, 0x7da5f5a5, 0x7e0e2e32, 0x7e6c9251,
0x7ec11aa5, 0x7f0bc097,
0x7f4c7e54, 0x7f834ed0, 0x7fb02dc6, 0x7fd317b4, 0x7fec09e3, 0x7ffb0260,
0x7fffffff, 0x7ffb0260,
0x7fec09e3, 0x7fd317b4, 0x7fb02dc6, 0x7f834ed0, 0x7f4c7e54, 0x7f0bc097,
0x7ec11aa5, 0x7e6c9251,
0x7e0e2e32, 0x7da5f5a5, 0x7d33f0ca, 0x7cb82885, 0x7c32a67e, 0x7ba3751d,
0x7b0a9f8d, 0x7a6831ba,
0x79bc384d, 0x7906c0b0, 0x7847d909, 0x777f903c, 0x76adf5e6, 0x75d31a61,
0x74ef0ebc, 0x7401e4c1,
0x730baeed, 0x720c8075, 0x71046d3e, 0x6ff389df, 0x6ed9eba1, 0x6db7a87a,
0x6c8cd70b, 0x6b598ea3,
0x6a1de737, 0x68d9f964, 0x678dde6e, 0x6639b03b, 0x64dd8950, 0x637984d4,
0x620dbe8b, 0x609a52d3,
0x5f1f5ea1, 0x5d9cff83, 0x5c13539b, 0x5a82799a, 0x58ea90c4, 0x574bb8e6,
0x55a6125c, 0x53f9be05,
0x5246dd49, 0x508d9211, 0x4ecdfec7, 0x4d084651, 0x4b3c8c12, 0x496af3e2,
0x4793a210, 0x45b6bb5e,
0x43d464fb, 0x41ecc484, 0x40000000, 0x3e0e3ddc, 0x3c17a4e8, 0x3a1c5c57,
0x381c8bb5, 0x36185aee,
0x340ff242, 0x32037a45, 0x2ff31bde, 0x2ddf0040, 0x2bc750e9, 0x29ac37a0,
0x278dde6e, 0x256c6f9f,
0x234815ba, 0x2120fb83, 0x1ef74bf3, 0x1ccb3237, 0x1a9cd9ac, 0x186c6ddd,
0x163a1a7e, 0x14060b68,
0x11d06c97, 0xf996a26, 0xd61304e, 0xb27eb5c, 0x8edc7b7, 0x6b2f1d2,
0x4779632, 0x23be165,
};
/**
* \par
* Cosine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* cosTable[i]= cos((i-180) * PI/180.0);
* } </pre>
* \par
* Convert above coefficients to fixed point 1.31 format.
*/
static const int32_t cosTableQ31[360] = {
0x80000000, 0x8004fda0, 0x8013f61d, 0x802ce84c, 0x804fd23a, 0x807cb130,
0x80b381ac, 0x80f43f69,
0x813ee55b, 0x81936daf, 0x81f1d1ce, 0x825a0a5b, 0x82cc0f36, 0x8347d77b,
0x83cd5982, 0x845c8ae3,
0x84f56073, 0x8597ce46, 0x8643c7b3, 0x86f93f50, 0x87b826f7, 0x88806fc4,
0x89520a1a, 0x8a2ce59f,
0x8b10f144, 0x8bfe1b3f, 0x8cf45113, 0x8df37f8b, 0x8efb92c2, 0x900c7621,
0x9126145f, 0x92485786,
0x937328f5, 0x94a6715d, 0x95e218c9, 0x9726069c, 0x98722192, 0x99c64fc5,
0x9b2276b0, 0x9c867b2c,
0x9df24175, 0x9f65ad2d, 0xa0e0a15f, 0xa263007d, 0xa3ecac65, 0xa57d8666,
0xa7156f3c, 0xa8b4471a,
0xaa59eda4, 0xac0641fb, 0xadb922b7, 0xaf726def, 0xb1320139, 0xb2f7b9af,
0xb4c373ee, 0xb6950c1e,
0xb86c5df0, 0xba4944a2, 0xbc2b9b05, 0xbe133b7c, 0xc0000000, 0xc1f1c224,
0xc3e85b18, 0xc5e3a3a9,
0xc7e3744b, 0xc9e7a512, 0xcbf00dbe, 0xcdfc85bb, 0xd00ce422, 0xd220ffc0,
0xd438af17, 0xd653c860,
0xd8722192, 0xda939061, 0xdcb7ea46, 0xdedf047d, 0xe108b40d, 0xe334cdc9,
0xe5632654, 0xe7939223,
0xe9c5e582, 0xebf9f498, 0xee2f9369, 0xf06695da, 0xf29ecfb2, 0xf4d814a4,
0xf7123849, 0xf94d0e2e,
0xfb8869ce, 0xfdc41e9b, 0x0, 0x23be165, 0x4779632, 0x6b2f1d2, 0x8edc7b7,
0xb27eb5c,
0xd61304e, 0xf996a26, 0x11d06c97, 0x14060b68, 0x163a1a7e, 0x186c6ddd,
0x1a9cd9ac, 0x1ccb3237,
0x1ef74bf3, 0x2120fb83, 0x234815ba, 0x256c6f9f, 0x278dde6e, 0x29ac37a0,
0x2bc750e9, 0x2ddf0040,
0x2ff31bde, 0x32037a45, 0x340ff242, 0x36185aee, 0x381c8bb5, 0x3a1c5c57,
0x3c17a4e8, 0x3e0e3ddc,
0x40000000, 0x41ecc484, 0x43d464fb, 0x45b6bb5e, 0x4793a210, 0x496af3e2,
0x4b3c8c12, 0x4d084651,
0x4ecdfec7, 0x508d9211, 0x5246dd49, 0x53f9be05, 0x55a6125c, 0x574bb8e6,
0x58ea90c4, 0x5a82799a,
0x5c13539b, 0x5d9cff83, 0x5f1f5ea1, 0x609a52d3, 0x620dbe8b, 0x637984d4,
0x64dd8950, 0x6639b03b,
0x678dde6e, 0x68d9f964, 0x6a1de737, 0x6b598ea3, 0x6c8cd70b, 0x6db7a87a,
0x6ed9eba1, 0x6ff389df,
0x71046d3e, 0x720c8075, 0x730baeed, 0x7401e4c1, 0x74ef0ebc, 0x75d31a61,
0x76adf5e6, 0x777f903c,
0x7847d909, 0x7906c0b0, 0x79bc384d, 0x7a6831ba, 0x7b0a9f8d, 0x7ba3751d,
0x7c32a67e, 0x7cb82885,
0x7d33f0ca, 0x7da5f5a5, 0x7e0e2e32, 0x7e6c9251, 0x7ec11aa5, 0x7f0bc097,
0x7f4c7e54, 0x7f834ed0,
0x7fb02dc6, 0x7fd317b4, 0x7fec09e3, 0x7ffb0260, 0x7fffffff, 0x7ffb0260,
0x7fec09e3, 0x7fd317b4,
0x7fb02dc6, 0x7f834ed0, 0x7f4c7e54, 0x7f0bc097, 0x7ec11aa5, 0x7e6c9251,
0x7e0e2e32, 0x7da5f5a5,
0x7d33f0ca, 0x7cb82885, 0x7c32a67e, 0x7ba3751d, 0x7b0a9f8d, 0x7a6831ba,
0x79bc384d, 0x7906c0b0,
0x7847d909, 0x777f903c, 0x76adf5e6, 0x75d31a61, 0x74ef0ebc, 0x7401e4c1,
0x730baeed, 0x720c8075,
0x71046d3e, 0x6ff389df, 0x6ed9eba1, 0x6db7a87a, 0x6c8cd70b, 0x6b598ea3,
0x6a1de737, 0x68d9f964,
0x678dde6e, 0x6639b03b, 0x64dd8950, 0x637984d4, 0x620dbe8b, 0x609a52d3,
0x5f1f5ea1, 0x5d9cff83,
0x5c13539b, 0x5a82799a, 0x58ea90c4, 0x574bb8e6, 0x55a6125c, 0x53f9be05,
0x5246dd49, 0x508d9211,
0x4ecdfec7, 0x4d084651, 0x4b3c8c12, 0x496af3e2, 0x4793a210, 0x45b6bb5e,
0x43d464fb, 0x41ecc484,
0x40000000, 0x3e0e3ddc, 0x3c17a4e8, 0x3a1c5c57, 0x381c8bb5, 0x36185aee,
0x340ff242, 0x32037a45,
0x2ff31bde, 0x2ddf0040, 0x2bc750e9, 0x29ac37a0, 0x278dde6e, 0x256c6f9f,
0x234815ba, 0x2120fb83,
0x1ef74bf3, 0x1ccb3237, 0x1a9cd9ac, 0x186c6ddd, 0x163a1a7e, 0x14060b68,
0x11d06c97, 0xf996a26,
0xd61304e, 0xb27eb5c, 0x8edc7b7, 0x6b2f1d2, 0x4779632, 0x23be165, 0x0,
0xfdc41e9b,
0xfb8869ce, 0xf94d0e2e, 0xf7123849, 0xf4d814a4, 0xf29ecfb2, 0xf06695da,
0xee2f9369, 0xebf9f498,
0xe9c5e582, 0xe7939223, 0xe5632654, 0xe334cdc9, 0xe108b40d, 0xdedf047d,
0xdcb7ea46, 0xda939061,
0xd8722192, 0xd653c860, 0xd438af17, 0xd220ffc0, 0xd00ce422, 0xcdfc85bb,
0xcbf00dbe, 0xc9e7a512,
0xc7e3744b, 0xc5e3a3a9, 0xc3e85b18, 0xc1f1c224, 0xc0000000, 0xbe133b7c,
0xbc2b9b05, 0xba4944a2,
0xb86c5df0, 0xb6950c1e, 0xb4c373ee, 0xb2f7b9af, 0xb1320139, 0xaf726def,
0xadb922b7, 0xac0641fb,
0xaa59eda4, 0xa8b4471a, 0xa7156f3c, 0xa57d8666, 0xa3ecac65, 0xa263007d,
0xa0e0a15f, 0x9f65ad2d,
0x9df24175, 0x9c867b2c, 0x9b2276b0, 0x99c64fc5, 0x98722192, 0x9726069c,
0x95e218c9, 0x94a6715d,
0x937328f5, 0x92485786, 0x9126145f, 0x900c7621, 0x8efb92c2, 0x8df37f8b,
0x8cf45113, 0x8bfe1b3f,
0x8b10f144, 0x8a2ce59f, 0x89520a1a, 0x88806fc4, 0x87b826f7, 0x86f93f50,
0x8643c7b3, 0x8597ce46,
0x84f56073, 0x845c8ae3, 0x83cd5982, 0x8347d77b, 0x82cc0f36, 0x825a0a5b,
0x81f1d1ce, 0x81936daf,
0x813ee55b, 0x80f43f69, 0x80b381ac, 0x807cb130, 0x804fd23a, 0x802ce84c,
0x8013f61d, 0x8004fda0,
};
/**
* @brief Q31 sin_cos function.
* @param[in] theta scaled input value in degrees
* @param[out] *pSinVal points to the processed sine output.
* @param[out] *pCosVal points to the processed cosine output.
* @return none.
*
* The Q31 input value is in the range [-1 0.999999] and is mapped to a degree value in the range [-180 179].
*
*/
void arm_sin_cos_q31(
q31_t theta,
q31_t * pSinVal,
q31_t * pCosVal)
{
q31_t x0; /* Nearest input value */
q31_t y0, y1; /* Nearest output values */
q31_t xSpacing = INPUT_SPACING; /* Spaing between inputs */
int32_t i; /* Index */
q31_t oneByXSpacing; /* 1/ xSpacing value */
q31_t out; /* temporary variable */
uint32_t sign_bits; /* No.of sign bits */
uint32_t firstX = 0x80000000; /* First X value */
/* Calculation of index */
i = ((uint32_t) theta - firstX) / (uint32_t) xSpacing;
/* Checking min and max index of table */
if(i < 0)
{
i = 0;
}
else if(i >= 359)
{
i = 358;
}
/* Calculation of first nearest input value */
x0 = (q31_t) firstX + ((q31_t) i * xSpacing);
/* Reading nearest sine output values from table */
y0 = sinTableQ31[i];
y1 = sinTableQ31[i + 1u];
/* Calculation of 1/(x1-x0) */
/* (x1-x0) is xSpacing which is fixed value */
sign_bits = 8u;
oneByXSpacing = 0x5A000000;
/* Calculation of (theta - x0)/(x1-x0) */
out =
(((q31_t) (((q63_t) (theta - x0) * oneByXSpacing) >> 32)) << sign_bits);
/* Calculation of y0 + (y1 - y0) * ((theta - x0)/(x1-x0)) */
*pSinVal = __QADD(y0, ((q31_t) (((q63_t) (y1 - y0) * out) >> 30)));
/* Reading nearest cosine output values from table */
y0 = cosTableQ31[i];
y1 = cosTableQ31[i + 1u];
/* Calculation of y0 + (y1 - y0) * ((theta - x0)/(x1-x0)) */
*pCosVal = __QADD(y0, ((q31_t) (((q63_t) (y1 - y0) * out) >> 30)));
}
/**
* @} end of SinCos group
*/

