Merge pull request #794 from PX4/estimator_ram_fix

Move Pauls EKF into a class and instantiate only when / if needed.
This commit is contained in:
Lorenz Meier 2014-04-04 14:39:19 -07:00
commit 89817d1366
3 changed files with 370 additions and 402 deletions

View File

@ -2,85 +2,6 @@
#include <string.h> #include <string.h>
// Global variables
float KH[n_states][n_states]; // intermediate result used for covariance updates
float KHP[n_states][n_states]; // intermediate result used for covariance updates
float P[n_states][n_states]; // covariance matrix
float Kfusion[n_states]; // Kalman gains
float states[n_states]; // state matrix
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
Vector3f angRate; // angular rate vector in XYZ body axes measured by the IMU (rad/s)
Vector3f accel; // acceleration vector in XYZ body axes measured by the IMU (m/s^2)
Vector3f dVelIMU;
Vector3f dAngIMU;
float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
uint8_t fusionModeGPS = 0; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
float innovVelPos[6]; // innovation output
float varInnovVelPos[6]; // innovation variance output
float velNED[3]; // North, East, Down velocity obs (m/s)
float posNE[2]; // North, East position obs (m)
float hgtMea; // measured height (m)
float posNED[3]; // North, East Down position (m)
float statesAtVelTime[n_states]; // States at the effective measurement time for posNE and velNED measurements
float statesAtPosTime[n_states]; // States at the effective measurement time for posNE and velNED measurements
float statesAtHgtTime[n_states]; // States at the effective measurement time for the hgtMea measurement
float statesAtMagMeasTime[n_states]; // filter satates at the effective measurement time
float statesAtVtasMeasTime[n_states]; // filter states at the effective measurement time
float innovMag[3]; // innovation output
float varInnovMag[3]; // innovation variance output
Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
float innovVtas; // innovation output
float varInnovVtas; // innovation variance output
float VtasMeas; // true airspeed measurement (m/s)
float latRef; // WGS-84 latitude of reference point (rad)
float lonRef; // WGS-84 longitude of reference point (rad)
float hgtRef; // WGS-84 height of reference point (m)
Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
uint8_t covSkipCount = 0; // Number of state prediction frames (IMU daya updates to skip before doing the covariance prediction
float EAS2TAS = 1.0f; // ratio f true to equivalent airspeed
// GPS input data variables
float gpsCourse;
float gpsVelD;
float gpsLat;
float gpsLon;
float gpsHgt;
uint8_t GPSstatus;
float storedStates[n_states][data_buffer_size]; // state vectors stored for the last 50 time steps
uint32_t statetimeStamp[data_buffer_size]; // time stamp for each state vector stored
// Baro input
float baroHgt;
bool statesInitialised = false;
bool fuseVelData = false; // this boolean causes the posNE and velNED obs to be fused
bool fusePosData = false; // this boolean causes the posNE and velNED obs to be fused
bool fuseHgtData = false; // this boolean causes the hgtMea obs to be fused
bool fuseMagData = false; // boolean true when magnetometer data is to be fused
bool fuseVtasData = false; // boolean true when airspeed data is to be fused
bool onGround = true; ///< boolean true when the flight vehicle is on the ground (not flying)
bool staticMode = true; ///< boolean true if no position feedback is fused
bool useAirspeed = true; ///< boolean true if airspeed data is being used
bool useCompass = true; ///< boolean true if magnetometer data is being used
struct ekf_status_report current_ekf_state;
struct ekf_status_report last_ekf_error;
bool numericalProtection = true;
static unsigned storeIndex = 0;
float Vector3f::length(void) const float Vector3f::length(void) const
{ {
return sqrt(x*x + y*y + z*z); return sqrt(x*x + y*y + z*z);
@ -185,7 +106,16 @@ void swap_var(float &d1, float &d2)
d2 = tmp; d2 = tmp;
} }
void UpdateStrapdownEquationsNED() AttPosEKF::AttPosEKF()
{
}
AttPosEKF::~AttPosEKF()
{
}
void AttPosEKF::UpdateStrapdownEquationsNED()
{ {
Vector3f delVelNav; Vector3f delVelNav;
float q00; float q00;
@ -247,7 +177,7 @@ void UpdateStrapdownEquationsNED()
qUpdated[3] = states[0]*deltaQuat[3] + states[3]*deltaQuat[0] + states[1]*deltaQuat[2] - states[2]*deltaQuat[1]; qUpdated[3] = states[0]*deltaQuat[3] + states[3]*deltaQuat[0] + states[1]*deltaQuat[2] - states[2]*deltaQuat[1];
// Normalise the quaternions and update the quaternion states // Normalise the quaternions and update the quaternion states
quatMag = sqrt(sq(qUpdated[0]) + sq(qUpdated[1]) + sq(qUpdated[2]) + sq(qUpdated[3])); quatMag = sqrtf(sq(qUpdated[0]) + sq(qUpdated[1]) + sq(qUpdated[2]) + sq(qUpdated[3]));
if (quatMag > 1e-16f) if (quatMag > 1e-16f)
{ {
float quatMagInv = 1.0f/quatMag; float quatMagInv = 1.0f/quatMag;
@ -312,7 +242,7 @@ void UpdateStrapdownEquationsNED()
ConstrainStates(); ConstrainStates();
} }
void CovariancePrediction(float dt) void AttPosEKF::CovariancePrediction(float dt)
{ {
// scalars // scalars
float windVelSigma; float windVelSigma;
@ -953,7 +883,7 @@ void CovariancePrediction(float dt)
ConstrainVariances(); ConstrainVariances();
} }
void FuseVelposNED() void AttPosEKF::FuseVelposNED()
{ {
// declare variables used by fault isolation logic // declare variables used by fault isolation logic
@ -999,8 +929,8 @@ void FuseVelposNED()
observation[5] = -(hgtMea); observation[5] = -(hgtMea);
// Estimate the GPS Velocity, GPS horiz position and height measurement variances. // Estimate the GPS Velocity, GPS horiz position and height measurement variances.
velErr = 0.2*accNavMag; // additional error in GPS velocities caused by manoeuvring velErr = 0.2f*accNavMag; // additional error in GPS velocities caused by manoeuvring
posErr = 0.2*accNavMag; // additional error in GPS position caused by manoeuvring posErr = 0.2f*accNavMag; // additional error in GPS position caused by manoeuvring
R_OBS[0] = 0.04f + sq(velErr); R_OBS[0] = 0.04f + sq(velErr);
R_OBS[1] = R_OBS[0]; R_OBS[1] = R_OBS[0];
R_OBS[2] = 0.08f + sq(velErr); R_OBS[2] = 0.08f + sq(velErr);
@ -1026,7 +956,7 @@ void FuseVelposNED()
varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS[i]; varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS[i];
} }
// apply a 5-sigma threshold // apply a 5-sigma threshold
current_ekf_state.velHealth = (sq(velInnov[0]) + sq(velInnov[1]) + sq(velInnov[2])) < 25.0*(varInnovVelPos[0] + varInnovVelPos[1] + varInnovVelPos[2]); current_ekf_state.velHealth = (sq(velInnov[0]) + sq(velInnov[1]) + sq(velInnov[2])) < 25.0f * (varInnovVelPos[0] + varInnovVelPos[1] + varInnovVelPos[2]);
current_ekf_state.velTimeout = (millis() - current_ekf_state.velFailTime) > horizRetryTime; current_ekf_state.velTimeout = (millis() - current_ekf_state.velFailTime) > horizRetryTime;
if (current_ekf_state.velHealth || current_ekf_state.velTimeout) if (current_ekf_state.velHealth || current_ekf_state.velTimeout)
{ {
@ -1175,7 +1105,7 @@ void FuseVelposNED()
//printf("velh: %s, posh: %s, hgth: %s\n", ((velHealth) ? "OK" : "FAIL"), ((posHealth) ? "OK" : "FAIL"), ((hgtHealth) ? "OK" : "FAIL")); //printf("velh: %s, posh: %s, hgth: %s\n", ((velHealth) ? "OK" : "FAIL"), ((posHealth) ? "OK" : "FAIL"), ((hgtHealth) ? "OK" : "FAIL"));
} }
void FuseMagnetometer() void AttPosEKF::FuseMagnetometer()
{ {
uint8_t obsIndex; uint8_t obsIndex;
uint8_t indexLimit; uint8_t indexLimit;
@ -1482,7 +1412,7 @@ void FuseMagnetometer()
ConstrainVariances(); ConstrainVariances();
} }
void FuseAirspeed() void AttPosEKF::FuseAirspeed()
{ {
float vn; float vn;
float ve; float ve;
@ -1503,14 +1433,14 @@ void FuseAirspeed()
// Need to check that it is flying before fusing airspeed data // Need to check that it is flying before fusing airspeed data
