add python script for offline param identification

This commit is contained in:
baumanta 2020-03-24 09:56:53 +01:00 committed by Beat Küng
parent 22ceeccc26
commit 7fd77fedaa
1 changed files with 295 additions and 0 deletions

View File

@ -0,0 +1,295 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
File: mag_compensation.py
Author: Tanja Baumann
Email: tanja@auterion.com
Github: https://github.com/baumanta
Description:
Computes linear coefficients for mag compensation from thrust and current
Usage:
python mag_compensation.py /path/to/log/logfile.ulg
Remark:
If your logfile does not contain some of the topics, e.g.battery_status/current_a
you will have to comment out the corresponding parts in the script
"""
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import Axes3D
from pyulog import ULog
from pyulog.px4 import PX4ULog
from pylab import *
import numpy as np
import textwrap as tw
#arguments
arguments = len(sys.argv) - 1
if(arguments < 1):
print "Give logfile name as argument"
else:
log_name = sys.argv[1]
#Load the log data (produced by pyulog)
log = ULog(log_name)
pxlog = PX4ULog(log);
def get_data(topic_name, variable_name, index):
try:
dataset = log.get_dataset(topic_name, index)
return dataset.data[variable_name]
except:
return[]
def ms2s_list(time_ms_list):
if(len(time_ms_list) > 0):
return 1e-6 * time_ms_list
else:
return time_ms_list
# Select msgs and copy into arrays
armed = get_data('vehicle_status', 'arming_state', 0)
t_armed = ms2s_list(get_data('vehicle_status', 'timestamp', 0))
thrust_z = get_data('vehicle_rates_setpoint', 'thrust_body[2]', 0)
t_thrust = ms2s_list(get_data('vehicle_rates_setpoint', 'timestamp', 0))
current = get_data('battery_status', 'current_a', 0)
current = np.true_divide(current, 1000) #kA
t_current = ms2s_list(get_data('battery_status', 'timestamp', 0))
mag0X_body = get_data('sensor_mag', 'x', 0)
mag0Y_body = get_data('sensor_mag', 'y', 0)
mag0Z_body = get_data('sensor_mag', 'z', 0)
t_mag0 = ms2s_list(get_data('sensor_mag', 'timestamp', 0))
mag0_ID = get_data('sensor_mag', 'device_id', 0)
mag1X_body = get_data('sensor_mag', 'x', 1)
mag1Y_body = get_data('sensor_mag', 'y', 1)
mag1Z_body = get_data('sensor_mag', 'z', 1)
t_mag1 = ms2s_list(get_data('sensor_mag', 'timestamp', 1))
mag1_ID = get_data('sensor_mag', 'device_id', 1)
mag2X_body = get_data('sensor_mag', 'x', 2)
mag2Y_body = get_data('sensor_mag', 'y', 2)
mag2Z_body = get_data('sensor_mag', 'z', 2)
t_mag2 = ms2s_list(get_data('sensor_mag', 'timestamp', 2))
mag2_ID = get_data('sensor_mag', 'device_id', 2)
mag3X_body = get_data('sensor_mag', 'x', 3)
mag3Y_body = get_data('sensor_mag', 'y', 3)
mag3Z_body = get_data('sensor_mag', 'z', 3)
t_mag3 = ms2s_list(get_data('sensor_mag', 'timestamp', 3))
mag3_ID = get_data('sensor_mag', 'device_id', 3)
magX_body = []
magY_body = []
magZ_body = []
mag_id = []
t_mag = []
if len(mag0X_body) > 0:
magX_body.append(mag0X_body)
magY_body.append(mag0Y_body)
magZ_body.append(mag0Z_body)
t_mag.append(t_mag0)
mag_id.append(mag0_ID[0])
if len(mag1X_body) > 0:
magX_body.append(mag1X_body)
magY_body.append(mag1Y_body)
magZ_body.append(mag1Z_body)
t_mag.append(t_mag1)
mag_id.append(mag1_ID[0])
if len(mag2X_body) > 0:
magX_body.append(mag2X_body)
magY_body.append(mag2Y_body)
magZ_body.append(mag2Z_body)
t_mag.append(t_mag2)
mag_id.append(mag2_ID[0])
if len(mag3X_body) > 0:
magX_body.append(mag3X_body)
magY_body.append(mag3Y_body)
magZ_body.append(mag3Z_body)
t_mag.append(t_mag3)
mag_id.append(mag3_ID[0])
n_mag = len(magX_body)
#log index does not necessarily match mag calibration instance number
calibration_instance = []
instance_found = False
for idx in range(n_mag):