View File

@ -0,0 +1,280 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cos_f32.c
*
* Description: Fast cosine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @defgroup cos Cosine
*
* Computes the trigonometric cosine function using a combination of table lookup
* and cubic interpolation. There are separate functions for
* Q15, Q31, and floating-point data types.
* The input to the floating-point version is in radians while the
* fixed-point Q15 and Q31 have a scaled input with the range
* [0 +0.9999] mapping to [0 2*pi), Where range excludes 2*pi.
*
* The implementation is based on table lookup using 256 values together with cubic interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index
* -# Fetch the four table values a, b, c, and d
* -# Compute the fractional portion (fract) of the table index.
* -# Calculation of wa, wb, wc, wd
* -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>
*
* where
* <pre>
* a=Table[index-1];
* b=Table[index+0];
* c=Table[index+1];
* d=Table[index+2];
* </pre>
* and
* <pre>
* wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
* wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
* wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
* wd=(1/6)*fract.^3 - (1/6)*fract;
* </pre>
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* <b>Example code for Generation of Cos Table:</b>
* tableSize = 256;
* <pre>for(n = -1; n < (tableSize + 2); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
*/
static const float32_t cosTable[260] = {
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
0.992479562759399410f, 0.989176511764526370f,
0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
0.949528157711029050f, 0.941544055938720700f,
0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
0.870086967945098880f, 0.857728600502014160f,
0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
0.757208824157714840f, 0.740951120853424070f,
0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
0.615231573581695560f, 0.595699310302734380f,
0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
0.449611335992813110f, 0.427555084228515630f,
0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
0.266712754964828490f, 0.242980182170867920f,
0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
0.073564566671848297f, 0.049067676067352295f,
0.024541229009628296f, 0.000000000000000061f, -0.024541229009628296f,
-0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
-0.122410677373409270f, -0.146730467677116390f,
-0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
-0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
-0.313681751489639280f, -0.336889863014221190f,
-0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
-0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
-0.492898195981979370f, -0.514102756977081300f,
-0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
-0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
-0.653172850608825680f, -0.671558976173400880f,
-0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
-0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
-0.788346409797668460f, -0.803207516670227050f,
-0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
-0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
-0.893224298954010010f, -0.903989315032958980f,
-0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
-0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
-0.963776051998138430f, -0.970031261444091800f,
-0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
-0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
-0.997290432453155520f, -0.998795449733734130f,
-0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
-0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
-0.992479562759399410f, -0.989176511764526370f,
-0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
-0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
-0.949528157711029050f, -0.941544055938720700f,
-0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
-0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
-0.870086967945098880f, -0.857728600502014160f,
-0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
-0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
-0.757208824157714840f, -0.740951120853424070f,
-0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
-0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
-0.615231573581695560f, -0.595699310302734380f,
-0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
-0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
-0.449611335992813110f, -0.427555084228515630f,
-0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
-0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
-0.266712754964828490f, -0.242980182170867920f,
-0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
-0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
-0.073564566671848297f, -0.049067676067352295f,
-0.024541229009628296f, -0.000000000000000184f, 0.024541229009628296f,
0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
0.122410677373409270f, 0.146730467677116390f,
0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
0.313681751489639280f, 0.336889863014221190f,
0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
0.492898195981979370f, 0.514102756977081300f,
0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
0.653172850608825680f, 0.671558976173400880f,
0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
0.788346409797668460f, 0.803207516670227050f,
0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
0.893224298954010010f, 0.903989315032958980f,
0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
0.963776051998138430f, 0.970031261444091800f,
0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
0.997290432453155520f, 0.998795449733734130f,
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f
};
/**
* @brief Fast approximation to the trigonometric cosine function for floating-point data.
* @param[in] x input value in radians.
* @return cos(x).
*/
float32_t arm_cos_f32(
float32_t x)
{
float32_t cosVal, fract, in;
int32_t index;
uint32_t tableSize = (uint32_t) TABLE_SIZE;
float32_t wa, wb, wc, wd;
float32_t a, b, c, d;
float32_t *tablePtr;
int32_t n;
float32_t fractsq, fractby2, fractby6, fractby3, fractsqby2;
float32_t oneminusfractby2;
float32_t frby2xfrsq, frby6xfrsq;
/* input x is in radians */
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
in = x * 0.159154943092f;
/* Calculation of floor value of input */
n = (int32_t) in;
/* Make negative values towards -infinity */
if(x < 0.0f)
{
n = n - 1;
}
/* Map input value to [0 1] */
in = in - (float32_t) n;
/* Calculation of index of the table */
index = (uint32_t) (tableSize * in);
/* fractional value calculation */
fract = ((float32_t) tableSize * in) - (float32_t) index;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (float32_t *) & cosTable[index];
/* Read four nearest values of input value from the cos table */
a = tablePtr[0];
b = tablePtr[1];
c = tablePtr[2];
d = tablePtr[3];
/* Cubic interpolation process */
fractsq = fract * fract;
fractby2 = fract * 0.5f;
fractby6 = fract * 0.166666667f;
fractby3 = fract * 0.3333333333333f;
fractsqby2 = fractsq * 0.5f;
frby2xfrsq = (fractby2) * fractsq;
frby6xfrsq = (fractby6) * fractsq;
oneminusfractby2 = 1.0f - fractby2;
wb = fractsqby2 - fractby3;
wc = (fractsqby2 + fract);
wa = wb - frby6xfrsq;
wb = frby2xfrsq - fractsq;
cosVal = wa * a;
wc = wc - frby2xfrsq;
wd = (frby6xfrsq) - fractby6;
wb = wb + oneminusfractby2;
/* Calculate cos value */
cosVal = (cosVal + (b * wb)) + ((c * wc) + (d * wd));
/* Return the output value */
return (cosVal);
}
/**
* @} end of cos group
*/