// Calculate the predicted airspeed // Calculate the predicted airspeed
VtasPred = sqrt((ve - vwe)*(ve - vwe) + (vn - vwn)*(vn - vwn) + vd*vd); VtasPred = sqrtf((ve - vwe)*(ve - vwe) + (vn - vwn)*(vn - vwn) + vd*vd);
// Perform fusion of True Airspeed measurement // Perform fusion of True Airspeed measurement
if (useAirspeed && fuseVtasData && (VtasPred > 1.0) && (VtasMeas > 8.0)) if (useAirspeed && fuseVtasData && (VtasPred > 1.0f) && (VtasMeas > 8.0f))
{ {
// Calculate observation jacobians // Calculate observation jacobians
SH_TAS[0] = 1/(sqrt(sq(ve - vwe) + sq(vn - vwn) + sq(vd))); SH_TAS[0] = 1/(sqrt(sq(ve - vwe) + sq(vn - vwn) + sq(vd)));
SH_TAS[1] = (SH_TAS[0]*(2*ve - 2*vwe))/2; SH_TAS[1] = (SH_TAS[0]*(2.0f*ve - 2*vwe))/2.0f;
SH_TAS[2] = (SH_TAS[0]*(2*vn - 2*vwn))/2; SH_TAS[2] = (SH_TAS[0]*(2.0f*vn - 2*vwn))/2.0f;
float H_TAS[21]; float H_TAS[21];
for (uint8_t i=0; i<=20; i++) H_TAS[i] = 0.0f; for (uint8_t i=0; i<=20; i++) H_TAS[i] = 0.0f;
@ -1611,7 +1541,7 @@ void FuseAirspeed()
ConstrainVariances(); ConstrainVariances();
} }
void zeroRows(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last) void AttPosEKF::zeroRows(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last)
{ {
uint8_t row; uint8_t row;
uint8_t col; uint8_t col;
@ -1624,7 +1554,7 @@ void zeroRows(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last)
} }
} }
void zeroCols(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last) void AttPosEKF::zeroCols(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last)
{ {
uint8_t row; uint8_t row;
uint8_t col; uint8_t col;
@ -1637,13 +1567,13 @@ void zeroCols(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last)
} }
} }
float sq(float valIn) float AttPosEKF::sq(float valIn)
{ {
return valIn*valIn; return valIn*valIn;
} }
// Store states in a history array along with time stamp // Store states in a history array along with time stamp
void StoreStates(uint64_t timestamp_ms) void AttPosEKF::StoreStates(uint64_t timestamp_ms)
{ {
for (unsigned i=0; i<n_states; i++) for (unsigned i=0; i<n_states; i++)
storedStates[i][storeIndex] = states[i]; storedStates[i][storeIndex] = states[i];
@ -1653,7 +1583,7 @@ void StoreStates(uint64_t timestamp_ms)
storeIndex = 0; storeIndex = 0;
} }
void ResetStoredStates() void AttPosEKF::ResetStoredStates()
{ {
// reset all stored states // reset all stored states
memset(&storedStates[0][0], 0, sizeof(storedStates)); memset(&storedStates[0][0], 0, sizeof(storedStates));
@ -1674,7 +1604,7 @@ void ResetStoredStates()
} }
// Output the state vector stored at the time that best matches that specified by msec // Output the state vector stored at the time that best matches that specified by msec
int RecallStates(float statesForFusion[n_states], uint64_t msec) int AttPosEKF::RecallStates(float statesForFusion[n_states], uint64_t msec)
{ {
int ret = 0; int ret = 0;
@ -1723,7 +1653,7 @@ int RecallStates(float statesForFusion[n_states], uint64_t msec)
return ret; return ret;
} }
void quat2Tnb(Mat3f &Tnb, const float (&quat)[4]) void AttPosEKF::quat2Tnb(Mat3f &Tnb, const float (&quat)[4])
{ {
// Calculate the nav to body cosine matrix // Calculate the nav to body cosine matrix
float q00 = sq(quat[0]); float q00 = sq(quat[0]);
@ -1748,7 +1678,7 @@ void quat2Tnb(Mat3f &Tnb, const float (&quat)[4])
Tnb.y.z = 2*(q23 + q01); Tnb.y.z = 2*(q23 + q01);
} }
void quat2Tbn(Mat3f &Tbn, const float (&quat)[4]) void AttPosEKF::quat2Tbn(Mat3f &Tbn, const float (&quat)[4])
{ {
// Calculate the body to nav cosine matrix // Calculate the body to nav cosine matrix
float q00 = sq(quat[0]); float q00 = sq(quat[0]);
@ -1773,7 +1703,7 @@ void quat2Tbn(Mat3f &Tbn, const float (&quat)[4])
Tbn.z.y = 2*(q23 + q01); Tbn.z.y = 2*(q23 + q01);
} }
void eul2quat(float (&quat)[4], const float (&eul)[3]) void AttPosEKF::eul2quat(float (&quat)[4], const float (&eul)[3])
{ {
float u1 = cos(0.5f*eul[0]); float u1 = cos(0.5f*eul[0]);
float u2 = cos(0.5f*eul[1]); float u2 = cos(0.5f*eul[1]);
@ -1787,35 +1717,35 @@ void eul2quat(float (&quat)[4], const float (&eul)[3])
quat[3] = u1*u2*u6-u4*u5*u3; quat[3] = u1*u2*u6-u4*u5*u3;
} }
void quat2eul(float (&y)[3], const float (&u)[4]) void AttPosEKF::quat2eul(float (&y)[3], const float (&u)[4])
{ {
y[0] = atan2((2.0*(u[2]*u[3]+u[0]*u[1])) , (u[0]*u[0]-u[1]*u[1]-u[2]*u[2]+u[3]*u[3])); y[0] = atan2f((2.0f*(u[2]*u[3]+u[0]*u[1])) , (u[0]*u[0]-u[1]*u[1]-u[2]*u[2]+u[3]*u[3]));
y[1] = -asin(2.0*(u[1]*u[3]-u[0]*u[2])); y[1] = -asinf(2.0f*(u[1]*u[3]-u[0]*u[2]));
y[2] = atan2((2.0*(u[1]*u[2]+u[0]*u[3])) , (u[0]*u[0]+u[1]*u[1]-u[2]*u[2]-u[3]*u[3])); y[2] = atan2f((2.0f*(u[1]*u[2]+u[0]*u[3])) , (u[0]*u[0]+u[1]*u[1]-u[2]*u[2]-u[3]*u[3]));
} }
void calcvelNED(float (&velNED)[3], float gpsCourse, float gpsGndSpd, float gpsVelD) void AttPosEKF::calcvelNED(float (&velNED)[3], float gpsCourse, float gpsGndSpd, float gpsVelD)
{ {
velNED[0] = gpsGndSpd*cos(gpsCourse); velNED[0] = gpsGndSpd*cosf(gpsCourse);
velNED[1] = gpsGndSpd*sin(gpsCourse); velNED[1] = gpsGndSpd*sinf(gpsCourse);
velNED[2] = gpsVelD; velNED[2] = gpsVelD;
} }
void calcposNED(float (&posNED)[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef) void AttPosEKF::calcposNED(float (&posNED)[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef)
{ {
posNED[0] = earthRadius * (lat - latRef); posNED[0] = earthRadius * (lat - latRef);
posNED[1] = earthRadius * cos(latRef) * (lon - lonRef); posNED[1] = earthRadius * cos(latRef) * (lon - lonRef);
posNED[2] = -(hgt - hgtRef); posNED[2] = -(hgt - hgtRef);
} }
void calcLLH(float (&posNED)[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef) void AttPosEKF::calcLLH(float (&posNED)[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef)
{ {
lat = latRef + posNED[0] * earthRadiusInv; lat = latRef + posNED[0] * earthRadiusInv;
lon = lonRef + posNED[1] * earthRadiusInv / cos(latRef); lon = lonRef + posNED[1] * earthRadiusInv / cos(latRef);
hgt = hgtRef - posNED[2]; hgt = hgtRef - posNED[2];
} }
void OnGroundCheck() void AttPosEKF::OnGroundCheck()
{ {
onGround = (((sq(velNED[0]) + sq(velNED[1]) + sq(velNED[2])) < 4.0f) && (VtasMeas < 8.0f)); onGround = (((sq(velNED[0]) + sq(velNED[1]) + sq(velNED[2])) < 4.0f) && (VtasMeas < 8.0f));
if (staticMode) { if (staticMode) {
@ -1823,7 +1753,7 @@ void OnGroundCheck()
} }
} }
void calcEarthRateNED(Vector3f &omega, float latitude) void AttPosEKF::calcEarthRateNED(Vector3f &omega, float latitude)
{ {
//Define Earth rotation vector in the NED navigation frame //Define Earth rotation vector in the NED navigation frame
omega.x = earthRate*cosf(latitude); omega.x = earthRate*cosf(latitude);
@ -1831,13 +1761,13 @@ void calcEarthRateNED(Vector3f &omega, float latitude)
omega.z = -earthRate*sinf(latitude); omega.z = -earthRate*sinf(latitude);
} }
void CovarianceInit() void AttPosEKF::CovarianceInit()
{ {
// Calculate the initial covariance matrix P // Calculate the initial covariance matrix P
P[0][0] = 0.25f*sq(1.0f*deg2rad); P[0][0] = 0.25f * sq(1.0f*deg2rad);
P[1][1] = 0.25f*sq(1.0f*deg2rad); P[1][1] = 0.25f * sq(1.0f*deg2rad);
P[2][2] = 0.25f*sq(1.0f*deg2rad); P[2][2] = 0.25f * sq(1.0f*deg2rad);
P[3][3] = 0.25f*sq(10.0f*deg2rad); P[3][3] = 0.25f * sq(10.0f*deg2rad);
P[4][4] = sq(0.7); P[4][4] = sq(0.7);
P[5][5] = P[4][4]; P[5][5] = P[4][4];
P[6][6] = sq(0.7); P[6][6] = sq(0.7);
@ -1857,12 +1787,12 @@ void CovarianceInit()
P[20][20] = P[18][18]; P[20][20] = P[18][18];
} }
float ConstrainFloat(float val, float min, float max) float AttPosEKF::ConstrainFloat(float val, float min, float max)
{ {
return (val > max) ? max : ((val < min) ? min : val); return (val > max) ? max : ((val < min) ? min : val);
} }
void ConstrainVariances() void AttPosEKF::ConstrainVariances()
{ {
if (!numericalProtection) { if (!numericalProtection) {
