Commander: Improved preflight check routines. Running checks on all connected sensors. Re-run checks once GCS is connected.

This commit is contained in:
Lorenz Meier 2015-04-19 13:57:07 +02:00
parent 5c44146c1b
commit 7dbb6c4fa8
4 changed files with 284 additions and 206 deletions

View File

@ -1,44 +1,44 @@
/****************************************************************************
*
* Copyright (c) 2012-2015 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
*
* Copyright (c) 2012-2015 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file PreflightCheck.cpp
*
* Preflight check for main system components
*
* @author Lorenz Meier <lorenz@px4.io>
* @author Johan Jansen <jnsn.johan@gmail.com>
*/
* @file PreflightCheck.cpp
*
* Preflight check for main system components
*
* @author Lorenz Meier <lorenz@px4.io>
* @author Johan Jansen <jnsn.johan@gmail.com>
*/
#include <nuttx/config.h>
#include <unistd.h>
@ -65,158 +65,219 @@
namespace Commander
{
static bool magnometerCheck(int mavlink_fd)
{
int fd = open(MAG0_DEVICE_PATH, 0);
if (fd < 0) {
warn("failed to open magnetometer - start with 'hmc5883 start' or 'lsm303d start'");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: NO MAG");
return false;
}
static bool magnometerCheck(int mavlink_fd, unsigned instance, bool optional)
{
bool success = true;
int calibration_devid;
int devid = ioctl(fd, DEVIOCGDEVICEID,0);
param_get(param_find("CAL_MAG0_ID"), &(calibration_devid));
if (devid != calibration_devid){
warnx("magnetometer calibration is for a different device - calibrate magnetometer first (dev: %d vs cal: %d)", devid, calibration_devid);
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: MAG CAL ID");
return false;
}
char s[30];
sprintf(s, "%s%u", MAG_BASE_DEVICE_PATH, instance);
int fd = open(s, 0);
int ret = ioctl(fd, MAGIOCSELFTEST, 0);
if (ret != OK) {
warnx("magnetometer calibration missing or bad - calibrate magnetometer first");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: MAG CHECK/CAL");
return false;
}
close(fd);
return true;
}
if (fd < 0) {
if (!optional) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: NO MAG SENSOR #%u", instance);
}
static bool accelerometerCheck(int mavlink_fd)
{
int fd = open(ACCEL0_DEVICE_PATH, O_RDONLY);
int ret = ioctl(fd, ACCELIOCSELFTEST, 0);
return false;
}
int calibration_devid;
int devid = ioctl(fd, DEVIOCGDEVICEID,0);
param_get(param_find("CAL_ACC0_ID"), &(calibration_devid));
if (devid != calibration_devid){
warnx("accelerometer calibration is for a different device - calibrate accelerometer first");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: ACC CAL ID");
return false;
}
if (ret != OK) {
warnx("accel self test failed");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: ACCEL CHECK/CAL");
return false;
}
int calibration_devid;
int ret;
int devid = ioctl(fd, DEVIOCGDEVICEID, 0);
sprintf(s, "CAL_MAG%u_ID", instance);
param_get(param_find(s), &(calibration_devid));
// check measurement result range
struct accel_report acc;
ret = read(fd, &acc, sizeof(acc));
if (devid != calibration_devid) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: MAG #%u UNCALIBRATED (NO ID)", instance);
success = false;
goto out;
}
if (ret == sizeof(acc)) {
// evaluate values
float accel_magnitude = sqrtf(acc.x * acc.x + acc.y * acc.y + acc.z * acc.z);
ret = ioctl(fd, MAGIOCSELFTEST, 0);
// evaluate values
if (accel_magnitude > 30.0f) { //m/s^2
warnx("accel with spurious values");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: |ACCEL| > 30 m/s^2");
//this is frickin' fatal
return false;
}
} else {
warnx("accel read failed");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: ACCEL READ");
//this is frickin' fatal
return false;
}
if (ret != OK) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: MAG #%u SELFTEST FAILED", instance);
success = false;
goto out;
}
close(fd);
return true;
}
static bool gyroCheck(int mavlink_fd)
{
int fd = open(GYRO0_DEVICE_PATH, 0);
int calibration_devid;
int devid = ioctl(fd, DEVIOCGDEVICEID,0);
param_get(param_find("CAL_GYRO0_ID"), &(calibration_devid));
if (devid != calibration_devid){
warnx("gyro calibration is for a different device - calibrate gyro first");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: GYRO CAL ID");
return false;
}
int ret = ioctl(fd, GYROIOCSELFTEST, 0);
if (ret != OK) {
warnx("gyro self test failed");
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: GYRO CHECK/CAL");
