px4iov2 nsh boots

This commit is contained in:
Pat Hickey 2013-04-14 20:53:42 -07:00
parent 1a8cca92e9
commit 64ec950c58
23 changed files with 3732 additions and 0 deletions

View File

@ -0,0 +1,41 @@
############################################################################
#
# Copyright (C) 2012 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# Board-specific startup code for the PX4IO
#
INCLUDES = $(TOPDIR)/arch/arm/src/stm32 $(TOPDIR)/arch/arm/src/common
LIBNAME = brd_px4io
include $(APPDIR)/mk/app.mk

View File

@ -0,0 +1,5 @@
#
# Board-specific startup code for the PX4IOv2
#
SRCS = px4iov2_init.c

View File

@ -0,0 +1,172 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file px4iov2_init.c
*
* PX4FMU-specific early startup code. This file implements the
* nsh_archinitialize() function that is called early by nsh during startup.
*
* Code here is run before the rcS script is invoked; it should start required
* subsystems and perform board-specific initialisation.
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdbool.h>
#include <stdio.h>
#include <debug.h>
#include <errno.h>
#include <nuttx/arch.h>
#include "stm32_internal.h"
#include "px4iov2_internal.h"
#include <arch/board/board.h>
/****************************************************************************
* Pre-Processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* Debug ********************************************************************/
#ifdef CONFIG_CPP_HAVE_VARARGS
# ifdef CONFIG_DEBUG
# define message(...) lowsyslog(__VA_ARGS__)
# else
# define message(...) printf(__VA_ARGS__)
# endif
#else
# ifdef CONFIG_DEBUG
# define message lowsyslog
# else
# define message printf
# endif
#endif
/****************************************************************************
* Protected Functions
****************************************************************************/
/****************************************************************************
* Public Functions
****************************************************************************/
/************************************************************************************
* Name: stm32_boardinitialize
*
* Description:
* All STM32 architectures must provide the following entry point. This entry point
* is called early in the intitialization -- after all memory has been configured
* and mapped but before any devices have been initialized.
*
************************************************************************************/
__EXPORT void stm32_boardinitialize(void)
{
/* configure GPIOs */
/* turn off - all leds are active low */
stm32_gpiowrite(BOARD_GPIO_LED1, true);
stm32_gpiowrite(BOARD_GPIO_LED2, true);
stm32_gpiowrite(BOARD_GPIO_LED3, true);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_LED1));
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_LED2));
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_LED3));
stm32_configgpio(BOARD_GPIO_INPUT_FLOAT(BOARD_GPIO_BTN_SAFETY));
/* spektrum power enable is active high - disable it by default */
stm32_gpiowrite(BOARD_GPIO_SPEKTRUM_PWR_EN, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_SPEKTRUM_PWR_EN));
/* servo power enable is active low, and has a pull down resistor
* to keep it low during boot (since it may power the whole board.)
*/
stm32_gpiowrite(BOARD_GPIO_SERVO_PWR_EN, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_SERVO_PWR_EN));
stm32_configgpio(BOARD_GPIO_INPUT_PUP(BOARD_GPIO_SERVO_FAULT_DETECT));
stm32_configgpio(BOARD_GPIO_INPUT_FLOAT(BOARD_GPIO_TIM_RSSI)); /* xxx alternate function */
stm32_configgpio(BOARD_GPIO_INPUT_ANALOG(BOARD_GPIO_ADC_RSSI));
stm32_configgpio(BOARD_GPIO_INPUT_ANALOG(BOARD_GPIO_ADC_VSERVO));
stm32_configgpio(BOARD_GPIO_INPUT_FLOAT(BOARD_GPIO_SBUS_INPUT)); /* xxx alternate function */
stm32_gpiowrite(BOARD_GPIO_SBUS_OUTPUT, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_SBUS_OUTPUT));
/* sbus output enable is active low - disable it by default */
stm32_gpiowrite(BOARD_GPIO_SBUS_OENABLE, true);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_SBUS_OENABLE));
stm32_configgpio(BOARD_GPIO_INPUT_FLOAT(BOARD_GPIO_PPM)); /* xxx alternate function */
stm32_gpiowrite(BOARD_GPIO_PWM1, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_PWM1));
stm32_gpiowrite(BOARD_GPIO_PWM2, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_PWM2));
stm32_gpiowrite(BOARD_GPIO_PWM3, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_PWM3));
stm32_gpiowrite(BOARD_GPIO_PWM4, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_PWM4));
stm32_gpiowrite(BOARD_GPIO_PWM5, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_PWM5));
stm32_gpiowrite(BOARD_GPIO_PWM6, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_PWM6));
stm32_gpiowrite(BOARD_GPIO_PWM7, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_PWM7));
stm32_gpiowrite(BOARD_GPIO_PWM8, false);
stm32_configgpio(BOARD_GPIO_OUTPUT(BOARD_GPIO_PWM8));
// message("[boot] Successfully initialized px4iov2 gpios\n");
return OK;
}