return; return;
@ -1914,7 +1844,7 @@ void ConstrainVariances()
} }
void ConstrainStates() void AttPosEKF::ConstrainStates()
{ {
if (!numericalProtection) { if (!numericalProtection) {
return; return;
@ -1971,7 +1901,7 @@ void ConstrainStates()
} }
void ForceSymmetry() void AttPosEKF::ForceSymmetry()
{ {
if (!numericalProtection) { if (!numericalProtection) {
return; return;
@ -1989,7 +1919,7 @@ void ForceSymmetry()
} }
} }
bool FilterHealthy() bool AttPosEKF::FilterHealthy()
{ {
if (!statesInitialised) { if (!statesInitialised) {
return false; return false;
@ -2012,7 +1942,7 @@ bool FilterHealthy()
* This resets the position to the last GPS measurement * This resets the position to the last GPS measurement
* or to zero in case of static position. * or to zero in case of static position.
*/ */
void ResetPosition(void) void AttPosEKF::ResetPosition(void)
{ {
if (staticMode) { if (staticMode) {
states[7] = 0; states[7] = 0;
@ -2030,7 +1960,7 @@ void ResetPosition(void)
* *
* This resets the height state with the last altitude measurements * This resets the height state with the last altitude measurements
*/ */
void ResetHeight(void) void AttPosEKF::ResetHeight(void)
{ {
// write to the state vector // write to the state vector
states[9] = -hgtMea; states[9] = -hgtMea;
@ -2039,7 +1969,7 @@ void ResetHeight(void)
/** /**
* Reset the velocity state. * Reset the velocity state.
*/ */
void ResetVelocity(void) void AttPosEKF::ResetVelocity(void)
{ {
if (staticMode) { if (staticMode) {
states[4] = 0.0f; states[4] = 0.0f;
@ -2054,7 +1984,7 @@ void ResetVelocity(void)
} }
void FillErrorReport(struct ekf_status_report *err) void AttPosEKF::FillErrorReport(struct ekf_status_report *err)
{ {
for (int i = 0; i < n_states; i++) for (int i = 0; i < n_states; i++)
{ {
@ -2069,7 +1999,7 @@ void FillErrorReport(struct ekf_status_report *err)
err->hgtTimeout = current_ekf_state.hgtTimeout; err->hgtTimeout = current_ekf_state.hgtTimeout;
} }
bool StatesNaN(struct ekf_status_report *err_report) { bool AttPosEKF::StatesNaN(struct ekf_status_report *err_report) {
bool err = false; bool err = false;
// check all states and covariance matrices // check all states and covariance matrices
@ -2122,7 +2052,7 @@ bool StatesNaN(struct ekf_status_report *err_report) {
* updated, but before any of the fusion steps are * updated, but before any of the fusion steps are
* executed. * executed.
*/ */
int CheckAndBound() int AttPosEKF::CheckAndBound()
{ {
// Store the old filter state // Store the old filter state
@ -2164,7 +2094,7 @@ int CheckAndBound()
return 0; return 0;
} }
void AttitudeInit(float ax, float ay, float az, float mx, float my, float mz, float *initQuat) void AttPosEKF::AttitudeInit(float ax, float ay, float az, float mx, float my, float mz, float *initQuat)
{ {
float initialRoll, initialPitch; float initialRoll, initialPitch;
float cosRoll, sinRoll, cosPitch, sinPitch; float cosRoll, sinRoll, cosPitch, sinPitch;
@ -2200,7 +2130,7 @@ void AttitudeInit(float ax, float ay, float az, float mx, float my, float mz, fl
initQuat[3] = cosRoll * cosPitch * sinHeading - sinRoll * sinPitch * cosHeading; initQuat[3] = cosRoll * cosPitch * sinHeading - sinRoll * sinPitch * cosHeading;
} }
void InitializeDynamic(float (&initvelNED)[3]) void AttPosEKF::InitializeDynamic(float (&initvelNED)[3])
{ {
// Clear the init flag // Clear the init flag
@ -2254,7 +2184,7 @@ void InitializeDynamic(float (&initvelNED)[3])
summedDelVel.z = 0.0f; summedDelVel.z = 0.0f;
} }
void InitialiseFilter(float (&initvelNED)[3]) void AttPosEKF::InitialiseFilter(float (&initvelNED)[3])
{ {
//store initial lat,long and height //store initial lat,long and height
latRef = gpsLat; latRef = gpsLat;
@ -2266,7 +2196,7 @@ void InitialiseFilter(float (&initvelNED)[3])
InitializeDynamic(initvelNED); InitializeDynamic(initvelNED);
} }
void ZeroVariables() void AttPosEKF::ZeroVariables()
{ {
// Do the data structure init // Do the data structure init
for (unsigned i = 0; i < n_states; i++) { for (unsigned i = 0; i < n_states; i++) {
@ -2292,12 +2222,12 @@ void ZeroVariables()
memset(&current_ekf_state, 0, sizeof(current_ekf_state)); memset(&current_ekf_state, 0, sizeof(current_ekf_state));
} }
void GetFilterState(struct ekf_status_report *state) void AttPosEKF::GetFilterState(struct ekf_status_report *state)
{ {
memcpy(state, &current_ekf_state, sizeof(state)); memcpy(state, &current_ekf_state, sizeof(state));
} }
void GetLastErrorState(struct ekf_status_report *last_error) void AttPosEKF::GetLastErrorState(struct ekf_status_report *last_error)
{ {
memcpy(last_error, &last_ekf_error, sizeof(last_error)); memcpy(last_error, &last_ekf_error, sizeof(last_error));
} }

View File

@ -48,85 +48,10 @@ void swap_var(float &d1, float &d2);
const unsigned int n_states = 21; const unsigned int n_states = 21;
const unsigned int data_buffer_size = 50; const unsigned int data_buffer_size = 50;
extern uint32_t statetimeStamp[data_buffer_size]; // time stamp for each state vector stored
extern Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
extern Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
extern Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
extern Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
extern float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
extern Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
extern Vector3f angRate; // angular rate vector in XYZ body axes measured by the IMU (rad/s)
extern Vector3f accel; // acceleration vector in XYZ body axes measured by the IMU (m/s^2)
extern Vector3f dVelIMU;
extern Vector3f dAngIMU;
extern float P[n_states][n_states]; // covariance matrix
extern float Kfusion[n_states]; // Kalman gains
extern float states[n_states]; // state matrix
extern float storedStates[n_states][data_buffer_size]; // state vectors stored for the last 50 time steps
extern Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
extern Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
extern Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
extern Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
extern float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
extern bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
extern bool useAirspeed; // boolean true if airspeed data is being used
extern bool useCompass; // boolean true if magnetometer data is being used
extern uint8_t fusionModeGPS ; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
extern float innovVelPos[6]; // innovation output
extern float varInnovVelPos[6]; // innovation variance output
extern bool fuseVelData; // this boolean causes the posNE and velNED obs to be fused
extern bool fusePosData; // this boolean causes the posNE and velNED obs to be fused
extern bool fuseHgtData; // this boolean causes the hgtMea obs to be fused
extern bool fuseMagData; // boolean true when magnetometer data is to be fused
extern float velNED[3]; // North, East, Down velocity obs (m/s)
extern float posNE[2]; // North, East position obs (m)
extern float hgtMea; // measured height (m)
extern float posNED[3]; // North, East Down position (m)
extern float statesAtVelTime[n_states]; // States at the effective measurement time for posNE and velNED measurements
extern float statesAtPosTime[n_states]; // States at the effective measurement time for posNE and velNED measurements
extern float statesAtHgtTime[n_states]; // States at the effective measurement time for the hgtMea measurement
extern float innovMag[3]; // innovation output
extern float varInnovMag[3]; // innovation variance output
extern Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
extern float statesAtMagMeasTime[n_states]; // filter satates at the effective measurement time
extern float innovVtas; // innovation output