return false;
}
close(fd);
return true;
}
static bool baroCheck(int mavlink_fd)
{
int fd = open(BARO0_DEVICE_PATH, 0);
if(fd < 0) {
mavlink_log_critical(mavlink_fd, "SENSOR FAIL: Barometer");
return false;
}
close(fd);
return true;
}
bool preflightCheck(int mavlink_fd, bool checkMag, bool checkAcc, bool checkGyro, bool checkBaro, bool checkRC)
{
//give the system some time to sample the sensors in the background
usleep(150000);
//Magnetometer
if(checkMag) {
if(!magnometerCheck(mavlink_fd)) {
return false;
}
}
//Accelerometer
if(checkAcc) {
if(!accelerometerCheck(mavlink_fd)) {
return false;
}
}
// ---- GYRO ----
if(checkGyro) {
if(!gyroCheck(mavlink_fd)) {
return false;
}
}
// ---- BARO ----
if(checkBaro) {
if(!baroCheck(mavlink_fd)) {
return false;
}
}
// ---- RC CALIBRATION ----
if(checkRC) {
if(rc_calibration_check(mavlink_fd) != OK) {
return false;
}
}
//All is good!
return true;
}
out:
close(fd);
return success;
}
static bool accelerometerCheck(int mavlink_fd, unsigned instance, bool optional)
{
bool success = true;
char s[30];
sprintf(s, "%s%u", ACCEL_BASE_DEVICE_PATH, instance);
int fd = open(s, O_RDONLY);
if (fd < 0) {
if (!optional) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: NO ACCEL SENSOR #%u", instance);
}
return false;
}
int calibration_devid;
int ret;
int devid = ioctl(fd, DEVIOCGDEVICEID, 0);
sprintf(s, "CAL_ACC%u_ID", instance);
param_get(param_find(s), &(calibration_devid));
if (devid != calibration_devid) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: ACCEL #%u UNCALIBRATED (NO ID)", instance);
success = false;
goto out;
}
ret = ioctl(fd, ACCELIOCSELFTEST, 0);
if (ret != OK) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: ACCEL #%u SELFTEST FAILED", instance);
success = false;
goto out;
}
out:
close(fd);
return success;
}
static bool gyroCheck(int mavlink_fd, unsigned instance, bool optional)
{
bool success = true;
char s[30];
sprintf(s, "%s%u", GYRO_BASE_DEVICE_PATH, instance);
int fd = open(s, 0);
if (fd < 0) {
if (!optional) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: NO GYRO SENSOR #%u", instance);
}
return false;
}
int calibration_devid;
int ret;
int devid = ioctl(fd, DEVIOCGDEVICEID, 0);
sprintf(s, "CAL_GYRO%u_ID", instance);
param_get(param_find(s), &(calibration_devid));
if (devid != calibration_devid) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: GYRO #%u UNCALIBRATED (NO ID)", instance);
success = false;
goto out;
}
ret = ioctl(fd, GYROIOCSELFTEST, 0);
if (ret != OK) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: GYRO #%u SELFTEST FAILED", instance);
success = false;
goto out;
}
out:
close(fd);
return success;
}
static bool baroCheck(int mavlink_fd, unsigned instance, bool optional)
{
bool success = true;
char s[30];
sprintf(s, "%s%u", BARO_BASE_DEVICE_PATH, instance);
int fd = open(s, 0);
if (fd < 0) {
if (!optional) {
mavlink_and_console_log_critical(mavlink_fd,
"PREFLIGHT FAIL: NO BARO SENSOR #%u", instance);
}
return false;
}
close(fd);
return success;
}
bool preflightCheck(int mavlink_fd, bool checkMag, bool checkAcc, bool checkGyro, bool checkBaro, bool checkRC)
{
bool failed = false;
//Magnetometer
if (checkMag) {
/* check all sensors, but fail only for mandatory ones */
for (unsigned i = 0; i < max_optional_mag_count; i++) {
bool required = (i < max_mandatory_mag_count);
if (!magnometerCheck(mavlink_fd, i, !required) && required) {
failed = true;
}
}
}
//Accelerometer
if (checkAcc) {
/* check all sensors, but fail only for mandatory ones */
for (unsigned i = 0; i < max_optional_accel_count; i++) {
bool required = (i < max_mandatory_accel_count);
if (!accelerometerCheck(mavlink_fd, i, !required) && required) {
failed = true;
}
}
}
// ---- GYRO ----
if (checkGyro) {
/* check all sensors, but fail only for mandatory ones */
for (unsigned i = 0; i < max_optional_gyro_count; i++) {
bool required = (i < max_mandatory_gyro_count);
if (!gyroCheck(mavlink_fd, i, !required) && required) {
failed = true;
}
}
}
// ---- BARO ----
if (checkBaro) {
/* check all sensors, but fail only for mandatory ones */
for (unsigned i = 0; i < max_optional_baro_count; i++) {
bool required = (i < max_mandatory_baro_count);
if (!baroCheck(mavlink_fd, i, !required) && required) {
failed = true;
}
}
}
// ---- RC CALIBRATION ----
if (checkRC) {
if (rc_calibration_check(mavlink_fd) != OK) {
failed = true;
}
}
// Report status
return !failed;
}
}

