Commander: Improved preflight check routines. Running checks on all connected sensors. Re-run checks once GCS is connected.

This commit is contained in:
Lorenz Meier 2015-04-19 13:57:07 +02:00
parent 5c44146c1b
commit 7dbb6c4fa8
4 changed files with 284 additions and 206 deletions

View File

@ -65,158 +65,219 @@
namespace Commander namespace Commander
{ {
static bool magnometerCheck(int mavlink_fd) static bool magnometerCheck(int mavlink_fd, unsigned instance, bool optional)
{ {
int fd = open(MAG0_DEVICE_PATH, 0); bool success = true;
char s[30];
sprintf(s, "%s%u", MAG_BASE_DEVICE_PATH, instance);
int fd = open(s, 0);
if (fd < 0) { if (fd < 0) {
warn("failed to open magnetometer - start with 'hmc5883 start' or 'lsm303d start'"); if (!optional) {
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: NO MAG"); mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: NO MAG SENSOR #%u", instance);
}
return false; return false;
} }
int calibration_devid; int calibration_devid;
int ret;
int devid = ioctl(fd, DEVIOCGDEVICEID, 0); int devid = ioctl(fd, DEVIOCGDEVICEID, 0);
param_get(param_find("CAL_MAG0_ID"), &(calibration_devid)); sprintf(s, "CAL_MAG%u_ID", instance);
param_get(param_find(s), &(calibration_devid));
if (devid != calibration_devid) { if (devid != calibration_devid) {
warnx("magnetometer calibration is for a different device - calibrate magnetometer first (dev: %d vs cal: %d)", devid, calibration_devid); mavlink_and_console_log_critical(mavlink_fd,
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: MAG CAL ID"); "PREFLIGHT FAIL: MAG #%u UNCALIBRATED (NO ID)", instance);
return false; success = false;
goto out;
} }
int ret = ioctl(fd, MAGIOCSELFTEST, 0); ret = ioctl(fd, MAGIOCSELFTEST, 0);
if (ret != OK) {
warnx("magnetometer calibration missing or bad - calibrate magnetometer first");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: MAG CHECK/CAL");
return false;
}
close(fd);
return true;
}
static bool accelerometerCheck(int mavlink_fd)
{
int fd = open(ACCEL0_DEVICE_PATH, O_RDONLY);
int ret = ioctl(fd, ACCELIOCSELFTEST, 0);
int calibration_devid;
int devid = ioctl(fd, DEVIOCGDEVICEID,0);
param_get(param_find("CAL_ACC0_ID"), &(calibration_devid));
if (devid != calibration_devid){
warnx("accelerometer calibration is for a different device - calibrate accelerometer first");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: ACC CAL ID");
return false;
}
if (ret != OK) { if (ret != OK) {
warnx("accel self test failed"); mavlink_and_console_log_critical(mavlink_fd,
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: ACCEL CHECK/CAL"); "PREFLIGHT FAIL: MAG #%u SELFTEST FAILED", instance);
return false; success = false;
} goto out;
// check measurement result range
struct accel_report acc;
ret = read(fd, &acc, sizeof(acc));
if (ret == sizeof(acc)) {
// evaluate values
float accel_magnitude = sqrtf(acc.x * acc.x + acc.y * acc.y + acc.z * acc.z);
// evaluate values
if (accel_magnitude > 30.0f) { //m/s^2
warnx("accel with spurious values");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: |ACCEL| > 30 m/s^2");
//this is frickin' fatal
return false;
}
} else {
warnx("accel read failed");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: ACCEL READ");
//this is frickin' fatal
return false;
} }
out:
close(fd); close(fd);
return true; return success;
} }
static bool gyroCheck(int mavlink_fd) static bool accelerometerCheck(int mavlink_fd, unsigned instance, bool optional)
{ {
int fd = open(GYRO0_DEVICE_PATH, 0); bool success = true;
int calibration_devid; char s[30];
int devid = ioctl(fd, DEVIOCGDEVICEID,0); sprintf(s, "%s%u", ACCEL_BASE_DEVICE_PATH, instance);
param_get(param_find("CAL_GYRO0_ID"), &(calibration_devid)); int fd = open(s, O_RDONLY);
if (devid != calibration_devid){
warnx("gyro calibration is for a different device - calibrate gyro first");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: GYRO CAL ID");
return false;
}
int ret = ioctl(fd, GYROIOCSELFTEST, 0);
if (ret != OK) {
warnx("gyro self test failed");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: GYRO CHECK/CAL");
return false;
}
close(fd);