View File

@ -0,0 +1,205 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cos_q15.c
*
* Description: Fast cosine calculation for Q15 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* Table Values are in Q15(1.15 Fixed point format) and generation is done in three steps
* \par
* First Generate cos values in floating point:
* tableSize = 256;
* <pre>for(n = -1; n < (tableSize + 1); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* }</pre>
* where pi value is 3.14159265358979
* \par
* Secondly Convert Floating point to Q15(Fixed point):
* (cosTable[i] * pow(2, 15))
* \par
* Finally Rounding to nearest integer is done
* cosTable[i] += (cosTable[i] > 0 ? 0.5 :-0.5);
*/
static const q15_t cosTableQ15[259] = {
0x7ff6, 0x7fff, 0x7ff6, 0x7fd9, 0x7fa7, 0x7f62, 0x7f0a, 0x7e9d,
0x7e1e, 0x7d8a, 0x7ce4, 0x7c2a, 0x7b5d, 0x7a7d, 0x798a, 0x7885,
0x776c, 0x7642, 0x7505, 0x73b6, 0x7255, 0x70e3, 0x6f5f, 0x6dca,
0x6c24, 0x6a6e, 0x68a7, 0x66d0, 0x64e9, 0x62f2, 0x60ec, 0x5ed7,
0x5cb4, 0x5a82, 0x5843, 0x55f6, 0x539b, 0x5134, 0x4ec0, 0x4c40,
0x49b4, 0x471d, 0x447b, 0x41ce, 0x3f17, 0x3c57, 0x398d, 0x36ba,
0x33df, 0x30fc, 0x2e11, 0x2b1f, 0x2827, 0x2528, 0x2224, 0x1f1a,
0x1c0c, 0x18f9, 0x15e2, 0x12c8, 0xfab, 0xc8c, 0x96b, 0x648,
0x324, 0x0, 0xfcdc, 0xf9b8, 0xf695, 0xf374, 0xf055, 0xed38,
0xea1e, 0xe707, 0xe3f4, 0xe0e6, 0xdddc, 0xdad8, 0xd7d9, 0xd4e1,
0xd1ef, 0xcf04, 0xcc21, 0xc946, 0xc673, 0xc3a9, 0xc0e9, 0xbe32,
0xbb85, 0xb8e3, 0xb64c, 0xb3c0, 0xb140, 0xaecc, 0xac65, 0xaa0a,
0xa7bd, 0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b17, 0x9930,
0x9759, 0x9592, 0x93dc, 0x9236, 0x90a1, 0x8f1d, 0x8dab, 0x8c4a,
0x8afb, 0x89be, 0x8894, 0x877b, 0x8676, 0x8583, 0x84a3, 0x83d6,
0x831c, 0x8276, 0x81e2, 0x8163, 0x80f6, 0x809e, 0x8059, 0x8027,
0x800a, 0x8000, 0x800a, 0x8027, 0x8059, 0x809e, 0x80f6, 0x8163,
0x81e2, 0x8276, 0x831c, 0x83d6, 0x84a3, 0x8583, 0x8676, 0x877b,
0x8894, 0x89be, 0x8afb, 0x8c4a, 0x8dab, 0x8f1d, 0x90a1, 0x9236,
0x93dc, 0x9592, 0x9759, 0x9930, 0x9b17, 0x9d0e, 0x9f14, 0xa129,
0xa34c, 0xa57e, 0xa7bd, 0xaa0a, 0xac65, 0xaecc, 0xb140, 0xb3c0,
0xb64c, 0xb8e3, 0xbb85, 0xbe32, 0xc0e9, 0xc3a9, 0xc673, 0xc946,
0xcc21, 0xcf04, 0xd1ef, 0xd4e1, 0xd7d9, 0xdad8, 0xdddc, 0xe0e6,
0xe3f4, 0xe707, 0xea1e, 0xed38, 0xf055, 0xf374, 0xf695, 0xf9b8,
0xfcdc, 0x0, 0x324, 0x648, 0x96b, 0xc8c, 0xfab, 0x12c8,
0x15e2, 0x18f9, 0x1c0c, 0x1f1a, 0x2224, 0x2528, 0x2827, 0x2b1f,
0x2e11, 0x30fc, 0x33df, 0x36ba, 0x398d, 0x3c57, 0x3f17, 0x41ce,
0x447b, 0x471d, 0x49b4, 0x4c40, 0x4ec0, 0x5134, 0x539b, 0x55f6,
0x5843, 0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e9, 0x66d0,
0x68a7, 0x6a6e, 0x6c24, 0x6dca, 0x6f5f, 0x70e3, 0x7255, 0x73b6,
0x7505, 0x7642, 0x776c, 0x7885, 0x798a, 0x7a7d, 0x7b5d, 0x7c2a,
0x7ce4, 0x7d8a, 0x7e1e, 0x7e9d, 0x7f0a, 0x7f62, 0x7fa7, 0x7fd9,
0x7ff6, 0x7fff, 0x7ff6
};
/**
* @brief Fast approximation to the trigonometric cosine function for Q15 data.
* @param[in] x Scaled input value in radians.
* @return cos(x).
*
* The Q15 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi), Here range excludes 2*pi.
*/
q15_t arm_cos_q15(
q15_t x)
{
q31_t cosVal; /* Temporary variable for output */
q15_t *tablePtr; /* Pointer to table */
q15_t in, in2; /* Temporary variables for input */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q15_t a, b, c, d; /* Four nearest output values */
q15_t fract, fractCube, fractSquare; /* Variables for fractional value */
q15_t oneBy6 = 0x1555; /* Fixed point value of 1/6 */
q15_t tableSpacing = TABLE_SPACING_Q15; /* Table spacing */
int32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = (int32_t) in / tableSpacing;
/* Calculate the nearest value of input */
in2 = (q15_t) index *tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = (q15_t) ((fract * fract) >> 15);
/* fractCube = fract * fract * fract */
fractCube = (q15_t) ((fractSquare * fract) >> 15);
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (q15_t *) & cosTableQ15[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAA)*fract; */
wa = (q31_t) oneBy6 *fractCube;
wa += (q31_t) 0x2AAA *fract;
wa = -(wa >> 15);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the cos table */
a = *tablePtr++;
/* cosVal = a * wa */
cosVal = a * wa;
/* Calculation of wb */
wb = (((fractCube >> 1u) - fractSquare) - (fract >> 1u)) + 0x7FFF;
/* Read second nearest value of output from the cos table */
b = *tablePtr++;
/* cosVal += b*wb */
cosVal += b * wb;
/* Calculation of wc */
wc = -(q31_t) fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the cos table */
c = *tablePtr++;
/* cosVal += c*wc */
cosVal += c * wc;
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q15_t) (((q31_t) oneBy6 * fractCube) >> 15));
/* Read fourth nearest value of output from the cos table */
d = *tablePtr++;
/* cosVal += d*wd; */
cosVal += d * wd;
/* Convert output value in 1.15(q15) format and saturate */
cosVal = __SSAT((cosVal >> 15), 16);
/* Return the output value in 1.15(q15) format */
return ((q15_t) cosVal);
}
/**
* @} end of cos group
*/

View File

@ -0,0 +1,239 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_cos_q31.c
*
* Description: Fast cosine calculation for Q31 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup cos
* @{
*/
/**
* \par
* Table Values are in Q31(1.31 Fixed point format) and generation is done in three steps
* First Generate cos values in floating point:
* tableSize = 256;
* <pre>for(n = -1; n < (tableSize + 1); n++)
* {
* cosTable[n+1]= cos(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Secondly Convert Floating point to Q31(Fixed point):
* (cosTable[i] * pow(2, 31))
* \par
* Finally Rounding to nearest integer is done
* cosTable[i] += (cosTable[i] > 0 ? 0.5 :-0.5);
*/
static const q31_t cosTableQ31[259] = {
0x7ff62182, 0x7fffffff, 0x7ff62182, 0x7fd8878e, 0x7fa736b4, 0x7f62368f,
0x7f0991c4, 0x7e9d55fc,
0x7e1d93ea, 0x7d8a5f40, 0x7ce3ceb2, 0x7c29fbee, 0x7b5d039e, 0x7a7d055b,
0x798a23b1, 0x78848414,
0x776c4edb, 0x7641af3d, 0x7504d345, 0x73b5ebd1, 0x72552c85, 0x70e2cbc6,
0x6f5f02b2, 0x6dca0d14,
0x6c242960, 0x6a6d98a4, 0x68a69e81, 0x66cf8120, 0x64e88926, 0x62f201ac,
0x60ec3830, 0x5ed77c8a,
0x5cb420e0, 0x5a82799a, 0x5842dd54, 0x55f5a4d2, 0x539b2af0, 0x5133cc94,
0x4ebfe8a5, 0x4c3fdff4,
0x49b41533, 0x471cece7, 0x447acd50, 0x41ce1e65, 0x3f1749b8, 0x3c56ba70,
0x398cdd32, 0x36ba2014,
0x33def287, 0x30fbc54d, 0x2e110a62, 0x2b1f34eb, 0x2826b928, 0x25280c5e,
0x2223a4c5, 0x1f19f97b,
0x1c0b826a, 0x18f8b83c, 0x15e21445, 0x12c8106f, 0xfab272b, 0xc8bd35e,
0x96a9049, 0x647d97c,
0x3242abf, 0x0, 0xfcdbd541, 0xf9b82684, 0xf6956fb7, 0xf3742ca2, 0xf054d8d5,
0xed37ef91,
0xea1debbb, 0xe70747c4, 0xe3f47d96, 0xe0e60685, 0xdddc5b3b, 0xdad7f3a2,
0xd7d946d8, 0xd4e0cb15,
0xd1eef59e, 0xcf043ab3, 0xcc210d79, 0xc945dfec, 0xc67322ce, 0xc3a94590,
0xc0e8b648, 0xbe31e19b,
0xbb8532b0, 0xb8e31319, 0xb64beacd, 0xb3c0200c, 0xb140175b, 0xaecc336c,
0xac64d510, 0xaa0a5b2e,
0xa7bd22ac, 0xa57d8666, 0xa34bdf20, 0xa1288376, 0x9f13c7d0, 0x9d0dfe54,
0x9b1776da, 0x99307ee0,
0x9759617f, 0x9592675c, 0x93dbd6a0, 0x9235f2ec, 0x90a0fd4e, 0x8f1d343a,
0x8daad37b, 0x8c4a142f,
0x8afb2cbb, 0x89be50c3, 0x8893b125, 0x877b7bec, 0x8675dc4f, 0x8582faa5,
0x84a2fc62, 0x83d60412,
0x831c314e, 0x8275a0c0, 0x81e26c16, 0x8162aa04, 0x80f66e3c, 0x809dc971,
0x8058c94c, 0x80277872,
0x8009de7e, 0x80000000, 0x8009de7e, 0x80277872, 0x8058c94c, 0x809dc971,
0x80f66e3c, 0x8162aa04,
0x81e26c16, 0x8275a0c0, 0x831c314e, 0x83d60412, 0x84a2fc62, 0x8582faa5,
0x8675dc4f, 0x877b7bec,
0x8893b125, 0x89be50c3, 0x8afb2cbb, 0x8c4a142f, 0x8daad37b, 0x8f1d343a,
0x90a0fd4e, 0x9235f2ec,
0x93dbd6a0, 0x9592675c, 0x9759617f, 0x99307ee0, 0x9b1776da, 0x9d0dfe54,
0x9f13c7d0, 0xa1288376,
0xa34bdf20, 0xa57d8666, 0xa7bd22ac, 0xaa0a5b2e, 0xac64d510, 0xaecc336c,
0xb140175b, 0xb3c0200c,
0xb64beacd, 0xb8e31319, 0xbb8532b0, 0xbe31e19b, 0xc0e8b648, 0xc3a94590,
0xc67322ce, 0xc945dfec,
0xcc210d79, 0xcf043ab3, 0xd1eef59e, 0xd4e0cb15, 0xd7d946d8, 0xdad7f3a2,
0xdddc5b3b, 0xe0e60685,
0xe3f47d96, 0xe70747c4, 0xea1debbb, 0xed37ef91, 0xf054d8d5, 0xf3742ca2,
0xf6956fb7, 0xf9b82684,
0xfcdbd541, 0x0, 0x3242abf, 0x647d97c, 0x96a9049, 0xc8bd35e, 0xfab272b,
0x12c8106f,
0x15e21445, 0x18f8b83c, 0x1c0b826a, 0x1f19f97b, 0x2223a4c5, 0x25280c5e,
0x2826b928, 0x2b1f34eb,
0x2e110a62, 0x30fbc54d, 0x33def287, 0x36ba2014, 0x398cdd32, 0x3c56ba70,
0x3f1749b8, 0x41ce1e65,
0x447acd50, 0x471cece7, 0x49b41533, 0x4c3fdff4, 0x4ebfe8a5, 0x5133cc94,
0x539b2af0, 0x55f5a4d2,
0x5842dd54, 0x5a82799a, 0x5cb420e0, 0x5ed77c8a, 0x60ec3830, 0x62f201ac,
0x64e88926, 0x66cf8120,
0x68a69e81, 0x6a6d98a4, 0x6c242960, 0x6dca0d14, 0x6f5f02b2, 0x70e2cbc6,
0x72552c85, 0x73b5ebd1,
0x7504d345, 0x7641af3d, 0x776c4edb, 0x78848414, 0x798a23b1, 0x7a7d055b,
0x7b5d039e, 0x7c29fbee,
0x7ce3ceb2, 0x7d8a5f40, 0x7e1d93ea, 0x7e9d55fc, 0x7f0991c4, 0x7f62368f,
0x7fa736b4, 0x7fd8878e,
0x7ff62182, 0x7fffffff, 0x7ff62182
};
/**
* @brief Fast approximation to the trigonometric cosine function for Q31 data.
* @param[in] x Scaled input value in radians.
* @return cos(x).
*
* The Q31 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi), Here range excludes 2*pi.
*/
q31_t arm_cos_q31(
q31_t x)
{
q31_t cosVal, in, in2; /* Temporary variables for input, output */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q31_t a, b, c, d; /* Four nearest output values */
q31_t *tablePtr; /* Pointer to table */
q31_t fract, fractCube, fractSquare; /* Temporary values for fractional values */
q31_t oneBy6 = 0x15555555; /* Fixed point value of 1/6 */
q31_t tableSpacing = TABLE_SPACING_Q31; /* Table spacing */
q31_t temp; /* Temporary variable for intermediate process */
int32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = in / tableSpacing;
/* Calculate the nearest value of input */
in2 = ((q31_t) index) * tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = ((q31_t) (((q63_t) fract * fract) >> 32));
fractSquare = fractSquare << 1;
/* fractCube = fract * fract * fract */
fractCube = ((q31_t) (((q63_t) fractSquare * fract) >> 32));
fractCube = fractCube << 1;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (q31_t *) & cosTableQ31[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAAAAAA)*fract; */
wa = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
temp = 0x2AAAAAAA;
wa = (q31_t) ((((q63_t) wa << 32) + ((q63_t) temp * fract)) >> 32);
wa = -(wa << 1u);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the cos table */
a = *tablePtr++;
/* cosVal = a*wa */
cosVal = ((q31_t) (((q63_t) a * wa) >> 32));
/* q31(1.31) Fixed point value of 1 */
temp = 0x7FFFFFFF;
/* Calculation of wb */
wb = ((fractCube >> 1u) - (fractSquare + (fract >> 1u))) + temp;
/* Read second nearest value of output from the cos table */
b = *tablePtr++;
/* cosVal += b*wb */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) b * (wb))) >> 32);
/* Calculation of wc */
wc = -fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest values of output value from the cos table */
c = *tablePtr++;
/* cosVal += c*wc */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) c * (wc))) >> 32);
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
wd = (wd << 1u);
/* Read fourth nearest value of output from the cos table */
d = *tablePtr++;
/* cosVal += d*wd; */
cosVal = (q31_t) ((((q63_t) cosVal << 32) + ((q63_t) d * (wd))) >> 32);
/* convert cosVal in 2.30 format to 1.31 format */
return (__QADD(cosVal, cosVal));
}
/**
* @} end of cos group
*/