extern float varInnovVtas; // innovation variance output
extern bool fuseVtasData; // boolean true when airspeed data is to be fused
extern float VtasMeas; // true airspeed measurement (m/s)
extern float statesAtVtasMeasTime[n_states]; // filter states at the effective measurement time
extern float latRef; // WGS-84 latitude of reference point (rad)
extern float lonRef; // WGS-84 longitude of reference point (rad)
extern float hgtRef; // WGS-84 height of reference point (m)
extern Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
extern uint8_t covSkipCount; // Number of state prediction frames (IMU daya updates to skip before doing the covariance prediction
extern float EAS2TAS; // ratio f true to equivalent airspeed
// GPS input data variables
extern float gpsCourse;
extern float gpsVelD;
extern float gpsLat;
extern float gpsLon;
extern float gpsHgt;
extern uint8_t GPSstatus;
// Baro input
extern float baroHgt;
extern bool statesInitialised;
extern bool numericalProtection;
const float covTimeStepMax = 0.07f; // maximum time allowed between covariance predictions const float covTimeStepMax = 0.07f; // maximum time allowed between covariance predictions
const float covDelAngMax = 0.02f; // maximum delta angle between covariance predictions const float covDelAngMax = 0.02f; // maximum delta angle between covariance predictions
extern bool staticMode; // extern bool staticMode;
enum GPS_FIX { enum GPS_FIX {
GPS_FIX_NOFIX = 0, GPS_FIX_NOFIX = 0,
@ -150,6 +75,93 @@ struct ekf_status_report {
bool kalmanGainsNaN; bool kalmanGainsNaN;
}; };
class AttPosEKF {
public:
AttPosEKF();
~AttPosEKF();
// Global variables
float KH[n_states][n_states]; // intermediate result used for covariance updates
float KHP[n_states][n_states]; // intermediate result used for covariance updates
float P[n_states][n_states]; // covariance matrix
float Kfusion[n_states]; // Kalman gains
float states[n_states]; // state matrix
float storedStates[n_states][data_buffer_size]; // state vectors stored for the last 50 time steps
uint32_t statetimeStamp[data_buffer_size]; // time stamp for each state vector stored
float statesAtVelTime[n_states]; // States at the effective measurement time for posNE and velNED measurements
float statesAtPosTime[n_states]; // States at the effective measurement time for posNE and velNED measurements
float statesAtHgtTime[n_states]; // States at the effective measurement time for the hgtMea measurement
float statesAtMagMeasTime[n_states]; // filter satates at the effective measurement time
float statesAtVtasMeasTime[n_states]; // filter states at the effective measurement time
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
Vector3f angRate; // angular rate vector in XYZ body axes measured by the IMU (rad/s)
Vector3f accel; // acceleration vector in XYZ body axes measured by the IMU (m/s^2)
Vector3f dVelIMU;
Vector3f dAngIMU;
float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
uint8_t fusionModeGPS = 0; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
float innovVelPos[6]; // innovation output
float varInnovVelPos[6]; // innovation variance output
float velNED[3]; // North, East, Down velocity obs (m/s)
float posNE[2]; // North, East position obs (m)
float hgtMea; // measured height (m)
float posNED[3]; // North, East Down position (m)
float innovMag[3]; // innovation output
float varInnovMag[3]; // innovation variance output
Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
float innovVtas; // innovation output
float varInnovVtas; // innovation variance output
float VtasMeas; // true airspeed measurement (m/s)
float latRef; // WGS-84 latitude of reference point (rad)
float lonRef; // WGS-84 longitude of reference point (rad)
float hgtRef; // WGS-84 height of reference point (m)
Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
uint8_t covSkipCount = 0; // Number of state prediction frames (IMU daya updates to skip before doing the covariance prediction
float EAS2TAS = 1.0f; // ratio f true to equivalent airspeed
// GPS input data variables
float gpsCourse;
float gpsVelD;
float gpsLat;
float gpsLon;
float gpsHgt;
uint8_t GPSstatus;
// Baro input
float baroHgt;
bool statesInitialised = false;
bool fuseVelData = false; // this boolean causes the posNE and velNED obs to be fused
bool fusePosData = false; // this boolean causes the posNE and velNED obs to be fused
bool fuseHgtData = false; // this boolean causes the hgtMea obs to be fused
bool fuseMagData = false; // boolean true when magnetometer data is to be fused
bool fuseVtasData = false; // boolean true when airspeed data is to be fused
bool onGround = true; ///< boolean true when the flight vehicle is on the ground (not flying)
bool staticMode = true; ///< boolean true if no position feedback is fused
bool useAirspeed = true; ///< boolean true if airspeed data is being used
bool useCompass = true; ///< boolean true if magnetometer data is being used
struct ekf_status_report current_ekf_state;
struct ekf_status_report last_ekf_error;
bool numericalProtection = true;
unsigned storeIndex = 0;
void UpdateStrapdownEquationsNED(); void UpdateStrapdownEquationsNED();
void CovariancePrediction(float dt); void CovariancePrediction(float dt);
@ -164,8 +176,6 @@ void zeroRows(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last);
void zeroCols(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last); void zeroCols(float (&covMat)[n_states][n_states], uint8_t first, uint8_t last);
float sq(float valIn);
void quatNorm(float (&quatOut)[4], const float quatIn[4]); void quatNorm(float (&quatOut)[4], const float quatIn[4]);
// store staes along with system time stamp in msces // store staes along with system time stamp in msces
@ -190,15 +200,19 @@ void quat2Tbn(Mat3f &Tbn, const float (&quat)[4]);
void calcEarthRateNED(Vector3f &omega, float latitude); void calcEarthRateNED(Vector3f &omega, float latitude);
void eul2quat(float (&quat)[4], const float (&eul)[3]); static void eul2quat(float (&quat)[4], const float (&eul)[3]);
void quat2eul(float (&eul)[3], const float (&quat)[4]); static void quat2eul(float (&eul)[3], const float (&quat)[4]);
void calcvelNED(float (&velNED)[3], float gpsCourse, float gpsGndSpd, float gpsVelD); static void calcvelNED(float (&velNED)[3], float gpsCourse, float gpsGndSpd, float gpsVelD);
void calcposNED(float (&posNED)[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef); static void calcposNED(float (&posNED)[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef);
void calcLLH(float (&posNED)[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef); static void calcLLH(float (&posNED)[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef);
static void quat2Tnb(Mat3f &Tnb, const float (&quat)[4]);
static float sq(float valIn);
void OnGroundCheck(); void OnGroundCheck();
@ -231,5 +245,15 @@ void FillErrorReport(struct ekf_status_report *err);
void InitializeDynamic(float (&initvelNED)[3]); void InitializeDynamic(float (&initvelNED)[3]);
protected:
bool FilterHealthy();
void ResetHeight(void);
void AttitudeInit(float ax, float ay, float az, float mx, float my, float mz, float *initQuat);
};
uint32_t millis(); uint32_t millis();

View File

@ -124,6 +124,16 @@ public:
*/ */
int start(); int start();
/**
* Print the current status.
*/
void print_status();
/**
* Trip the filter by feeding it NaN values.
*/
int trip_nan();
private: private:
bool _task_should_exit; /**< if true, sensor task should exit */ bool _task_should_exit; /**< if true, sensor task should exit */
@ -199,6 +209,7 @@ private:
param_t tas_delay_ms; param_t tas_delay_ms;
} _parameter_handles; /**< handles for interesting parameters */ } _parameter_handles; /**< handles for interesting parameters */
AttPosEKF *_ekf;
/** /**
* Update our local parameter cache. * Update our local parameter cache.