View File

@ -0,0 +1,135 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file px4iov2_internal.h
*
* PX4IOV2 internal definitions
*/
#pragma once
/****************************************************************************************************
* Included Files
****************************************************************************************************/
#include <nuttx/config.h>
#include <nuttx/compiler.h>
#include <stdint.h>
__BEGIN_DECLS
/* these headers are not C++ safe */
#include <stm32_internal.h>
/****************************************************************************************************
* Definitions
****************************************************************************************************/
/* Configuration ************************************************************************************/
/******************************************************************************
* GPIOS
******************************************************************************/
#define BOARD_GPIO_OUTPUT(pin) (GPIO_OUTPUT|GPIO_CNF_OUTPP|GPIO_MODE_50MHz|\
GPIO_OUTPUT_CLEAR|(pin))
#define BOARD_GPIO_INPUT_FLOAT(pin) (GPIO_INPUT|GPIO_CNF_INFLOAT|\
GPIO_MODE_INPUT|(pin))
#define BOARD_GPIO_INPUT_PUP(pin) (GPIO_INPUT|GPIO_CNF_INPULLUP|\
GPIO_MODE_INPUT|(pin))
#define BOARD_GPIO_INPUT_ANALOG(pin) (GPIO_INPUT|GPIO_CNF_ANALOGIN|\
GPIO_MODE_INPUT|(pin))
/* LEDS **********************************************************************/
#define BOARD_GPIO_LED1 (GPIO_PORTB|GPIO_PIN14)
#define BOARD_GPIO_LED2 (GPIO_PORTB|GPIO_PIN15)
#define BOARD_GPIO_LED3 (GPIO_PORTB|GPIO_PIN13)
#define BOARD_GPIO_LED_BLUE BOARD_GPIO_LED1
#define BOARD_GPIO_LED_AMBER BOARD_GPIO_LED2
#define BOARD_GPIO_LED_SAFETY BOARD_GPIO_LED3
/* Safety switch button *******************************************************/
#define BOARD_GPIO_BTN_SAFETY (GPIO_PORTB|GPIO_PIN5)
/* Power switch controls ******************************************************/
#define BOARD_GPIO_SPEKTRUM_PWR_EN (GPIO_PORTC|GPIO_PIN13)
#define BOARD_GPIO_SERVO_PWR_EN (GPIO_PORTC|GPIO_PIN15)
#define BOARD_GPIO_SERVO_FAULT_DETECT (GPIO_PORTB|GPIO_PIN13)
/* Analog inputs **************************************************************/
#define BOARD_GPIO_ADC_VSERVO (GPIO_PORTA|GPIO_PIN4)
/* the same rssi signal goes to both an adc and a timer input */
#define BOARD_GPIO_ADC_RSSI (GPIO_PORTA|GPIO_PIN5)
#define BOARD_GPIO_TIM_RSSI (GPIO_PORTA|GPIO_PIN12)
/* PWM pins **************************************************************/
#define BOARD_GPIO_PPM (GPIO_PORTA|GPIO_PIN8)
#define BOARD_GPIO_PWM1 (GPIO_PORTA|GPIO_PIN0)
#define BOARD_GPIO_PWM2 (GPIO_PORTA|GPIO_PIN1)
#define BOARD_GPIO_PWM3 (GPIO_PORTB|GPIO_PIN8)
#define BOARD_GPIO_PWM4 (GPIO_PORTB|GPIO_PIN9)
#define BOARD_GPIO_PWM5 (GPIO_PORTA|GPIO_PIN6)
#define BOARD_GPIO_PWM6 (GPIO_PORTA|GPIO_PIN7)
#define BOARD_GPIO_PWM7 (GPIO_PORTB|GPIO_PIN0)
#define BOARD_GPIO_PWM8 (GPIO_PORTB|GPIO_PIN1)
/* SBUS pins *************************************************************/
#define BOARD_GPIO_SBUS_INPUT (GPIO_PORTB|GPIO_PIN11)
#define BOARD_GPIO_SBUS_OUTPUT (GPIO_PORTB|GPIO_PIN10)
#define BOARD_GPIO_SBUS_OENABLE (GPIO_PORTB|GPIO_PIN4)
/****************************************************************************************************
* Public Types
****************************************************************************************************/
/****************************************************************************************************
* Public data
****************************************************************************************************/
#ifndef __ASSEMBLY__
#endif /* __ASSEMBLY__ */
__END_DECLS