View File

@ -0,0 +1,281 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sin_f32.c
*
* Description: Fast sine calculation for floating-point values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @defgroup sin Sine
*
* Computes the trigonometric sine function using a combination of table lookup
* and cubic interpolation. There are separate functions for
* Q15, Q31, and floating-point data types.
* The input to the floating-point version is in radians while the
* fixed-point Q15 and Q31 have a scaled input with the range
* [0 +0.9999] mapping to [0 2*pi), Where range excludes 2*pi.
*
* The implementation is based on table lookup using 256 values together with cubic interpolation.
* The steps used are:
* -# Calculation of the nearest integer table index
* -# Fetch the four table values a, b, c, and d
* -# Compute the fractional portion (fract) of the table index.
* -# Calculation of wa, wb, wc, wd
* -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code>
*
* where
* <pre>
* a=Table[index-1];
* b=Table[index+0];
* c=Table[index+1];
* d=Table[index+2];
* </pre>
* and
* <pre>
* wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
* wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
* wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
* wd=(1/6)*fract.^3 - (1/6)*fract;
* </pre>
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Example code for Generation of Floating-point Sin Table:
* tableSize = 256;
* <pre>for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]=sin(2*pi*n/tableSize);
* }</pre>
* \par
* where pi value is 3.14159265358979
*/
static const float32_t sinTable[259] = {
-0.024541229009628296f, 0.000000000000000000f, 0.024541229009628296f,
0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f,
0.122410677373409270f, 0.146730467677116390f,
0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f,
0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f,
0.313681751489639280f, 0.336889863014221190f,
0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f,
0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f,
0.492898195981979370f, 0.514102756977081300f,
0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f,
0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f,
0.653172850608825680f, 0.671558976173400880f,
0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f,
0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f,
0.788346409797668460f, 0.803207516670227050f,
0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f,
0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f,
0.893224298954010010f, 0.903989315032958980f,
0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f,
0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f,
0.963776051998138430f, 0.970031261444091800f,
0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f,
0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f,
0.997290432453155520f, 0.998795449733734130f,
0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f,
0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f,
0.992479562759399410f, 0.989176511764526370f,
0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f,
0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f,
0.949528157711029050f, 0.941544055938720700f,
0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f,
0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f,
0.870086967945098880f, 0.857728600502014160f,
0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f,
0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f,
0.757208824157714840f, 0.740951120853424070f,
0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f,
0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f,
0.615231573581695560f, 0.595699310302734380f,
0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f,
0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f,
0.449611335992813110f, 0.427555084228515630f,
0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f,
0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f,
0.266712754964828490f, 0.242980182170867920f,
0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f,
0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f,
0.073564566671848297f, 0.049067676067352295f,
0.024541229009628296f, 0.000000000000000122f, -0.024541229009628296f,
-0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f,
-0.122410677373409270f, -0.146730467677116390f,
-0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f,
-0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f,
-0.313681751489639280f, -0.336889863014221190f,
-0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f,
-0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f,
-0.492898195981979370f, -0.514102756977081300f,
-0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f,
-0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f,
-0.653172850608825680f, -0.671558976173400880f,
-0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f,
-0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f,
-0.788346409797668460f, -0.803207516670227050f,
-0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f,
-0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f,
-0.893224298954010010f, -0.903989315032958980f,
-0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f,
-0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f,
-0.963776051998138430f, -0.970031261444091800f,
-0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f,
-0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f,
-0.997290432453155520f, -0.998795449733734130f,
-0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f,
-0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f,
-0.992479562759399410f, -0.989176511764526370f,
-0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f,
-0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f,
-0.949528157711029050f, -0.941544055938720700f,
-0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f,
-0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f,
-0.870086967945098880f, -0.857728600502014160f,
-0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f,
-0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f,
-0.757208824157714840f, -0.740951120853424070f,
-0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f,
-0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f,
-0.615231573581695560f, -0.595699310302734380f,
-0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f,
-0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f,
-0.449611335992813110f, -0.427555084228515630f,
-0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f,
-0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f,
-0.266712754964828490f, -0.242980182170867920f,
-0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f,
-0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f,
-0.073564566671848297f, -0.049067676067352295f,
-0.024541229009628296f, -0.000000000000000245f, 0.024541229009628296f
};
/**
* @brief Fast approximation to the trigonometric sine function for floating-point data.
* @param[in] x input value in radians.
* @return sin(x).
*/
float32_t arm_sin_f32(
float32_t x)
{
float32_t sinVal, fract, in; /* Temporary variables for input, output */
int32_t index; /* Index variable */
uint32_t tableSize = (uint32_t) TABLE_SIZE; /* Initialise tablesize */
float32_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
float32_t a, b, c, d; /* Four nearest output values */
float32_t *tablePtr; /* Pointer to table */
int32_t n;
float32_t fractsq, fractby2, fractby6, fractby3, fractsqby2;
float32_t oneminusfractby2;
float32_t frby2xfrsq, frby6xfrsq;
/* input x is in radians */
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
in = x * 0.159154943092f;
/* Calculation of floor value of input */
n = (int32_t) in;
/* Make negative values towards -infinity */
if(x < 0.0f)
{
n = n - 1;
}
/* Map input value to [0 1] */
in = in - (float32_t) n;
/* Calculation of index of the table */
index = (uint32_t) (tableSize * in);
/* fractional value calculation */
fract = ((float32_t) tableSize * in) - (float32_t) index;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (float32_t *) & sinTable[index];
/* Read four nearest values of input value from the sin table */
a = tablePtr[0];
b = tablePtr[1];
c = tablePtr[2];
d = tablePtr[3];
/* Cubic interpolation process */
fractsq = fract * fract;
fractby2 = fract * 0.5f;
fractby6 = fract * 0.166666667f;
fractby3 = fract * 0.3333333333333f;
fractsqby2 = fractsq * 0.5f;
frby2xfrsq = (fractby2) * fractsq;
frby6xfrsq = (fractby6) * fractsq;
oneminusfractby2 = 1.0f - fractby2;
wb = fractsqby2 - fractby3;
wc = (fractsqby2 + fract);
wa = wb - frby6xfrsq;
wb = frby2xfrsq - fractsq;
sinVal = wa * a;
wc = wc - frby2xfrsq;
wd = (frby6xfrsq) - fractby6;
wb = wb + oneminusfractby2;
/* Calculate sin value */
sinVal = (sinVal + (b * wb)) + ((c * wc) + (d * wd));
/* Return the output value */
return (sinVal);
}
/**
* @} end of sin group
*/