instance_found = False
for j in range(4):
if mag_id[idx] == log.initial_parameters["CAL_MAG{}_ID".format(j)]:
calibration_instance.append(j)
instance_found = True
if not instance_found:
print('Mag {} calibration instance not found, run compass calibration first.'.format(mag_id[idx]))
#get first arming sequence from data
start_time = 0
stop_time = 0
for i in range(len(armed)-1):
if armed[i] == 1 and armed[i+1] == 2:
start_time = t_armed[i+1]
if armed[i] == 2 and armed[i+1] == 1:
stop_time = t_armed[i+1]
break
#cut unarmed sequences from mag data
index_start = 0
index_stop = 0
for idx in range(n_mag):
for i in range(len(t_mag[idx])):
if t_mag[idx][i] > start_time:
index_start = i
break
for i in range(len(t_mag[idx])):
if t_mag[idx][i] > stop_time:
index_stop = i -1
break
t_mag[idx] = t_mag[idx][index_start:index_stop]
magX_body[idx] = magX_body[idx][index_start:index_stop]
magY_body[idx] = magY_body[idx][index_start:index_stop]
magZ_body[idx] = magZ_body[idx][index_start:index_stop]
#resample data
thrust_resampled = []
current_resampled = []
for idx in range(n_mag):
thrust_resampled.append(interp(t_mag[idx], t_thrust, thrust_z))
current_resampled.append(np.interp(t_mag[idx], t_current, current))
#fit linear to get coefficients
px_th = []
py_th = []
pz_th = []
px_curr = []
py_curr = []
pz_curr = []
for idx in range(n_mag):
px_th_temp, res_x_th, _, _, _ = polyfit(thrust_resampled[idx], magX_body[idx], 1,full = True)
py_th_temp, res_y_th, _, _, _ = polyfit(thrust_resampled[idx], magY_body[idx], 1,full = True)
pz_th_temp, res_z_th, _, _, _ = polyfit(thrust_resampled[idx], magZ_body[idx], 1, full = True)
px_curr_temp, res_x_curr, _, _, _ = polyfit(current_resampled[idx], magX_body[idx], 1,full = True)
py_curr_temp, res_y_curr, _, _, _ = polyfit(current_resampled[idx], magY_body[idx], 1,full = True)
pz_curr_temp, res_z_curr, _, _, _ = polyfit(current_resampled[idx], magZ_body[idx], 1, full = True)
px_th.append(px_th_temp)
py_th.append(py_th_temp)
pz_th.append(pz_th_temp)
px_curr.append(px_curr_temp)
py_curr.append(py_curr_temp)
pz_curr.append(pz_curr_temp)
#print to console
for idx in range(n_mag):
print('Mag{} device ID {} (calibration instance {})'.format(idx, mag_id[idx], calibration_instance[idx]))
print('\033[91m \nthrust-based compensation: \033[0m')
print('\nparam set CAL_MAG_COMP_TYP 1')
for idx in range(n_mag):
print('\nparam set CAL_MAG{}_XCOMP {:.3f}'.format(calibration_instance[idx], px_th[idx][0]))
print('param set CAL_MAG{}_YCOMP {:.3f}'.format(calibration_instance[idx], py_th[idx][0]))
print('param set CAL_MAG{}_ZCOMP {:.3f}'.format(calibration_instance[idx], pz_th[idx][0]))
print('\n\033[91mcurrent-based compensation: \033[0m')
print('\nparam set CAL_MAG_COMP_TYP 2')
for idx in range(n_mag):
print('\nparam set CAL_MAG{}_XCOMP {:.3f}'.format(calibration_instance[idx], -px_curr[idx][0]))
print('param set CAL_MAG{}_YCOMP {:.3f}'.format(calibration_instance[idx], -py_curr[idx][0]))
print('param set CAL_MAG{}_ZCOMP {:.3f}'.format(calibration_instance[idx], -pz_curr[idx][0]))
#plot data
for idx in range(n_mag):
fig = plt.figure(num=None, figsize=(25, 14), dpi=80, facecolor='w', edgecolor='k')
fig.suptitle('Thrust and Current Compensation Parameter Fit \n{} \nmag {} ID: {} (calibration instance {})'.format(log_name, idx, mag_id[idx], calibration_instance[idx]), fontsize=14, fontweight='bold')
plt.subplot(2,3,1)
plt.plot(current_resampled[idx], magX_body[idx], 'yo', current_resampled[idx], px_curr[idx][0]*current_resampled[idx]+px_curr[idx][1], '--k')
plt.xlabel('current [kA]')
plt.ylabel('mag X [G]')
plt.subplot(2,3,2)
plt.plot(current_resampled[idx], magY_body[idx], 'yo', current_resampled[idx], py_curr[idx][0]*current_resampled[idx]+py_curr[idx][1], '--k')