@ -280,7 +291,8 @@ FixedwingEstimator::FixedwingEstimator() :
/* states */ /* states */
_initialized(false), _initialized(false),
_gps_initialized(false), _gps_initialized(false),
_mavlink_fd(-1) _mavlink_fd(-1),
_ekf(nullptr)
{ {
_mavlink_fd = open(MAVLINK_LOG_DEVICE, 0); _mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
@ -384,6 +396,12 @@ void
FixedwingEstimator::task_main() FixedwingEstimator::task_main()
{ {
_ekf = new AttPosEKF();
if (!_ekf) {
errx(1, "failed allocating EKF filter - out of RAM!");
}
/* /*
* do subscriptions * do subscriptions
*/ */
@ -414,23 +432,23 @@ FixedwingEstimator::task_main()
parameters_update(); parameters_update();
/* set initial filter state */ /* set initial filter state */
fuseVelData = false; _ekf->fuseVelData = false;
fusePosData = false; _ekf->fusePosData = false;
fuseHgtData = false; _ekf->fuseHgtData = false;
fuseMagData = false; _ekf->fuseMagData = false;
fuseVtasData = false; _ekf->fuseVtasData = false;
statesInitialised = false; _ekf->statesInitialised = false;
/* initialize measurement data */ /* initialize measurement data */
VtasMeas = 0.0f; _ekf->VtasMeas = 0.0f;
Vector3f lastAngRate = {0.0f, 0.0f, 0.0f}; Vector3f lastAngRate = {0.0f, 0.0f, 0.0f};
Vector3f lastAccel = {0.0f, 0.0f, -9.81f}; Vector3f lastAccel = {0.0f, 0.0f, -9.81f};
dVelIMU.x = 0.0f; _ekf->dVelIMU.x = 0.0f;
dVelIMU.y = 0.0f; _ekf->dVelIMU.y = 0.0f;
dVelIMU.z = 0.0f; _ekf->dVelIMU.z = 0.0f;
dAngIMU.x = 0.0f; _ekf->dAngIMU.x = 0.0f;
dAngIMU.y = 0.0f; _ekf->dAngIMU.y = 0.0f;
dAngIMU.z = 0.0f; _ekf->dAngIMU.z = 0.0f;
/* wakeup source(s) */ /* wakeup source(s) */
struct pollfd fds[2]; struct pollfd fds[2];
@ -509,7 +527,7 @@ FixedwingEstimator::task_main()
} }
last_sensor_timestamp = _gyro.timestamp; last_sensor_timestamp = _gyro.timestamp;
IMUmsec = _gyro.timestamp / 1e3f; _ekf.IMUmsec = _gyro.timestamp / 1e3f;
float deltaT = (_gyro.timestamp - last_run) / 1e6f; float deltaT = (_gyro.timestamp - last_run) / 1e6f;
last_run = _gyro.timestamp; last_run = _gyro.timestamp;
@ -521,20 +539,20 @@ FixedwingEstimator::task_main()
// Always store data, independent of init status // Always store data, independent of init status
/* fill in last data set */ /* fill in last data set */
dtIMU = deltaT; _ekf->dtIMU = deltaT;
angRate.x = _gyro.x; _ekf->angRate.x = _gyro.x;
angRate.y = _gyro.y; _ekf->angRate.y = _gyro.y;
angRate.z = _gyro.z; _ekf->angRate.z = _gyro.z;
accel.x = _accel.x; _ekf->accel.x = _accel.x;
accel.y = _accel.y; _ekf->accel.y = _accel.y;
accel.z = _accel.z; _ekf->accel.z = _accel.z;
dAngIMU = 0.5f * (angRate + lastAngRate) * dtIMU; _ekf->dAngIMU = 0.5f * (angRate + lastAngRate) * dtIMU;
lastAngRate = angRate; _ekf->lastAngRate = angRate;
dVelIMU = 0.5f * (accel + lastAccel) * dtIMU; _ekf->dVelIMU = 0.5f * (accel + lastAccel) * dtIMU;
lastAccel = accel; _ekf->lastAccel = accel;
#else #else
@ -563,20 +581,20 @@ FixedwingEstimator::task_main()
// Always store data, independent of init status // Always store data, independent of init status
/* fill in last data set */ /* fill in last data set */
dtIMU = deltaT; _ekf->dtIMU = deltaT;
angRate.x = _sensor_combined.gyro_rad_s[0]; _ekf->angRate.x = _sensor_combined.gyro_rad_s[0];
angRate.y = _sensor_combined.gyro_rad_s[1]; _ekf->angRate.y = _sensor_combined.gyro_rad_s[1];
angRate.z = _sensor_combined.gyro_rad_s[2]; _ekf->angRate.z = _sensor_combined.gyro_rad_s[2];
accel.x = _sensor_combined.accelerometer_m_s2[0]; _ekf->accel.x = _sensor_combined.accelerometer_m_s2[0];
accel.y = _sensor_combined.accelerometer_m_s2[1]; _ekf->accel.y = _sensor_combined.accelerometer_m_s2[1];
accel.z = _sensor_combined.accelerometer_m_s2[2]; _ekf->accel.z = _sensor_combined.accelerometer_m_s2[2];
dAngIMU = 0.5f * (angRate + lastAngRate) * dtIMU; _ekf->dAngIMU = 0.5f * (_ekf->angRate + lastAngRate) * _ekf->dtIMU;
lastAngRate = angRate; lastAngRate = _ekf->angRate;
dVelIMU = 0.5f * (accel + lastAccel) * dtIMU; _ekf->dVelIMU = 0.5f * (_ekf->accel + lastAccel) * _ekf->dtIMU;
lastAccel = accel; lastAccel = _ekf->accel;
if (last_mag != _sensor_combined.magnetometer_timestamp) { if (last_mag != _sensor_combined.magnetometer_timestamp) {
mag_updated = true; mag_updated = true;
@ -597,7 +615,7 @@ FixedwingEstimator::task_main()
orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed); orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed);
perf_count(_perf_airspeed); perf_count(_perf_airspeed);
VtasMeas = _airspeed.true_airspeed_m_s; _ekf->VtasMeas = _airspeed.true_airspeed_m_s;
newAdsData = true; newAdsData = true;
} else { } else {
@ -622,24 +640,24 @@ FixedwingEstimator::task_main()
/* check if we had a GPS outage for a long time */ /* check if we had a GPS outage for a long time */
if (hrt_elapsed_time(&last_gps) > 5 * 1000 * 1000) { if (hrt_elapsed_time(&last_gps) > 5 * 1000 * 1000) {
ResetPosition(); _ekf->ResetPosition();
ResetVelocity(); _ekf->ResetVelocity();
ResetStoredStates(); _ekf->ResetStoredStates();
} }
/* fuse GPS updates */ /* fuse GPS updates */
//_gps.timestamp / 1e3; //_gps.timestamp / 1e3;
GPSstatus = _gps.fix_type; _ekf->GPSstatus = _gps.fix_type;
velNED[0] = _gps.vel_n_m_s; _ekf->velNED[0] = _gps.vel_n_m_s;
velNED[1] = _gps.vel_e_m_s; _ekf->velNED[1] = _gps.vel_e_m_s;
velNED[2] = _gps.vel_d_m_s; _ekf->velNED[2] = _gps.vel_d_m_s;
// warnx("GPS updated: status: %d, vel: %8.4f %8.4f %8.4f", (int)GPSstatus, velNED[0], velNED[1], velNED[2]); // warnx("GPS updated: status: %d, vel: %8.4f %8.4f %8.4f", (int)GPSstatus, velNED[0], velNED[1], velNED[2]);
gpsLat = math::radians(_gps.lat / (double)1e7); _ekf->gpsLat = math::radians(_gps.lat / (double)1e7);
gpsLon = math::radians(_gps.lon / (double)1e7) - M_PI; _ekf->gpsLon = math::radians(_gps.lon / (double)1e7) - M_PI;
gpsHgt = _gps.alt / 1e3f; _ekf->gpsHgt = _gps.alt / 1e3f;
newDataGps = true; newDataGps = true;
} }
@ -652,10 +670,10 @@ FixedwingEstimator::task_main()
if (baro_updated) { if (baro_updated) {
orb_copy(ORB_ID(sensor_baro), _baro_sub, &_baro); orb_copy(ORB_ID(sensor_baro), _baro_sub, &_baro);
baroHgt = _baro.altitude - _baro_ref; _ekf->baroHgt = _baro.altitude - _baro_ref;
// Could use a blend of GPS and baro alt data if desired // Could use a blend of GPS and baro alt data if desired
hgtMea = 1.0f * baroHgt + 0.0f * gpsHgt; _ekf->hgtMea = 1.0f * _ekf->baroHgt + 0.0f * _ekf->gpsHgt;
} }
#ifndef SENSOR_COMBINED_SUB #ifndef SENSOR_COMBINED_SUB
@ -671,27 +689,27 @@ FixedwingEstimator::task_main()
// XXX we compensate the offsets upfront - should be close to zero. // XXX we compensate the offsets upfront - should be close to zero.