View File

@ -0,0 +1,208 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sin_q15.c
*
* Description: Fast sine calculation for Q15 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Example code for Generation of Q15 Sin Table:
* \par
* <pre>tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]=sin(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Convert Floating point to Q15(Fixed point):
* (sinTable[i] * pow(2, 15))
* \par
* rounding to nearest integer is done
* sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
*/
static const q15_t sinTableQ15[259] = {
0xfcdc, 0x0, 0x324, 0x648, 0x96b, 0xc8c, 0xfab, 0x12c8,
0x15e2, 0x18f9, 0x1c0c, 0x1f1a, 0x2224, 0x2528, 0x2827, 0x2b1f,
0x2e11, 0x30fc, 0x33df, 0x36ba, 0x398d, 0x3c57, 0x3f17, 0x41ce,
0x447b, 0x471d, 0x49b4, 0x4c40, 0x4ec0, 0x5134, 0x539b, 0x55f6,
0x5843, 0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e9, 0x66d0,
0x68a7, 0x6a6e, 0x6c24, 0x6dca, 0x6f5f, 0x70e3, 0x7255, 0x73b6,
0x7505, 0x7642, 0x776c, 0x7885, 0x798a, 0x7a7d, 0x7b5d, 0x7c2a,
0x7ce4, 0x7d8a, 0x7e1e, 0x7e9d, 0x7f0a, 0x7f62, 0x7fa7, 0x7fd9,
0x7ff6, 0x7fff, 0x7ff6, 0x7fd9, 0x7fa7, 0x7f62, 0x7f0a, 0x7e9d,
0x7e1e, 0x7d8a, 0x7ce4, 0x7c2a, 0x7b5d, 0x7a7d, 0x798a, 0x7885,
0x776c, 0x7642, 0x7505, 0x73b6, 0x7255, 0x70e3, 0x6f5f, 0x6dca,
0x6c24, 0x6a6e, 0x68a7, 0x66d0, 0x64e9, 0x62f2, 0x60ec, 0x5ed7,
0x5cb4, 0x5a82, 0x5843, 0x55f6, 0x539b, 0x5134, 0x4ec0, 0x4c40,
0x49b4, 0x471d, 0x447b, 0x41ce, 0x3f17, 0x3c57, 0x398d, 0x36ba,
0x33df, 0x30fc, 0x2e11, 0x2b1f, 0x2827, 0x2528, 0x2224, 0x1f1a,
0x1c0c, 0x18f9, 0x15e2, 0x12c8, 0xfab, 0xc8c, 0x96b, 0x648,
0x324, 0x0, 0xfcdc, 0xf9b8, 0xf695, 0xf374, 0xf055, 0xed38,
0xea1e, 0xe707, 0xe3f4, 0xe0e6, 0xdddc, 0xdad8, 0xd7d9, 0xd4e1,
0xd1ef, 0xcf04, 0xcc21, 0xc946, 0xc673, 0xc3a9, 0xc0e9, 0xbe32,
0xbb85, 0xb8e3, 0xb64c, 0xb3c0, 0xb140, 0xaecc, 0xac65, 0xaa0a,
0xa7bd, 0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b17, 0x9930,
0x9759, 0x9592, 0x93dc, 0x9236, 0x90a1, 0x8f1d, 0x8dab, 0x8c4a,
0x8afb, 0x89be, 0x8894, 0x877b, 0x8676, 0x8583, 0x84a3, 0x83d6,
0x831c, 0x8276, 0x81e2, 0x8163, 0x80f6, 0x809e, 0x8059, 0x8027,
0x800a, 0x8000, 0x800a, 0x8027, 0x8059, 0x809e, 0x80f6, 0x8163,
0x81e2, 0x8276, 0x831c, 0x83d6, 0x84a3, 0x8583, 0x8676, 0x877b,
0x8894, 0x89be, 0x8afb, 0x8c4a, 0x8dab, 0x8f1d, 0x90a1, 0x9236,
0x93dc, 0x9592, 0x9759, 0x9930, 0x9b17, 0x9d0e, 0x9f14, 0xa129,
0xa34c, 0xa57e, 0xa7bd, 0xaa0a, 0xac65, 0xaecc, 0xb140, 0xb3c0,
0xb64c, 0xb8e3, 0xbb85, 0xbe32, 0xc0e9, 0xc3a9, 0xc673, 0xc946,
0xcc21, 0xcf04, 0xd1ef, 0xd4e1, 0xd7d9, 0xdad8, 0xdddc, 0xe0e6,
0xe3f4, 0xe707, 0xea1e, 0xed38, 0xf055, 0xf374, 0xf695, 0xf9b8,
0xfcdc, 0x0, 0x324
};
/**
* @brief Fast approximation to the trigonometric sine function for Q15 data.
* @param[in] x Scaled input value in radians.
* @return sin(x).
*
* The Q15 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi), Here range excludes 2*pi.
*/
q15_t arm_sin_q15(
q15_t x)
{
q31_t sinVal; /* Temporary variables output */
q15_t *tablePtr; /* Pointer to table */
q15_t fract, in, in2; /* Temporary variables for input, output */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q15_t a, b, c, d; /* Four nearest output values */
q15_t fractCube, fractSquare; /* Temporary values for fractional value */
q15_t oneBy6 = 0x1555; /* Fixed point value of 1/6 */
q15_t tableSpacing = TABLE_SPACING_Q15; /* Table spacing */
int32_t index; /* Index variable */
in = x;
/* Calculate the nearest index */
index = (int32_t) in / tableSpacing;
/* Calculate the nearest value of input */
in2 = (q15_t) ((index) * tableSpacing);
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = (q15_t) ((fract * fract) >> 15);
/* fractCube = fract * fract * fract */
fractCube = (q15_t) ((fractSquare * fract) >> 15);
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (q15_t *) & sinTableQ15[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAA)*fract; */
wa = (q31_t) oneBy6 *fractCube;
wa += (q31_t) 0x2AAA *fract;
wa = -(wa >> 15);
wa += ((q31_t) fractSquare >> 1u);
/* Read first nearest value of output from the sin table */
a = *tablePtr++;
/* sinVal = a * wa */
sinVal = a * wa;
/* Calculation of wb */
wb = (((q31_t) fractCube >> 1u) - (q31_t) fractSquare) -
(((q31_t) fract >> 1u) - 0x7FFF);
/* Read second nearest value of output from the sin table */
b = *tablePtr++;
/* sinVal += b*wb */
sinVal += b * wb;
/* Calculation of wc */
wc = -(q31_t) fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the sin table */
c = *tablePtr++;
/* sinVal += c*wc */
sinVal += c * wc;
/* Calculation of wd */
/* wd = (oneBy6)*fractCube - (oneBy6)*fract; */
fractCube = fractCube - fract;
wd = ((q15_t) (((q31_t) oneBy6 * fractCube) >> 15));
/* Read fourth nearest value of output from the sin table */
d = *tablePtr++;
/* sinVal += d*wd; */
sinVal += d * wd;
/* Convert output value in 1.15(q15) format and saturate */
sinVal = __SSAT((sinVal >> 15), 16);
/* Return the output value in 1.15(q15) format */
return ((q15_t) sinVal);
}
/**
* @} end of sin group
*/