return true;
}
static bool baroCheck(int mavlink_fd)
{
int fd = open(BARO0_DEVICE_PATH, 0);
if (fd < 0) { if (fd < 0) {
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: Barometer"); if (!optional) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: NO ACCEL SENSOR #%u", instance);
}
return false;
}
int calibration_devid;
int ret;
int devid = ioctl(fd, DEVIOCGDEVICEID, 0);
sprintf(s, "CAL_ACC%u_ID", instance);
param_get(param_find(s), &(calibration_devid));
if (devid != calibration_devid) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: ACCEL #%u UNCALIBRATED (NO ID)", instance);
success = false;
goto out;
}
ret = ioctl(fd, ACCELIOCSELFTEST, 0);
if (ret != OK) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: ACCEL #%u SELFTEST FAILED", instance);
success = false;
goto out;
}
out:
close(fd);
return success;
}
static bool gyroCheck(int mavlink_fd, unsigned instance, bool optional)
{
bool success = true;
char s[30];
sprintf(s, "%s%u", GYRO_BASE_DEVICE_PATH, instance);
int fd = open(s, 0);
if (fd < 0) {
if (!optional) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: NO GYRO SENSOR #%u", instance);
}
return false;
}
int calibration_devid;
int ret;
int devid = ioctl(fd, DEVIOCGDEVICEID, 0);
sprintf(s, "CAL_GYRO%u_ID", instance);
param_get(param_find(s), &(calibration_devid));
if (devid != calibration_devid) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: GYRO #%u UNCALIBRATED (NO ID)", instance);
success = false;
goto out;
}
ret = ioctl(fd, GYROIOCSELFTEST, 0);
if (ret != OK) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: GYRO #%u SELFTEST FAILED", instance);
success = false;
goto out;
}
out:
close(fd);
return success;
}
static bool baroCheck(int mavlink_fd, unsigned instance, bool optional)
{
bool success = true;
char s[30];
sprintf(s, "%s%u", BARO_BASE_DEVICE_PATH, instance);
int fd = open(s, 0);
if (fd < 0) {
if (!optional) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: NO BARO SENSOR #%u", instance);
}
return false; return false;
} }
close(fd); close(fd);
return true; return success;
} }
bool preflightCheck(int mavlink_fd, bool checkMag, bool checkAcc, bool checkGyro, bool checkBaro, bool checkRC) bool preflightCheck(int mavlink_fd, bool checkMag, bool checkAcc, bool checkGyro, bool checkBaro, bool checkRC)
{ {
//give the system some time to sample the sensors in the background bool failed = false;
usleep(150000);
//Magnetometer //Magnetometer
if (checkMag) { if (checkMag) {
if(!magnometerCheck(mavlink_fd)) { /* check all sensors, but fail only for mandatory ones */
return false; for (unsigned i = 0; i < max_optional_mag_count; i++) {
bool required = (i < max_mandatory_mag_count);
if (!magnometerCheck(mavlink_fd, i, !required) && required) {
failed = true;
}
} }
} }
//Accelerometer //Accelerometer
if (checkAcc) { if (checkAcc) {
if(!accelerometerCheck(mavlink_fd)) { /* check all sensors, but fail only for mandatory ones */
return false; for (unsigned i = 0; i < max_optional_accel_count; i++) {
bool required = (i < max_mandatory_accel_count);
if (!accelerometerCheck(mavlink_fd, i, !required) && required) {
failed = true;
}
} }
} }
// ---- GYRO ---- // ---- GYRO ----
if (checkGyro) { if (checkGyro) {
if(!gyroCheck(mavlink_fd)) { /* check all sensors, but fail only for mandatory ones */
return false; for (unsigned i = 0; i < max_optional_gyro_count; i++) {
bool required = (i < max_mandatory_gyro_count);
if (!gyroCheck(mavlink_fd, i, !required) && required) {
failed = true;
}
} }
} }
// ---- BARO ---- // ---- BARO ----
if (checkBaro) { if (checkBaro) {
if(!baroCheck(mavlink_fd)) { /* check all sensors, but fail only for mandatory ones */
return false; for (unsigned i = 0; i < max_optional_baro_count; i++) {
bool required = (i < max_mandatory_baro_count);
if (!baroCheck(mavlink_fd, i, !required) && required) {
failed = true;
}
} }
} }
// ---- RC CALIBRATION ---- // ---- RC CALIBRATION ----
if (checkRC) { if (checkRC) {
if (rc_calibration_check(mavlink_fd) != OK) { if (rc_calibration_check(mavlink_fd) != OK) {
return false; failed = true;
} }
} }
//All is good! // Report status
return true; return !failed;
} }
} }