// 0.001f // 0.001f
magData.x = _mag.x; _ekf->magData.x = _mag.x;
magBias.x = 0.000001f; // _mag_offsets.x_offset _ekf->magBias.x = 0.000001f; // _mag_offsets.x_offset
magData.y = _mag.y; _ekf->magData.y = _mag.y;
magBias.y = 0.000001f; // _mag_offsets.y_offset _ekf->magBias.y = 0.000001f; // _mag_offsets.y_offset
magData.z = _mag.z; _ekf->magData.z = _mag.z;
magBias.z = 0.000001f; // _mag_offsets.y_offset _ekf->magBias.z = 0.000001f; // _mag_offsets.y_offset
#else #else
// XXX we compensate the offsets upfront - should be close to zero. // XXX we compensate the offsets upfront - should be close to zero.
// 0.001f // 0.001f
magData.x = _sensor_combined.magnetometer_ga[0]; _ekf->magData.x = _sensor_combined.magnetometer_ga[0];
magBias.x = 0.000001f; // _mag_offsets.x_offset _ekf->magBias.x = 0.000001f; // _mag_offsets.x_offset
magData.y = _sensor_combined.magnetometer_ga[1]; _ekf->magData.y = _sensor_combined.magnetometer_ga[1];
magBias.y = 0.000001f; // _mag_offsets.y_offset _ekf->magBias.y = 0.000001f; // _mag_offsets.y_offset
magData.z = _sensor_combined.magnetometer_ga[2]; _ekf->magData.z = _sensor_combined.magnetometer_ga[2];
magBias.z = 0.000001f; // _mag_offsets.y_offset _ekf->magBias.z = 0.000001f; // _mag_offsets.y_offset
#endif #endif
@ -705,7 +723,7 @@ FixedwingEstimator::task_main()
/** /**
* CHECK IF THE INPUT DATA IS SANE * CHECK IF THE INPUT DATA IS SANE
*/ */
int check = CheckAndBound(); int check = _ekf->CheckAndBound();
switch (check) { switch (check) {
case 0: case 0:
@ -739,7 +757,7 @@ FixedwingEstimator::task_main()
struct ekf_status_report ekf_report; struct ekf_status_report ekf_report;
GetLastErrorState(&ekf_report); _ekf->GetLastErrorState(&ekf_report);
struct estimator_status_report rep; struct estimator_status_report rep;
memset(&rep, 0, sizeof(rep)); memset(&rep, 0, sizeof(rep));
@ -779,16 +797,16 @@ FixedwingEstimator::task_main()
if (hrt_elapsed_time(&start_time) > 100000) { if (hrt_elapsed_time(&start_time) > 100000) {
if (!_gps_initialized && (GPSstatus == 3)) { if (!_gps_initialized && (_ekf->GPSstatus == 3)) {
velNED[0] = _gps.vel_n_m_s; _ekf->velNED[0] = _gps.vel_n_m_s;
velNED[1] = _gps.vel_e_m_s; _ekf->velNED[1] = _gps.vel_e_m_s;
velNED[2] = _gps.vel_d_m_s; _ekf->velNED[2] = _gps.vel_d_m_s;
double lat = _gps.lat * 1e-7; double lat = _gps.lat * 1e-7;
double lon = _gps.lon * 1e-7; double lon = _gps.lon * 1e-7;
float alt = _gps.alt * 1e-3; float alt = _gps.alt * 1e-3;
InitialiseFilter(velNED); _ekf->InitialiseFilter(_ekf->velNED);
// Initialize projection // Initialize projection
_local_pos.ref_lat = _gps.lat; _local_pos.ref_lat = _gps.lat;
@ -799,7 +817,7 @@ FixedwingEstimator::task_main()
// Store // Store
orb_copy(ORB_ID(sensor_baro), _baro_sub, &_baro); orb_copy(ORB_ID(sensor_baro), _baro_sub, &_baro);
_baro_ref = _baro.altitude; _baro_ref = _baro.altitude;
baroHgt = _baro.altitude - _baro_ref; _ekf->baroHgt = _baro.altitude - _baro_ref;
_baro_gps_offset = _baro_ref - _local_pos.ref_alt; _baro_gps_offset = _baro_ref - _local_pos.ref_alt;
// XXX this is not multithreading safe // XXX this is not multithreading safe
@ -808,24 +826,24 @@ FixedwingEstimator::task_main()
_gps_initialized = true; _gps_initialized = true;
} else if (!statesInitialised) { } else if (!_ekf->statesInitialised) {
velNED[0] = 0.0f; _ekf->velNED[0] = 0.0f;
velNED[1] = 0.0f; _ekf->velNED[1] = 0.0f;
velNED[2] = 0.0f; _ekf->velNED[2] = 0.0f;
posNED[0] = 0.0f; _ekf->posNED[0] = 0.0f;
posNED[1] = 0.0f; _ekf->posNED[1] = 0.0f;
posNED[2] = 0.0f; _ekf->posNED[2] = 0.0f;
posNE[0] = posNED[0]; _ekf->posNE[0] = _ekf->posNED[0];
posNE[1] = posNED[1]; _ekf->posNE[1] = _ekf->posNED[1];
InitialiseFilter(velNED); _ekf->InitialiseFilter(_ekf->velNED);
} }
} }
// If valid IMU data and states initialised, predict states and covariances // If valid IMU data and states initialised, predict states and covariances
if (statesInitialised) { if (_ekf->statesInitialised) {
// Run the strapdown INS equations every IMU update // Run the strapdown INS equations every IMU update
UpdateStrapdownEquationsNED(); _ekf->UpdateStrapdownEquationsNED();
#if 0 #if 0
// debug code - could be tunred into a filter mnitoring/watchdog function // debug code - could be tunred into a filter mnitoring/watchdog function
float tempQuat[4]; float tempQuat[4];
@ -842,20 +860,20 @@ FixedwingEstimator::task_main()
#endif #endif
// store the predicted states for subsequent use by measurement fusion // store the predicted states for subsequent use by measurement fusion
StoreStates(IMUmsec); _ekf->StoreStates(IMUmsec);
// Check if on ground - status is used by covariance prediction // Check if on ground - status is used by covariance prediction
OnGroundCheck(); _ekf->OnGroundCheck();
// sum delta angles and time used by covariance prediction // sum delta angles and time used by covariance prediction
summedDelAng = summedDelAng + correctedDelAng; _ekf->summedDelAng = _ekf->summedDelAng + _ekf->correctedDelAng;
summedDelVel = summedDelVel + dVelIMU; _ekf->summedDelVel = _ekf->summedDelVel + _ekf->dVelIMU;
dt += dtIMU; dt += _ekf->dtIMU;
// perform a covariance prediction if the total delta angle has exceeded the limit // perform a covariance prediction if the total delta angle has exceeded the limit
// or the time limit will be exceeded at the next IMU update // or the time limit will be exceeded at the next IMU update
if ((dt >= (covTimeStepMax - dtIMU)) || (summedDelAng.length() > covDelAngMax)) { if ((dt >= (covTimeStepMax - _ekf->dtIMU)) || (_ekf->summedDelAng.length() > covDelAngMax)) {
CovariancePrediction(dt); _ekf->CovariancePrediction(dt);
summedDelAng = summedDelAng.zero(); _ekf->summedDelAng = _ekf->summedDelAng.zero();
summedDelVel = summedDelVel.zero(); _ekf->summedDelVel = _ekf->summedDelVel.zero();
dt = 0.0f; dt = 0.0f;
} }
@ -865,79 +883,79 @@ FixedwingEstimator::task_main()
// Fuse GPS Measurements // Fuse GPS Measurements
if (newDataGps && _gps_initialized) { if (newDataGps && _gps_initialized) {
// Convert GPS measurements to Pos NE, hgt and Vel NED // Convert GPS measurements to Pos NE, hgt and Vel NED
velNED[0] = _gps.vel_n_m_s; _ekf->velNED[0] = _gps.vel_n_m_s;
velNED[1] = _gps.vel_e_m_s; _ekf->velNED[1] = _gps.vel_e_m_s;
velNED[2] = _gps.vel_d_m_s; _ekf->velNED[2] = _gps.vel_d_m_s;
calcposNED(posNED, gpsLat, gpsLon, gpsHgt, latRef, lonRef, hgtRef); _ekf->calcposNED(_ekf->posNED, _ekf->gpsLat, _ekf->gpsLon, _ekf->gpsHgt, _ekf->latRef, _ekf->lonRef, _ekf->hgtRef);
posNE[0] = posNED[0]; _ekf->posNE[0] = _ekf->posNED[0];