View File

@ -0,0 +1,240 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sin_q31.c
*
* Description: Fast sine calculation for Q31 values.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup sin
* @{
*/
/**
* \par
* Tables generated are in Q31(1.31 Fixed point format)
* Generation of sin values in floating point:
* <pre>tableSize = 256;
* for(n = -1; n < (tableSize + 1); n++)
* {
* sinTable[n+1]= sin(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Convert Floating point to Q31(Fixed point):
* (sinTable[i] * pow(2, 31))
* \par
* rounding to nearest integer is done
* sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
*/
static const q31_t sinTableQ31[259] = {
0xfcdbd541, 0x0, 0x3242abf, 0x647d97c, 0x96a9049, 0xc8bd35e, 0xfab272b,
0x12c8106f,
0x15e21445, 0x18f8b83c, 0x1c0b826a, 0x1f19f97b, 0x2223a4c5, 0x25280c5e,
0x2826b928, 0x2b1f34eb,
0x2e110a62, 0x30fbc54d, 0x33def287, 0x36ba2014, 0x398cdd32, 0x3c56ba70,
0x3f1749b8, 0x41ce1e65,
0x447acd50, 0x471cece7, 0x49b41533, 0x4c3fdff4, 0x4ebfe8a5, 0x5133cc94,
0x539b2af0, 0x55f5a4d2,
0x5842dd54, 0x5a82799a, 0x5cb420e0, 0x5ed77c8a, 0x60ec3830, 0x62f201ac,
0x64e88926, 0x66cf8120,
0x68a69e81, 0x6a6d98a4, 0x6c242960, 0x6dca0d14, 0x6f5f02b2, 0x70e2cbc6,
0x72552c85, 0x73b5ebd1,
0x7504d345, 0x7641af3d, 0x776c4edb, 0x78848414, 0x798a23b1, 0x7a7d055b,
0x7b5d039e, 0x7c29fbee,
0x7ce3ceb2, 0x7d8a5f40, 0x7e1d93ea, 0x7e9d55fc, 0x7f0991c4, 0x7f62368f,
0x7fa736b4, 0x7fd8878e,
0x7ff62182, 0x7fffffff, 0x7ff62182, 0x7fd8878e, 0x7fa736b4, 0x7f62368f,
0x7f0991c4, 0x7e9d55fc,
0x7e1d93ea, 0x7d8a5f40, 0x7ce3ceb2, 0x7c29fbee, 0x7b5d039e, 0x7a7d055b,
0x798a23b1, 0x78848414,
0x776c4edb, 0x7641af3d, 0x7504d345, 0x73b5ebd1, 0x72552c85, 0x70e2cbc6,
0x6f5f02b2, 0x6dca0d14,
0x6c242960, 0x6a6d98a4, 0x68a69e81, 0x66cf8120, 0x64e88926, 0x62f201ac,
0x60ec3830, 0x5ed77c8a,
0x5cb420e0, 0x5a82799a, 0x5842dd54, 0x55f5a4d2, 0x539b2af0, 0x5133cc94,
0x4ebfe8a5, 0x4c3fdff4,
0x49b41533, 0x471cece7, 0x447acd50, 0x41ce1e65, 0x3f1749b8, 0x3c56ba70,
0x398cdd32, 0x36ba2014,
0x33def287, 0x30fbc54d, 0x2e110a62, 0x2b1f34eb, 0x2826b928, 0x25280c5e,
0x2223a4c5, 0x1f19f97b,
0x1c0b826a, 0x18f8b83c, 0x15e21445, 0x12c8106f, 0xfab272b, 0xc8bd35e,
0x96a9049, 0x647d97c,
0x3242abf, 0x0, 0xfcdbd541, 0xf9b82684, 0xf6956fb7, 0xf3742ca2, 0xf054d8d5,
0xed37ef91,
0xea1debbb, 0xe70747c4, 0xe3f47d96, 0xe0e60685, 0xdddc5b3b, 0xdad7f3a2,
0xd7d946d8, 0xd4e0cb15,
0xd1eef59e, 0xcf043ab3, 0xcc210d79, 0xc945dfec, 0xc67322ce, 0xc3a94590,
0xc0e8b648, 0xbe31e19b,
0xbb8532b0, 0xb8e31319, 0xb64beacd, 0xb3c0200c, 0xb140175b, 0xaecc336c,
0xac64d510, 0xaa0a5b2e,
0xa7bd22ac, 0xa57d8666, 0xa34bdf20, 0xa1288376, 0x9f13c7d0, 0x9d0dfe54,
0x9b1776da, 0x99307ee0,
0x9759617f, 0x9592675c, 0x93dbd6a0, 0x9235f2ec, 0x90a0fd4e, 0x8f1d343a,
0x8daad37b, 0x8c4a142f,
0x8afb2cbb, 0x89be50c3, 0x8893b125, 0x877b7bec, 0x8675dc4f, 0x8582faa5,
0x84a2fc62, 0x83d60412,
0x831c314e, 0x8275a0c0, 0x81e26c16, 0x8162aa04, 0x80f66e3c, 0x809dc971,
0x8058c94c, 0x80277872,
0x8009de7e, 0x80000000, 0x8009de7e, 0x80277872, 0x8058c94c, 0x809dc971,
0x80f66e3c, 0x8162aa04,
0x81e26c16, 0x8275a0c0, 0x831c314e, 0x83d60412, 0x84a2fc62, 0x8582faa5,
0x8675dc4f, 0x877b7bec,
0x8893b125, 0x89be50c3, 0x8afb2cbb, 0x8c4a142f, 0x8daad37b, 0x8f1d343a,
0x90a0fd4e, 0x9235f2ec,
0x93dbd6a0, 0x9592675c, 0x9759617f, 0x99307ee0, 0x9b1776da, 0x9d0dfe54,
0x9f13c7d0, 0xa1288376,
0xa34bdf20, 0xa57d8666, 0xa7bd22ac, 0xaa0a5b2e, 0xac64d510, 0xaecc336c,
0xb140175b, 0xb3c0200c,
0xb64beacd, 0xb8e31319, 0xbb8532b0, 0xbe31e19b, 0xc0e8b648, 0xc3a94590,
0xc67322ce, 0xc945dfec,
0xcc210d79, 0xcf043ab3, 0xd1eef59e, 0xd4e0cb15, 0xd7d946d8, 0xdad7f3a2,
0xdddc5b3b, 0xe0e60685,
0xe3f47d96, 0xe70747c4, 0xea1debbb, 0xed37ef91, 0xf054d8d5, 0xf3742ca2,
0xf6956fb7, 0xf9b82684,
0xfcdbd541, 0x0, 0x3242abf
};
/**
* @brief Fast approximation to the trigonometric sine function for Q31 data.
* @param[in] x Scaled input value in radians.
* @return sin(x).
*
* The Q31 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi), Here range excludes 2*pi.
*/
q31_t arm_sin_q31(
q31_t x)
{
q31_t sinVal, in, in2; /* Temporary variables for input, output */
int32_t index; /* Index variables */
q31_t wa, wb, wc, wd; /* Cubic interpolation coefficients */
q31_t a, b, c, d; /* Four nearest output values */
q31_t *tablePtr; /* Pointer to table */
q31_t fract, fractCube, fractSquare; /* Temporary values for fractional values */
q31_t oneBy6 = 0x15555555; /* Fixed point value of 1/6 */
q31_t tableSpacing = TABLE_SPACING_Q31; /* Table spacing */
q31_t temp; /* Temporary variable for intermediate process */
in = x;
/* Calculate the nearest index */
index = (uint32_t) in / (uint32_t) tableSpacing;
/* Calculate the nearest value of input */
in2 = (q31_t) index *tableSpacing;
/* Calculation of fractional value */
fract = (in - in2) << 8;
/* fractSquare = fract * fract */
fractSquare = ((q31_t) (((q63_t) fract * fract) >> 32));
fractSquare = fractSquare << 1;
/* fractCube = fract * fract * fract */
fractCube = ((q31_t) (((q63_t) fractSquare * fract) >> 32));
fractCube = fractCube << 1;
/* Checking min and max index of table */
if(index < 0)
{
index = 0;
}
else if(index > 256)
{
index = 256;
}
/* Initialise table pointer */
tablePtr = (q31_t *) & sinTableQ31[index];
/* Cubic interpolation process */
/* Calculation of wa */
/* wa = -(oneBy6)*fractCube + (fractSquare >> 1u) - (0x2AAAAAAA)*fract; */
wa = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
temp = 0x2AAAAAAA;
wa = (q31_t) ((((q63_t) wa << 32) + ((q63_t) temp * fract)) >> 32);
wa = -(wa << 1u);
wa += (fractSquare >> 1u);
/* Read first nearest value of output from the sin table */
a = *tablePtr++;
/* sinVal = a*wa */
sinVal = ((q31_t) (((q63_t) a * wa) >> 32));
/* q31(1.31) Fixed point value of 1 */
temp = 0x7FFFFFFF;
/* Calculation of wb */
wb = ((fractCube >> 1u) - (fractSquare + (fract >> 1u))) + temp;
/* Read second nearest value of output from the sin table */
b = *tablePtr++;
/* sinVal += b*wb */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + (q63_t) b * (wb)) >> 32);
/* Calculation of wc */
wc = -fractCube + fractSquare;
wc = (wc >> 1u) + fract;
/* Read third nearest value of output from the sin table */
c = *tablePtr++;
/* sinVal += c*wc */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + ((q63_t) c * wc)) >> 32);
/* Calculation of wd */
/* wd = (oneBy6) * fractCube - (oneBy6) * fract; */
fractCube = fractCube - fract;
wd = ((q31_t) (((q63_t) oneBy6 * fractCube) >> 32));
wd = (wd << 1u);
/* Read fourth nearest value of output from the sin table */
d = *tablePtr++;
/* sinVal += d*wd; */
sinVal = (q31_t) ((((q63_t) sinVal << 32) + ((q63_t) d * wd)) >> 32);
/* convert sinVal in 2.30 format to 1.31 format */
return (__QADD(sinVal, sinVal));
}
/**
* @} end of sin group
*/

View File

@ -0,0 +1,131 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2011 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sqrt_q15.c
*
* Description: Q15 square root function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.0 2011/03/08
* Alpha release.
*
* Version 1.0.1 2011/09/30
* Beta release.
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_common_tables.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup SQRT
* @{
*/
/**
* @brief Q15 square root function.
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
* @param[out] *pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
arm_status arm_sqrt_q15(
q15_t in,
q15_t * pOut)
{
q15_t number, temp1, var1, signBits1, half;
q31_t bits_val1;
float32_t temp_float1;
number = in;
/* If the input is a positive number then compute the signBits. */
if(number > 0)
{
signBits1 = __CLZ(number) - 17;
/* Shift by the number of signBits1 */
if((signBits1 % 2) == 0)
{
number = number << signBits1;
}
else
{
number = number << (signBits1 - 1);
}
/* Calculate half value of the number */
half = number >> 1;
/* Store the number for later use */
temp1 = number;
/*Convert to float */
temp_float1 = number * 3.051757812500000e-005f;
/*Store as integer */
bits_val1 = *(int *) &temp_float1;
/* Subtract the shifted value from the magic number to give intial guess */
bits_val1 = 0x5f3759df - (bits_val1 >> 1); // gives initial guess
/* Store as float */
temp_float1 = *(float *) &bits_val1;
/* Convert to integer format */
var1 = (q31_t) (temp_float1 * 16384);
/* 1st iteration */
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
((q15_t)
((((q15_t)
(((q31_t) var1 * var1) >> 15)) *
(q31_t) half) >> 15))) >> 15)) << 2;
/* 2nd iteration */
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
((q15_t)
((((q15_t)
(((q31_t) var1 * var1) >> 15)) *
(q31_t) half) >> 15))) >> 15)) << 2;
/* 3rd iteration */
var1 = ((q15_t) ((q31_t) var1 * (0x3000 -
((q15_t)
((((q15_t)
(((q31_t) var1 * var1) >> 15)) *
(q31_t) half) >> 15))) >> 15)) << 2;
/* Multiply the inverse square root with the original value */
var1 = ((q15_t) (((q31_t) temp1 * var1) >> 15)) << 1;
/* Shift the output down accordingly */
if((signBits1 % 2) == 0)
{
var1 = var1 >> (signBits1 / 2);
}
else
{
var1 = var1 >> ((signBits1 - 1) / 2);
}
*pOut = var1;
return (ARM_MATH_SUCCESS);
}
/* If the number is a negative number then store zero as its square root value */
else
{
*pOut = 0;
return (ARM_MATH_ARGUMENT_ERROR);
}
}
/**
* @} end of SQRT group
*/

View File

@ -0,0 +1,129 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2011 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_sqrt_q31.c
*
* Description: Q31 square root function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.0 2011/03/08
* Alpha release.
*
* Version 1.0.1 2011/09/30
* Beta release.
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_common_tables.h"
/**
* @ingroup groupFastMath
*/
/**
* @addtogroup SQRT
* @{
*/
/**
* @brief Q31 square root function.
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
* @param[out] *pOut square root of input value.
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* <code>in</code> is negative value and returns zero output for negative values.
*/
arm_status arm_sqrt_q31(
q31_t in,
q31_t * pOut)
{
q31_t number, temp1, bits_val1, var1, signBits1, half;
float32_t temp_float1;
number = in;
/* If the input is a positive number then compute the signBits. */
if(number > 0)
{
signBits1 = __CLZ(number) - 1;
/* Shift by the number of signBits1 */
if((signBits1 % 2) == 0)
{
number = number << signBits1;
}
else
{
number = number << (signBits1 - 1);
}
/* Calculate half value of the number */
half = number >> 1;
/* Store the number for later use */
temp1 = number;
/*Convert to float */
temp_float1 = number * 4.6566128731e-010f;
/*Store as integer */
bits_val1 = *(int *) &temp_float1;
/* Subtract the shifted value from the magic number to give intial guess */
bits_val1 = 0x5f3759df - (bits_val1 >> 1); // gives initial guess
/* Store as float */
temp_float1 = *(float *) &bits_val1;
/* Convert to integer format */
var1 = (q31_t) (temp_float1 * 1073741824);
/* 1st iteration */
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
((q31_t)
((((q31_t)
(((q63_t) var1 * var1) >> 31)) *
(q63_t) half) >> 31))) >> 31)) << 2;
/* 2nd iteration */
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
((q31_t)
((((q31_t)
(((q63_t) var1 * var1) >> 31)) *
(q63_t) half) >> 31))) >> 31)) << 2;
/* 3rd iteration */
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 -
((q31_t)
((((q31_t)
(((q63_t) var1 * var1) >> 31)) *
(q63_t) half) >> 31))) >> 31)) << 2;
/* Multiply the inverse square root with the original value */
var1 = ((q31_t) (((q63_t) temp1 * var1) >> 31)) << 1;
/* Shift the output down accordingly */
if((signBits1 % 2) == 0)
{
var1 = var1 >> (signBits1 / 2);
}
else
{
var1 = var1 >> ((signBits1 - 1) / 2);
}
*pOut = var1;
return (ARM_MATH_SUCCESS);
}
/* If the number is a negative number then store zero as its square root value */
else
{
*pOut = 0;
return (ARM_MATH_ARGUMENT_ERROR);
}
}
/**
* @} end of SQRT group
*/