View File

@ -43,21 +43,37 @@
namespace Commander
{
/**
* @brief
* Runs a preflight check on all sensors to see if they are properly calibrated and healthy
* @param mavlink_fd
* Mavlink output file descriptor for feedback when a sensor fails
* @param checkMag
* true if the magneteometer should be checked
* @param checkAcc
* true if the accelerometers should be checked
* @param checkGyro
* true if the gyroscopes should be checked
* @param checkBaro
* true if the barometer should be checked
* @param checkRC
* true if the Remote Controller should be checked
**/
bool preflightCheck(int mavlink_fd, bool checkMag, bool checkAcc, bool checkGyro, bool checkBaro, bool checkRC);
/**
* Runs a preflight check on all sensors to see if they are properly calibrated and healthy
*
* The function won't fail the test if optional sensors are not found, however,
* it will fail the test if optional sensors are found but not in working condition.
*
* @param mavlink_fd
* Mavlink output file descriptor for feedback when a sensor fails
* @param checkMag
* true if the magneteometer should be checked
* @param checkAcc
* true if the accelerometers should be checked
* @param checkGyro
* true if the gyroscopes should be checked
* @param checkBaro
* true if the barometer should be checked
* @param checkRC
* true if the Remote Controller should be checked
**/
bool preflightCheck(int mavlink_fd, bool checkMag, bool checkAcc, bool checkGyro, bool checkBaro, bool checkRC);
const unsigned max_mandatory_gyro_count = 1;
const unsigned max_optional_gyro_count = 3;
const unsigned max_mandatory_accel_count = 1;
const unsigned max_optional_accel_count = 3;
const unsigned max_mandatory_mag_count = 1;
const unsigned max_optional_mag_count = 3;
const unsigned max_mandatory_baro_count = 1;
const unsigned max_optional_baro_count = 1;
}

View File

@ -1302,7 +1302,8 @@ int commander_thread_main(int argc, char *argv[])
telemetry.heartbeat_time > 0 &&
hrt_elapsed_time(&telemetry.heartbeat_time) < datalink_loss_timeout * 1e6) {
(void)rc_calibration_check(mavlink_fd);
/* provide RC and sensor status feedback to the user */
(void)Commander::preflightCheck(mavlink_fd, true, true, true, true, true);
}
telemetry_last_heartbeat[i] = telemetry.heartbeat_time;

View File

@ -77,8 +77,8 @@ static const int ERROR = -1;
// though the transition is marked as true additional checks must be made. See arming_state_transition
// code for those checks.
static const bool arming_transitions[vehicle_status_s::ARMING_STATE_MAX][vehicle_status_s::ARMING_STATE_MAX] = {
// INIT, STANDBY, ARMED, ARMED_ERROR, STANDBY_ERROR, REBOOT, IN_AIR_RESTORE
{ /* vehicle_status_s::ARMING_STATE_INIT */ true, true, false, false, true, false, false },
// INIT, STANDBY, ARMED, ARMED_ERROR, STANDBY_ERROR, REBOOT, IN_AIR_RESTORE
{ /* vehicle_status_s::ARMING_STATE_INIT */ true, true, false, false, true, false, false },
{ /* vehicle_status_s::ARMING_STATE_STANDBY */ true, true, true, true, false, false, false },
{ /* vehicle_status_s::ARMING_STATE_ARMED */ false, true, true, false, false, false, true },
{ /* vehicle_status_s::ARMING_STATE_ARMED_ERROR */ false, false, true, true, false, false, false },
@ -212,10 +212,10 @@ arming_state_transition(struct vehicle_status_s *status, ///< current vehicle s
/* Sensors need to be initialized for STANDBY state */
if (new_arming_state == vehicle_status_s::ARMING_STATE_STANDBY && !status->condition_system_sensors_initialized) {
mavlink_log_critical(mavlink_fd, "NOT ARMING: Sensors not operational.");
mavlink_log_critical(mavlink_fd, "Not ready to fly: Sensors not operational.");
feedback_provided = true;
valid_transition = false;
new_arming_state = vehicle_status_s::ARMING_STATE_STANDBY_ERROR;
status->arming_state = vehicle_status_s::ARMING_STATE_STANDBY_ERROR;
}
// Finish up the state transition