posNE[1] = posNED[1]; _ekf->posNE[1] = _ekf->posNED[1];
// set fusion flags // set fusion flags
fuseVelData = true; _ekf->fuseVelData = true;
fusePosData = true; _ekf->fusePosData = true;
// recall states stored at time of measurement after adjusting for delays // recall states stored at time of measurement after adjusting for delays
RecallStates(statesAtVelTime, (IMUmsec - _parameters.vel_delay_ms)); _ekf->RecallStates(_ekf->statesAtVelTime, (IMUmsec - _parameters.vel_delay_ms));
RecallStates(statesAtPosTime, (IMUmsec - _parameters.pos_delay_ms)); _ekf->RecallStates(_ekf->statesAtPosTime, (IMUmsec - _parameters.pos_delay_ms));
// run the fusion step // run the fusion step
FuseVelposNED(); _ekf->FuseVelposNED();
} else if (statesInitialised) { } else if (_ekf->statesInitialised) {
// Convert GPS measurements to Pos NE, hgt and Vel NED // Convert GPS measurements to Pos NE, hgt and Vel NED
velNED[0] = 0.0f; _ekf->velNED[0] = 0.0f;
velNED[1] = 0.0f; _ekf->velNED[1] = 0.0f;
velNED[2] = 0.0f; _ekf->velNED[2] = 0.0f;
posNED[0] = 0.0f; _ekf->posNED[0] = 0.0f;
posNED[1] = 0.0f; _ekf->posNED[1] = 0.0f;
posNED[2] = 0.0f; _ekf->posNED[2] = 0.0f;
posNE[0] = posNED[0]; _ekf->posNE[0] = _ekf->posNED[0];
posNE[1] = posNED[1]; _ekf->posNE[1] = _ekf->posNED[1];
// set fusion flags // set fusion flags
fuseVelData = true; _ekf->fuseVelData = true;
fusePosData = true; _ekf->fusePosData = true;
// recall states stored at time of measurement after adjusting for delays // recall states stored at time of measurement after adjusting for delays
RecallStates(statesAtVelTime, (IMUmsec - _parameters.vel_delay_ms)); _ekf->RecallStates(_ekf->statesAtVelTime, (IMUmsec - _parameters.vel_delay_ms));
RecallStates(statesAtPosTime, (IMUmsec - _parameters.pos_delay_ms)); _ekf->RecallStates(_ekf->statesAtPosTime, (IMUmsec - _parameters.pos_delay_ms));
// run the fusion step // run the fusion step
FuseVelposNED(); _ekf->FuseVelposNED();
} else { } else {
fuseVelData = false; _ekf->fuseVelData = false;
fusePosData = false; _ekf->fusePosData = false;
} }
if (newAdsData && statesInitialised) { if (newAdsData && _ekf->statesInitialised) {
// Could use a blend of GPS and baro alt data if desired // Could use a blend of GPS and baro alt data if desired
hgtMea = 1.0f * baroHgt + 0.0f * gpsHgt; _ekf->hgtMea = 1.0f * _ekf->baroHgt + 0.0f * _ekf->gpsHgt;
fuseHgtData = true; _ekf->fuseHgtData = true;
// recall states stored at time of measurement after adjusting for delays // recall states stored at time of measurement after adjusting for delays
RecallStates(statesAtHgtTime, (IMUmsec - _parameters.height_delay_ms)); _ekf->RecallStates(_ekf->statesAtHgtTime, (IMUmsec - _parameters.height_delay_ms));
// run the fusion step // run the fusion step
FuseVelposNED(); _ekf->FuseVelposNED();
} else { } else {
fuseHgtData = false; _ekf->fuseHgtData = false;
} }
// Fuse Magnetometer Measurements // Fuse Magnetometer Measurements
if (newDataMag && statesInitialised) { if (newDataMag && _ekf->statesInitialised) {
fuseMagData = true; _ekf->fuseMagData = true;
RecallStates(statesAtMagMeasTime, (IMUmsec - _parameters.mag_delay_ms)); // Assume 50 msec avg delay for magnetometer data _ekf->RecallStates(_ekf->statesAtMagMeasTime, (IMUmsec - _parameters.mag_delay_ms)); // Assume 50 msec avg delay for magnetometer data
} else { } else {
fuseMagData = false; _ekf->fuseMagData = false;
} }
if (statesInitialised) FuseMagnetometer(); if (_ekf->statesInitialised) _ekf->FuseMagnetometer();
// Fuse Airspeed Measurements // Fuse Airspeed Measurements
if (newAdsData && statesInitialised && VtasMeas > 8.0f) { if (newAdsData && _ekf->statesInitialised && _ekf->VtasMeas > 8.0f) {
fuseVtasData = true; _ekf->fuseVtasData = true;
RecallStates(statesAtVtasMeasTime, (IMUmsec - _parameters.tas_delay_ms)); // assume 100 msec avg delay for airspeed data _ekf->RecallStates(_ekf->statesAtVtasMeasTime, (IMUmsec - _parameters.tas_delay_ms)); // assume 100 msec avg delay for airspeed data
FuseAirspeed(); _ekf->FuseAirspeed();
} else { } else {
fuseVtasData = false; _ekf->fuseVtasData = false;
} }
// Publish results // Publish results
@ -954,7 +972,7 @@ FixedwingEstimator::task_main()
// 15-17: Earth Magnetic Field Vector - milligauss (North, East, Down) // 15-17: Earth Magnetic Field Vector - milligauss (North, East, Down)
// 18-20: Body Magnetic Field Vector - milligauss (X,Y,Z) // 18-20: Body Magnetic Field Vector - milligauss (X,Y,Z)
math::Quaternion q(states[0], states[1], states[2], states[3]); math::Quaternion q(_ekf->states[0], _ekf->states[1], _ekf->states[2], _ekf->states[3]);
math::Matrix<3, 3> R = q.to_dcm(); math::Matrix<3, 3> R = q.to_dcm();
math::Vector<3> euler = R.to_euler(); math::Vector<3> euler = R.to_euler();
@ -962,10 +980,10 @@ FixedwingEstimator::task_main()
_att.R[i][j] = R(i, j); _att.R[i][j] = R(i, j);
_att.timestamp = last_sensor_timestamp; _att.timestamp = last_sensor_timestamp;
_att.q[0] = states[0]; _att.q[0] = _ekf->states[0];
_att.q[1] = states[1]; _att.q[1] = _ekf->states[1];
_att.q[2] = states[2]; _att.q[2] = _ekf->states[2];
_att.q[3] = states[3]; _att.q[3] = _ekf->states[3];
_att.q_valid = true; _att.q_valid = true;
_att.R_valid = true; _att.R_valid = true;
@ -974,13 +992,13 @@ FixedwingEstimator::task_main()
_att.pitch = euler(1); _att.pitch = euler(1);
_att.yaw = euler(2); _att.yaw = euler(2);
_att.rollspeed = angRate.x - states[10]; _att.rollspeed = _ekf->angRate.x - _ekf->states[10];
_att.pitchspeed = angRate.y - states[11]; _att.pitchspeed = _ekf->angRate.y - _ekf->states[11];
_att.yawspeed = angRate.z - states[12]; _att.yawspeed = _ekf->angRate.z - _ekf->states[12];
// gyro offsets // gyro offsets
_att.rate_offsets[0] = states[10]; _att.rate_offsets[0] = _ekf->states[10];
_att.rate_offsets[1] = states[11]; _att.rate_offsets[1] = _ekf->states[11];
_att.rate_offsets[2] = states[12]; _att.rate_offsets[2] = _ekf->states[12];
/* lazily publish the attitude only once available */ /* lazily publish the attitude only once available */
if (_att_pub > 0) { if (_att_pub > 0) {
@ -993,20 +1011,15 @@ FixedwingEstimator::task_main()
} }
} }
if (!isfinite(states[0])) {
print_status();
_exit(0);
}
if (_gps_initialized) { if (_gps_initialized) {
_local_pos.timestamp = last_sensor_timestamp; _local_pos.timestamp = last_sensor_timestamp;
_local_pos.x = states[7]; _local_pos.x = _ekf->states[7];
_local_pos.y = states[8]; _local_pos.y = _ekf->states[8];
_local_pos.z = states[9]; _local_pos.z = _ekf->states[9];
_local_pos.vx = states[4]; _local_pos.vx = _ekf->states[4];
_local_pos.vy = states[5]; _local_pos.vy = _ekf->states[5];