View File

@ -0,0 +1,105 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_32x64_init_q31.c
*
* Description: High precision Q31 Biquad cascade filter initialization function.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1_32x64
* @{
*/
/**
* @details
*
* @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
* @param[in] numStages number of 2nd order stages in the filter.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format.
* @return none
*
* <b>Coefficient and State Ordering:</b>
*
* \par
* The coefficients are stored in the array <code>pCoeffs</code> in the following order:
* <pre>
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
* </pre>
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
*
* \par
* The <code>pState</code> points to state variables array and size of each state variable is 1.63 format.
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
* The state variables are arranged in the state array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*/
void arm_biquad_cas_df1_32x64_init_q31(
arm_biquad_cas_df1_32x64_ins_q31 * S,
uint8_t numStages,
q31_t * pCoeffs,
q63_t * pState,
uint8_t postShift)
{
/* Assign filter stages */
S->numStages = numStages;
/* Assign postShift to be applied to the output */
S->postShift = postShift;
/* Assign coefficient pointer */
S->pCoeffs = pCoeffs;
/* Clear state buffer and size is always 4 * numStages */
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(q63_t));
/* Assign state pointer */
S->pState = pState;
}
/**
* @} end of BiquadCascadeDF1_32x64 group
*/

View File

@ -0,0 +1,553 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_32x64_q31.c
*
* Description: High precision Q31 Biquad cascade filter processing function
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup BiquadCascadeDF1_32x64 High Precision Q31 Biquad Cascade Filter
*
* This function implements a high precision Biquad cascade filter which operates on
* Q31 data values. The filter coefficients are in 1.31 format and the state variables
* are in 1.63 format. The double precision state variables reduce quantization noise
* in the filter and provide a cleaner output.
* These filters are particularly useful when implementing filters in which the
* singularities are close to the unit circle. This is common for low pass or high
* pass filters with very low cutoff frequencies.
*
* The function operates on blocks of input and output data
* and each call to the function processes <code>blockSize</code> samples through
* the filter. <code>pSrc</code> and <code>pDst</code> points to input and output arrays
* containing <code>blockSize</code> Q31 values.
*
* \par Algorithm
* Each Biquad stage implements a second order filter using the difference equation:
* <pre>
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* </pre>
* A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
* \image html Biquad.gif "Single Biquad filter stage"
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
* Pay careful attention to the sign of the feedback coefficients.
* Some design tools use the difference equation
* <pre>
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
* </pre>
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
*
* \par
* Higher order filters are realized as a cascade of second order sections.
* <code>numStages</code> refers to the number of second order stages used.
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
* \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
*
* \par
* The <code>pState</code> points to state variables array .
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code> and each state variable in 1.63 format to improve precision.
* The state variables are arranged in the array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
*
* \par
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values of data in 1.63 format.
* The state variables are updated after each block of data is processed; the coefficients are untouched.
*
* \par Instance Structure
* The coefficients and state variables for a filter are stored together in an instance data structure.
* A separate instance structure must be defined for each filter.
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
*
* \par Init Function
* There is also an associated initialization function which performs the following operations:
* - Sets the values of the internal structure fields.
* - Zeros out the values in the state buffer.
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* Set the values in the state buffer to zeros before static initialization.
* For example, to statically initialize the filter instance structure use
* <pre>
* arm_biquad_cas_df1_32x64_ins_q31 S1 = {numStages, pState, pCoeffs, postShift};
* </pre>
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
* <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied which is described in detail below.
* \par Fixed-Point Behavior
* Care must be taken while using Biquad Cascade 32x64 filter function.
* Following issues must be considered:
* - Scaling of coefficients
* - Filter gain
* - Overflow and saturation
*
* \par
* Filter coefficients are represented as fractional values and
* restricted to lie in the range <code>[-1 +1)</code>.
* The processing function has an additional scaling parameter <code>postShift</code>
* which allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
* At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
* \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
* This essentially scales the filter coefficients by <code>2^postShift</code>.
* For example, to realize the coefficients
* <pre>
* {1.5, -0.8, 1.2, 1.6, -0.9}
* </pre>
* set the Coefficient array to:
* <pre>
* {0.75, -0.4, 0.6, 0.8, -0.45}
* </pre>
* and set <code>postShift=1</code>
*
* \par
* The second thing to keep in mind is the gain through the filter.
* The frequency response of a Biquad filter is a function of its coefficients.
* It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
* This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
* To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
*
* \par
* The third item to consider is the overflow and saturation behavior of the fixed-point Q31 version.
* This is described in the function specific documentation below.
*/
/**
* @addtogroup BiquadCascadeDF1_32x64
* @{
*/
/**
* @details
* @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process.
* @return none.
*
* \par
* The function is implemented using an internal 64-bit accumulator.
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around rather than clip.
* In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
* After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
* 1.31 format by discarding the low 32 bits.
*
* \par
* Two related functions are provided in the CMSIS DSP library.
* <code>arm_biquad_cascade_df1_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q63 accumulator.
* <code>arm_biquad_cascade_df1_fast_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q31 accumulator.
*/
void arm_biquad_cas_df1_32x64_q31(
const arm_biquad_cas_df1_32x64_ins_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
{
q31_t *pIn = pSrc; /* input pointer initialization */
q31_t *pOut = pDst; /* output pointer initialization */
q63_t *pState = S->pState; /* state pointer initialization */
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
q63_t acc; /* accumulator */
q31_t Xn1, Xn2; /* Input Filter state variables */
q63_t Yn1, Yn2; /* Output Filter state variables */
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
q31_t Xn; /* temporary input */
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
uint32_t sample, stage = S->numStages; /* loop counters */
q31_t acc_l, acc_h; /* temporary output */
uint32_t uShift = ((uint32_t) S->postShift + 1u);
uint32_t lShift = 32u - uShift; /* Shift to be applied to the output */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = (q31_t) (pState[0]);
Xn2 = (q31_t) (pState[1]);
Yn1 = pState[2];
Yn2 = pState[3];
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* The variable acc hold output value that is being computed and
* stored in the destination buffer
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) Xn *b0;
/* acc += b1 * x[n-1] */
acc += (q63_t) Xn1 *b1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) Xn2 *b2;
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn1, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn2, a2);
/* The result is converted to 1.63 , Yn2 variable is reused */
Yn2 = acc << shift;
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
/* Apply shift for lower part of acc and upper part of acc */
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store the output in the destination buffer in 1.31 format. */
*pOut = acc_h;
/* Read the second input into Xn2, to reuse the value */
Xn2 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc += b1 * x[n-1] */
acc = (q63_t) Xn *b1;
/* acc = b0 * x[n] */
acc += (q63_t) Xn2 *b0;
/* acc += b[2] * x[n-2] */
acc += (q63_t) Xn1 *b2;
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn2, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn1, a2);
/* The result is converted to 1.63, Yn1 variable is reused */
Yn1 = acc << shift;
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
/* Apply shift for lower part of acc and upper part of acc */
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Read the third input into Xn1, to reuse the value */
Xn1 = *pIn++;
/* The result is converted to 1.31 */
/* Store the output in the destination buffer. */
*(pOut + 1u) = acc_h;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) Xn1 *b0;
/* acc += b1 * x[n-1] */
acc += (q63_t) Xn2 *b1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) Xn *b2;
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn1, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn2, a2);
/* The result is converted to 1.63, Yn2 variable is reused */
Yn2 = acc << shift;
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
/* Apply shift for lower part of acc and upper part of acc */
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store the output in the destination buffer in 1.31 format. */
*(pOut + 2u) = acc_h;
/* Read the fourth input into Xn, to reuse the value */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) Xn *b0;
/* acc += b1 * x[n-1] */
acc += (q63_t) Xn1 *b1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) Xn2 *b2;
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn2, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn1, a2);
/* The result is converted to 1.63, Yn1 variable is reused */
Yn1 = acc << shift;
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
/* Apply shift for lower part of acc and upper part of acc */
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store the output in the destination buffer in 1.31 format. */
*(pOut + 3u) = acc_h;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
/* update output pointer */
pOut += 4u;
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = (blockSize & 0x3u);
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) Xn *b0;
/* acc += b1 * x[n-1] */
acc += (q63_t) Xn1 *b1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) Xn2 *b2;
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn1, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn2, a2);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
/* The result is converted to 1.63, Yn1 variable is reused */
Yn1 = acc << shift;
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
/* Apply shift for lower part of acc and upper part of acc */
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store the output in the destination buffer in 1.31 format. */
*pOut++ = acc_h;
//Yn1 = acc << shift;
/* Store the output in the destination buffer in 1.31 format. */
// *pOut++ = (q31_t) (acc >> (32 - shift));
/* decrement the loop counter */
sample--;
}
/* The first stage output is given as input to the second stage. */
pIn = pDst;
/* Reset to destination buffer working pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
/* Store the updated state variables back into the pState array */
*pState++ = (q63_t) Xn1;
*pState++ = (q63_t) Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
#else
/* Run the below code for Cortex-M0 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the state values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* The variable acc hold output value that is being computed and
* stored in the destination buffer
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
/* acc = b0 * x[n] */
acc = (q63_t) Xn *b0;
/* acc += b1 * x[n-1] */
acc += (q63_t) Xn1 *b1;
/* acc += b[2] * x[n-2] */
acc += (q63_t) Xn2 *b2;
/* acc += a1 * y[n-1] */
acc += mult32x64(Yn1, a1);
/* acc += a2 * y[n-2] */
acc += mult32x64(Yn2, a2);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
/* The result is converted to 1.63, Yn1 variable is reused */
Yn1 = acc << shift;
/* Calc lower part of acc */
acc_l = acc & 0xffffffff;
/* Calc upper part of acc */
acc_h = (acc >> 32) & 0xffffffff;
/* Apply shift for lower part of acc and upper part of acc */
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
/* Store the output in the destination buffer in 1.31 format. */
*pOut++ = acc_h;
//Yn1 = acc << shift;
/* Store the output in the destination buffer in 1.31 format. */
//*pOut++ = (q31_t) (acc >> (32 - shift));
/* decrement the loop counter */
sample--;
}
/* The first stage output is given as input to the second stage. */
pIn = pDst;
/* Reset to destination buffer working pointer */
pOut = pDst;
/* Store the updated state variables back into the pState array */
*pState++ = (q63_t) Xn1;
*pState++ = (q63_t) Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
} while(--stage);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BiquadCascadeDF1_32x64 group
*/