plt.xlabel('current [kA]')
plt.ylabel('mag Y [G]')
plt.subplot(2,3,3)
plt.plot(current_resampled[idx], magZ_body[idx], 'yo', current_resampled[idx], pz_curr[idx][0]*current_resampled[idx]+pz_curr[idx][1], '--k')
plt.xlabel('current [kA]')
plt.ylabel('mag Z [G]')
plt.subplot(2,3,4)
plt.plot(thrust_resampled[idx], magX_body[idx], 'yo', thrust_resampled[idx], px_th[idx][0]*thrust_resampled[idx]+px_th[idx][1], '--k')
plt.xlabel('thrust []')
plt.ylabel('mag X [G]')
plt.subplot(2,3,5)
plt.plot(thrust_resampled[idx], magY_body[idx], 'yo', thrust_resampled[idx], py_th[idx][0]*thrust_resampled[idx]+py_th[idx][1], '--k')
plt.xlabel('thrust []')
plt.ylabel('mag Y [G]')
plt.subplot(2,3,6)
plt.plot(thrust_resampled[idx], magZ_body[idx], 'yo', thrust_resampled[idx], pz_th[idx][0]*thrust_resampled[idx]+pz_th[idx][1], '--k')
plt.xlabel('thrust []')
plt.ylabel('mag Z [G]')
# display results
plt.figtext(0.24, 0.03, 'Thrust CAL_MAG{}_XCOMP: {:.3f}[G] \nCurrent CAL_MAG{}_XCOMP: {:.3f}[G/kA]'.format(calibration_instance[idx],px_th[idx][0],calibration_instance[idx],-px_curr[idx][0]), horizontalalignment='center', fontsize=12, multialignment='left', bbox=dict(boxstyle="round", facecolor='#D8D8D8', ec="0.5", pad=0.5, alpha=1), fontweight='bold')
plt.figtext(0.51, 0.03, 'Thrust CAL_MAG{}_YCOMP: {:.3f}[G] \nCurrent CAL_MAG{}_YCOMP: {:.3f}[G/kA]'.format(calibration_instance[idx],py_th[idx][0],calibration_instance[idx], -py_curr[idx][0]), horizontalalignment='center', fontsize=12, multialignment='left', bbox=dict(boxstyle="round", facecolor='#D8D8D8', ec="0.5", pad=0.5, alpha=1), fontweight='bold')
plt.figtext(0.79, 0.03, ' Thrust CAL_MAG{}_ZCOMP: {:.3f}[G] \nCurrent CAL_MAG{}_ZCOMP: {:.3f}[G/kA]'.format(calibration_instance[idx],pz_th[idx][0], calibration_instance[idx],-pz_curr[idx][0]), horizontalalignment='center', fontsize=12, multialignment='left', bbox=dict(boxstyle="round", facecolor='#D8D8D8', ec="0.5", pad=0.5, alpha=1), fontweight='bold')
#compensation comparison plots
for idx in range(n_mag):
fig = plt.figure(num=None, figsize=(25, 14), dpi=80, facecolor='w', edgecolor='k')
fig.suptitle('Thrust vs. Current Compensation \n{}\nmag {} ID: {} (calibration instance {})'.format(log_name, idx, mag_id[idx], calibration_instance[idx]), fontsize=14, fontweight='bold')
plt.subplot(3,1,1)
original_x, = plt.plot(t_mag[idx], magX_body[idx], label='original')
current_x, = plt.plot(t_mag[idx],magX_body[idx] - px_curr[idx][0] * current_resampled[idx], label='current compensated')
thrust_x, = plt.plot(t_mag[idx],magX_body[idx] - px_th[idx][0] * thrust_resampled[idx], label='thrust compensated')
plt.legend(handles=[original_x, current_x, thrust_x])
plt.xlabel('Time [s]')
plt.ylabel('Max X corrected[G]')
plt.subplot(3,1,2)
original_y, = plt.plot(t_mag[idx], magY_body[idx], label='original')
current_y, = plt.plot(t_mag[idx],magY_body[idx] - py_curr[idx][0] * current_resampled[idx], label='current compensated')
thrust_y, = plt.plot(t_mag[idx],magY_body[idx] - py_th[idx][0] * thrust_resampled[idx], label='thrust compensated')
plt.legend(handles=[original_y, current_y, thrust_y])
plt.xlabel('Time [s]')
plt.ylabel('Max Y corrected[G]')
plt.subplot(3,1,3)
original_z, = plt.plot(t_mag[idx], magZ_body[idx], label='original')
current_z, = plt.plot(t_mag[idx],magZ_body[idx] - pz_curr[idx][0] * current_resampled[idx], label='current compensated')
thrust_z, = plt.plot(t_mag[idx],magZ_body[idx] - pz_th[idx][0] * thrust_resampled[idx], label='thrust compensated')
plt.legend(handles=[original_z, current_z, thrust_z])
plt.xlabel('Time [s]')
plt.ylabel('Max Z corrected[G]')
plt.show()