_local_pos.vz = states[6]; _local_pos.vz = _ekf->states[6];
_local_pos.xy_valid = _gps_initialized; _local_pos.xy_valid = _gps_initialized;
_local_pos.z_valid = true; _local_pos.z_valid = true;
@ -1107,9 +1120,10 @@ FixedwingEstimator::start()
return OK; return OK;
} }
void print_status() void
FixedwingEstimator::print_status()
{ {
math::Quaternion q(states[0], states[1], states[2], states[3]); math::Quaternion q(_ekf->states[0], _ekf->states[1], _ekf->states[2], _ekf->states[3]);
math::Matrix<3, 3> R = q.to_dcm(); math::Matrix<3, 3> R = q.to_dcm();
math::Vector<3> euler = R.to_euler(); math::Vector<3> euler = R.to_euler();
@ -1125,30 +1139,30 @@ void print_status()
// 15-17: Earth Magnetic Field Vector - gauss (North, East, Down) // 15-17: Earth Magnetic Field Vector - gauss (North, East, Down)
// 18-20: Body Magnetic Field Vector - gauss (X,Y,Z) // 18-20: Body Magnetic Field Vector - gauss (X,Y,Z)
printf("dtIMU: %8.6f dt: %8.6f IMUmsec: %d\n", dtIMU, dt, (int)IMUmsec); printf("dtIMU: %8.6f dt: %8.6f IMUmsec: %d\n", _ekf->dtIMU, dt, (int)IMUmsec);
printf("dvel: %8.6f %8.6f %8.6f accel: %8.6f %8.6f %8.6f\n", (double)dVelIMU.x, (double)dVelIMU.y, (double)dVelIMU.z, (double)accel.x, (double)accel.y, (double)accel.z); printf("dvel: %8.6f %8.6f %8.6f accel: %8.6f %8.6f %8.6f\n", (double)_ekf->dVelIMU.x, (double)_ekf->dVelIMU.y, (double)_ekf->dVelIMU.z, (double)_ekf->accel.x, (double)_ekf->accel.y, (double)_ekf->accel.z);
printf("dang: %8.4f %8.4f %8.4f dang corr: %8.4f %8.4f %8.4f\n" , (double)dAngIMU.x, (double)dAngIMU.y, (double)dAngIMU.z, (double)correctedDelAng.x, (double)correctedDelAng.y, (double)correctedDelAng.z); printf("dang: %8.4f %8.4f %8.4f dang corr: %8.4f %8.4f %8.4f\n" , (double)_ekf->dAngIMU.x, (double)_ekf->dAngIMU.y, (double)_ekf->dAngIMU.z, (double)_ekf->correctedDelAng.x, (double)_ekf->correctedDelAng.y, (double)_ekf->correctedDelAng.z);
printf("states (quat) [1-4]: %8.4f, %8.4f, %8.4f, %8.4f\n", (double)states[0], (double)states[1], (double)states[2], (double)states[3]); printf("states (quat) [1-4]: %8.4f, %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[0], (double)_ekf->states[1], (double)_ekf->states[2], (double)_ekf->states[3]);
printf("states (vel m/s) [5-7]: %8.4f, %8.4f, %8.4f\n", (double)states[4], (double)states[5], (double)states[6]); printf("states (vel m/s) [5-7]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[4], (double)_ekf->states[5], (double)_ekf->states[6]);
printf("states (pos m) [8-10]: %8.4f, %8.4f, %8.4f\n", (double)states[7], (double)states[8], (double)states[9]); printf("states (pos m) [8-10]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[7], (double)_ekf->states[8], (double)_ekf->states[9]);
printf("states (delta ang) [11-13]: %8.4f, %8.4f, %8.4f\n", (double)states[10], (double)states[11], (double)states[12]); printf("states (delta ang) [11-13]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[10], (double)_ekf->states[11], (double)_ekf->states[12]);
printf("states (wind) [14-15]: %8.4f, %8.4f\n", (double)states[13], (double)states[14]); printf("states (wind) [14-15]: %8.4f, %8.4f\n", (double)_ekf->states[13], (double)_ekf->states[14]);
printf("states (earth mag) [16-18]: %8.4f, %8.4f, %8.4f\n", (double)states[15], (double)states[16], (double)states[17]); printf("states (earth mag) [16-18]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[15], (double)_ekf->states[16], (double)_ekf->states[17]);
printf("states (body mag) [19-21]: %8.4f, %8.4f, %8.4f\n", (double)states[18], (double)states[19], (double)states[20]); printf("states (body mag) [19-21]: %8.4f, %8.4f, %8.4f\n", (double)_ekf->states[18], (double)_ekf->states[19], (double)_ekf->states[20]);
printf("states: %s %s %s %s %s %s %s %s %s %s\n", printf("states: %s %s %s %s %s %s %s %s %s %s\n",
(statesInitialised) ? "INITIALIZED" : "NON_INIT", (_ekf->statesInitialised) ? "INITIALIZED" : "NON_INIT",
(onGround) ? "ON_GROUND" : "AIRBORNE", (_ekf->onGround) ? "ON_GROUND" : "AIRBORNE",
(fuseVelData) ? "FUSE_VEL" : "INH_VEL", (_ekf->fuseVelData) ? "FUSE_VEL" : "INH_VEL",
(fusePosData) ? "FUSE_POS" : "INH_POS", (_ekf->fusePosData) ? "FUSE_POS" : "INH_POS",
(fuseHgtData) ? "FUSE_HGT" : "INH_HGT", (_ekf->fuseHgtData) ? "FUSE_HGT" : "INH_HGT",
(fuseMagData) ? "FUSE_MAG" : "INH_MAG", (_ekf->fuseMagData) ? "FUSE_MAG" : "INH_MAG",
(fuseVtasData) ? "FUSE_VTAS" : "INH_VTAS", (_ekf->fuseVtasData) ? "FUSE_VTAS" : "INH_VTAS",
(useAirspeed) ? "USE_AIRSPD" : "IGN_AIRSPD", (_ekf->useAirspeed) ? "USE_AIRSPD" : "IGN_AIRSPD",
(useCompass) ? "USE_COMPASS" : "IGN_COMPASS", (_ekf->useCompass) ? "USE_COMPASS" : "IGN_COMPASS",
(staticMode) ? "STATIC_MODE" : "DYNAMIC_MODE"); (_ekf->staticMode) ? "STATIC_MODE" : "DYNAMIC_MODE");
} }
int trip_nan() { int FixedwingEstimator::trip_nan() {
int ret = 0; int ret = 0;
@ -1166,7 +1180,7 @@ int trip_nan() {
float nan_val = 0.0f / 0.0f; float nan_val = 0.0f / 0.0f;
warnx("system not armed, tripping state vector with NaN values"); warnx("system not armed, tripping state vector with NaN values");
states[5] = nan_val; _ekf->states[5] = nan_val;
usleep(100000); usleep(100000);
// warnx("tripping covariance #1 with NaN values"); // warnx("tripping covariance #1 with NaN values");
@ -1178,15 +1192,15 @@ int trip_nan() {
// usleep(100000); // usleep(100000);
warnx("tripping covariance #3 with NaN values"); warnx("tripping covariance #3 with NaN values");
P[3][3] = nan_val; // covariance matrix _ekf->P[3][3] = nan_val; // covariance matrix
usleep(100000); usleep(100000);
warnx("tripping Kalman gains with NaN values"); warnx("tripping Kalman gains with NaN values");
Kfusion[0] = nan_val; // Kalman gains _ekf->Kfusion[0] = nan_val; // Kalman gains
usleep(100000); usleep(100000);
warnx("tripping stored states[0] with NaN values"); warnx("tripping stored states[0] with NaN values");
storedStates[0][0] = nan_val; _ekf->storedStates[0][0] = nan_val;
usleep(100000); usleep(100000);
warnx("\nDONE - FILTER STATE:"); warnx("\nDONE - FILTER STATE:");
@ -1234,7 +1248,7 @@ int fw_att_pos_estimator_main(int argc, char *argv[])
if (estimator::g_estimator) { if (estimator::g_estimator) {
warnx("running"); warnx("running");
print_status(); estimator::g_estimator->print_status();
exit(0); exit(0);
@ -1245,7 +1259,7 @@ int fw_att_pos_estimator_main(int argc, char *argv[])
if (!strcmp(argv[1], "trip")) { if (!strcmp(argv[1], "trip")) {
if (estimator::g_estimator) { if (estimator::g_estimator) {
int ret = trip_nan(); int ret = estimator::g_estimator->trip_nan();
exit(ret); exit(ret);