View File

@ -0,0 +1,421 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_f32.c
*
* Description: Processing function for the
* floating-point Biquad cascade DirectFormI(DF1) filter.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.5 2010/04/26
* incorporated review comments and updated with latest CMSIS layer
*
* Version 0.0.3 2010/03/10
* Initial version
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @defgroup BiquadCascadeDF1 Biquad Cascade IIR Filters Using Direct Form I Structure
*
* This set of functions implements arbitrary order recursive (IIR) filters.
* The filters are implemented as a cascade of second order Biquad sections.
* The functions support Q15, Q31 and floating-point data types.
* Fast version of Q15 and Q31 also supported on CortexM4 and Cortex-M3.
*
* The functions operate on blocks of input and output data and each call to the function
* processes <code>blockSize</code> samples through the filter.
* <code>pSrc</code> points to the array of input data and
* <code>pDst</code> points to the array of output data.
* Both arrays contain <code>blockSize</code> values.
*
* \par Algorithm
* Each Biquad stage implements a second order filter using the difference equation:
* <pre>
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* </pre>
* A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
* \image html Biquad.gif "Single Biquad filter stage"
* Coefficients <code>b0, b1 and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
* Pay careful attention to the sign of the feedback coefficients.
* Some design tools use the difference equation
* <pre>
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
* </pre>
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
*
* \par
* Higher order filters are realized as a cascade of second order sections.
* <code>numStages</code> refers to the number of second order stages used.
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
* \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
*
* \par
* The <code>pState</code> points to state variables array.
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
* The state variables are arranged in the <code>pState</code> array as:
* <pre>
* {x[n-1], x[n-2], y[n-1], y[n-2]}
* </pre>
*
* \par
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
* The state array has a total length of <code>4*numStages</code> values.
* The state variables are updated after each block of data is processed, the coefficients are untouched.
*
* \par Instance Structure
* The coefficients and state variables for a filter are stored together in an instance data structure.
* A separate instance structure must be defined for each filter.
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
* There are separate instance structure declarations for each of the 3 supported data types.
*
* \par Init Functions
* There is also an associated initialization function for each data type.
* The initialization function performs following operations:
* - Sets the values of the internal structure fields.
* - Zeros out the values in the state buffer.
*
* \par
* Use of the initialization function is optional.
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
* To place an instance structure into a const data section, the instance structure must be manually initialized.
* Set the values in the state buffer to zeros before static initialization.
* The code below statically initializes each of the 3 different data type filter instance structures
* <pre>
* arm_biquad_casd_df1_inst_f32 S1 = {numStages, pState, pCoeffs};
* arm_biquad_casd_df1_inst_q15 S2 = {numStages, pState, pCoeffs, postShift};
* arm_biquad_casd_df1_inst_q31 S3 = {numStages, pState, pCoeffs, postShift};
* </pre>
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
* <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied.
*
* \par Fixed-Point Behavior
* Care must be taken when using the Q15 and Q31 versions of the Biquad Cascade filter functions.
* Following issues must be considered:
* - Scaling of coefficients
* - Filter gain
* - Overflow and saturation
*
* \par
* <b>Scaling of coefficients: </b>
* Filter coefficients are represented as fractional values and
* coefficients are restricted to lie in the range <code>[-1 +1)</code>.
* The fixed-point functions have an additional scaling parameter <code>postShift</code>
* which allow the filter coefficients to exceed the range <code>[+1 -1)</code>.
* At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
* \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
* This essentially scales the filter coefficients by <code>2^postShift</code>.
* For example, to realize the coefficients
* <pre>
* {1.5, -0.8, 1.2, 1.6, -0.9}
* </pre>
* set the pCoeffs array to:
* <pre>
* {0.75, -0.4, 0.6, 0.8, -0.45}
* </pre>
* and set <code>postShift=1</code>
*
* \par
* <b>Filter gain: </b>
* The frequency response of a Biquad filter is a function of its coefficients.
* It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
* This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
* To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
*
* \par
* <b>Overflow and saturation: </b>
* For Q15 and Q31 versions, it is described separately as part of the function specific documentation below.
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @param[in] *S points to an instance of the floating-point Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
*/
void arm_biquad_cascade_df1_f32(
const arm_biquad_casd_df1_inst_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
float32_t *pIn = pSrc; /* source pointer */
float32_t *pOut = pDst; /* destination pointer */
float32_t *pState = S->pState; /* pState pointer */
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */
float32_t acc; /* Simulates the accumulator */
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */
float32_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */
float32_t Xn; /* temporary input */
uint32_t sample, stage = S->numStages; /* loop counters */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the pState values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* Apply loop unrolling and compute 4 output values simultaneously. */
/* The variable acc hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(sample > 0u)
{
/* Read the first input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = Yn2;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* Read the second input */
Xn2 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = Yn1;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* Read the third input */
Xn1 = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = Yn2;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* Read the forth input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = Yn1;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
/* decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
sample = blockSize & 0x3u;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc;
/* decrement the loop counter */
sample--;
}
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent numStages occur in-place in the output buffer */
pIn = pDst;
/* Reset the output pointer */
pOut = pDst;
/* decrement the loop counter */
stage--;
} while(stage > 0u);
#else
/* Run the below code for Cortex-M0 */
do
{
/* Reading the coefficients */
b0 = *pCoeffs++;
b1 = *pCoeffs++;
b2 = *pCoeffs++;
a1 = *pCoeffs++;
a2 = *pCoeffs++;
/* Reading the pState values */
Xn1 = pState[0];
Xn2 = pState[1];
Yn1 = pState[2];
Yn2 = pState[3];
/* The variables acc holds the output value that is computed:
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize;
while(sample > 0u)
{
/* Read the input */
Xn = *pIn++;
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);
/* Store the result in the accumulator in the destination buffer. */
*pOut++ = acc;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
Xn2 = Xn1;
Xn1 = Xn;
Yn2 = Yn1;
Yn1 = acc;
/* decrement the loop counter */
sample--;
}
/* Store the updated state variables back into the pState array */
*pState++ = Xn1;
*pState++ = Xn2;
*pState++ = Yn1;
*pState++ = Yn2;
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent numStages occur in-place in the output buffer */
pIn = pDst;
/* Reset the output pointer */
pOut = pDst;
/* decrement the loop counter */
stage--;
} while(stage > 0u);
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of BiquadCascadeDF1 group
*/

View File

@ -0,0 +1,283 @@
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. February 2012
* $Revision: V1.1.0
*
* Project: CMSIS DSP Library
* Title: arm_biquad_cascade_df1_fast_q15.c
*
* Description: Fast processing function for the
* Q15 Biquad cascade filter.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Version 1.1.0 2012/02/15
* Updated with more optimizations, bug fixes and minor API changes.
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.9 2010/08/16
* Initial version
*
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupFilters
*/
/**
* @addtogroup BiquadCascadeDF1
* @{
*/
/**
* @details
* @param[in] *S points to an instance of the Q15 Biquad cascade structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of samples to process per call.
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* This fast version uses a 32-bit accumulator with 2.30 format.
* The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
* Thus, if the accumulator result overflows it wraps around and distorts the result.
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25).
* The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits.
*
* \par
* Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure.
* Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure.
*
*/
void arm_biquad_cascade_df1_fast_q15(
const arm_biquad_casd_df1_inst_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
q15_t *pIn = pSrc; /* Source pointer */
q15_t *pOut = pDst; /* Destination pointer */
q31_t in; /* Temporary variable to hold input value */
q31_t out; /* Temporary variable to hold output value */
q31_t b0; /* Temporary variable to hold bo value */
q31_t b1, a1; /* Filter coefficients */
q31_t state_in, state_out; /* Filter state variables */
q31_t acc; /* Accumulator */
int32_t shift = (int32_t) (15 - S->postShift); /* Post shift */
q15_t *pState = S->pState; /* State pointer */
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
uint32_t sample, stage = S->numStages; /* Stage loop counter */
do
{
/* Read the b0 and 0 coefficients using SIMD */
b0 = *__SIMD32(pCoeffs)++;
/* Read the b1 and b2 coefficients using SIMD */
b1 = *__SIMD32(pCoeffs)++;
/* Read the a1 and a2 coefficients using SIMD */
a1 = *__SIMD32(pCoeffs)++;
/* Read the input state values from the state buffer: x[n-1], x[n-2] */
state_in = *__SIMD32(pState)++;
/* Read the output state values from the state buffer: y[n-1], y[n-2] */
state_out = *__SIMD32(pState)--;
/* Apply loop unrolling and compute 2 output values simultaneously. */
/* The variable acc hold output values that are being computed:
*
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
*/
sample = blockSize >> 1u;
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
** a second loop below computes the remaining 1 sample. */
while(sample > 0u)
{
/* Read the input */
in = *__SIMD32(pIn)++;
/* out = b0 * x[n] + 0 * 0 */
out = __SMUAD(b0, in);
/* acc = b1 * x[n-1] + acc += b2 * x[n-2] + out */
acc = __SMLAD(b1, state_in, out);
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
acc = __SMLAD(a1, state_out, acc);
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
out = __SSAT((acc >> shift), 16);
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
state_out = __PKHBT(state_out >> 16, (out), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* out = b0 * x[n] + 0 * 0 */
out = __SMUADX(b0, in);
/* acc0 = b1 * x[n-1] , acc0 += b2 * x[n-2] + out */
acc = __SMLAD(b1, state_in, out);
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
acc = __SMLAD(a1, state_out, acc);
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
out = __SSAT((acc >> shift), 16);
/* Store the output in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
#else
*__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in >> 16, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, in, 16);
state_out = __PKHBT(state_out >> 16, out, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
sample--;
}
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
** No loop unrolling is used. */
if((blockSize & 0x1u) != 0u)
{
/* Read the input */
in = *pIn++;
/* out = b0 * x[n] + 0 * 0 */
#ifndef ARM_MATH_BIG_ENDIAN
out = __SMUAD(b0, in);
#else
out = __SMUADX(b0, in);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* acc = b1 * x[n-1], acc += b2 * x[n-2] + out */
acc = __SMLAD(b1, state_in, out);
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
acc = __SMLAD(a1, state_out, acc);
/* The result is converted from 3.29 to 1.31 and then saturation is applied */
out = __SSAT((acc >> shift), 16);
/* Store the output in the destination buffer. */
*pOut++ = (q15_t) out;
/* Every time after the output is computed state should be updated. */
/* The states should be updated as: */
/* Xn2 = Xn1 */
/* Xn1 = Xn */
/* Yn2 = Yn1 */
/* Yn1 = acc */
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef ARM_MATH_BIG_ENDIAN
state_in = __PKHBT(in, state_in, 16);
state_out = __PKHBT(out, state_out, 16);
#else
state_in = __PKHBT(state_in >> 16, in, 16);
state_out = __PKHBT(state_out >> 16, out, 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
}
/* The first stage goes from the input buffer to the output buffer. */
/* Subsequent (numStages - 1) occur in-place in the output buffer */
pIn = pDst;
/* Reset the output pointer */
pOut = pDst;
/* Store the updated state variables back into the state array */
*__SIMD32(pState)++ = state_in;
*__SIMD32(pState)++ = state_out;
/* Decrement the loop counter */
stage--;
} while(stage > 0u);
}
/**
* @} end of BiquadCascadeDF1 group
*/

Some files were not shown because too many files have changed in this diff Show More