View File

@ -44,8 +44,11 @@
namespace Commander namespace Commander
{ {
/** /**
* @brief
* Runs a preflight check on all sensors to see if they are properly calibrated and healthy * Runs a preflight check on all sensors to see if they are properly calibrated and healthy
*
* The function won't fail the test if optional sensors are not found, however,
* it will fail the test if optional sensors are found but not in working condition.
*
* @param mavlink_fd * @param mavlink_fd
* Mavlink output file descriptor for feedback when a sensor fails * Mavlink output file descriptor for feedback when a sensor fails
* @param checkMag * @param checkMag
@ -60,4 +63,17 @@ namespace Commander
* true if the Remote Controller should be checked * true if the Remote Controller should be checked
**/ **/
bool preflightCheck(int mavlink_fd, bool checkMag, bool checkAcc, bool checkGyro, bool checkBaro, bool checkRC); bool preflightCheck(int mavlink_fd, bool checkMag, bool checkAcc, bool checkGyro, bool checkBaro, bool checkRC);
const unsigned max_mandatory_gyro_count = 1;
const unsigned max_optional_gyro_count = 3;
const unsigned max_mandatory_accel_count = 1;
const unsigned max_optional_accel_count = 3;
const unsigned max_mandatory_mag_count = 1;
const unsigned max_optional_mag_count = 3;
const unsigned max_mandatory_baro_count = 1;
const unsigned max_optional_baro_count = 1;
} }

View File

@ -1302,7 +1302,8 @@ int commander_thread_main(int argc, char *argv[])
telemetry.heartbeat_time > 0 && telemetry.heartbeat_time > 0 &&
hrt_elapsed_time(&telemetry.heartbeat_time) < datalink_loss_timeout * 1e6) { hrt_elapsed_time(&telemetry.heartbeat_time) < datalink_loss_timeout * 1e6) {
(void)rc_calibration_check(mavlink_fd); /* provide RC and sensor status feedback to the user */
(void)Commander::preflightCheck(mavlink_fd, true, true, true, true, true);
} }
telemetry_last_heartbeat[i] = telemetry.heartbeat_time; telemetry_last_heartbeat[i] = telemetry.heartbeat_time;

View File

@ -212,10 +212,10 @@ arming_state_transition(struct vehicle_status_s *status, ///< current vehicle s
/* Sensors need to be initialized for STANDBY state */ /* Sensors need to be initialized for STANDBY state */
if (new_arming_state == vehicle_status_s::ARMING_STATE_STANDBY && !status->condition_system_sensors_initialized) { if (new_arming_state == vehicle_status_s::ARMING_STATE_STANDBY && !status->condition_system_sensors_initialized) {
mavlink_log_critical(mavlink_fd, "NOT ARMING: Sensors not operational."); mavlink_log_critical(mavlink_fd, "Not ready to fly: Sensors not operational.");
feedback_provided = true; feedback_provided = true;
valid_transition = false; valid_transition = false;
new_arming_state = vehicle_status_s::ARMING_STATE_STANDBY_ERROR; status->arming_state = vehicle_status_s::ARMING_STATE_STANDBY_ERROR;
} }
// Finish up the state transition // Finish up the state transition