806
nuttx/configs/px4iov2/README.txt Executable file
View File

@ -0,0 +1,806 @@
README
======
This README discusses issues unique to NuttX configurations for the
STMicro STM3210E-EVAL development board.
Contents
========
- Development Environment
- GNU Toolchain Options
- IDEs
- NuttX buildroot Toolchain
- DFU and JTAG
- OpenOCD
- LEDs
- Temperature Sensor
- RTC
- STM3210E-EVAL-specific Configuration Options
- Configurations
Development Environment
=======================
Either Linux or Cygwin on Windows can be used for the development environment.
The source has been built only using the GNU toolchain (see below). Other
toolchains will likely cause problems. Testing was performed using the Cygwin
environment because the Raisonance R-Link emulatator and some RIDE7 development tools
were used and those tools works only under Windows.
GNU Toolchain Options
=====================
The NuttX make system has been modified to support the following different
toolchain options.
1. The CodeSourcery GNU toolchain,
2. The devkitARM GNU toolchain,
3. Raisonance GNU toolchain, or
4. The NuttX buildroot Toolchain (see below).
All testing has been conducted using the NuttX buildroot toolchain. However,
the make system is setup to default to use the devkitARM toolchain. To use
the CodeSourcery, devkitARM or Raisonance GNU toolchain, you simply need to
add one of the following configuration options to your .config (or defconfig)
file:
CONFIG_STM32_CODESOURCERYW=y : CodeSourcery under Windows
CONFIG_STM32_CODESOURCERYL=y : CodeSourcery under Linux
CONFIG_STM32_DEVKITARM=y : devkitARM under Windows
CONFIG_STM32_RAISONANCE=y : Raisonance RIDE7 under Windows
CONFIG_STM32_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default)
If you are not using CONFIG_STM32_BUILDROOT, then you may also have to modify
the PATH in the setenv.h file if your make cannot find the tools.
NOTE: the CodeSourcery (for Windows), devkitARM, and Raisonance toolchains are
Windows native toolchains. The CodeSourcey (for Linux) and NuttX buildroot
toolchains are Cygwin and/or Linux native toolchains. There are several limitations
to using a Windows based toolchain in a Cygwin environment. The three biggest are:
1. The Windows toolchain cannot follow Cygwin paths. Path conversions are
performed automatically in the Cygwin makefiles using the 'cygpath' utility
but you might easily find some new path problems. If so, check out 'cygpath -w'
2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links
are used in Nuttx (e.g., include/arch). The make system works around these
problems for the Windows tools by copying directories instead of linking them.
But this can also cause some confusion for you: For example, you may edit
a file in a "linked" directory and find that your changes had no effect.
That is because you are building the copy of the file in the "fake" symbolic
directory. If you use a Windows toolchain, you should get in the habit of
making like this:
make clean_context all
An alias in your .bashrc file might make that less painful.
3. Dependencies are not made when using Windows versions of the GCC. This is
because the dependencies are generated using Windows pathes which do not
work with the Cygwin make.
Support has been added for making dependencies with the windows-native toolchains.
That support can be enabled by modifying your Make.defs file as follows:
- MKDEP = $(TOPDIR)/tools/mknulldeps.sh
+ MKDEP = $(TOPDIR)/tools/mkdeps.sh --winpaths "$(TOPDIR)"
If you have problems with the dependency build (for example, if you are not
building on C:), then you may need to modify tools/mkdeps.sh
NOTE 1: The CodeSourcery toolchain (2009q1) does not work with default optimization
level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with
-Os.
NOTE 2: The devkitARM toolchain includes a version of MSYS make. Make sure that
the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM
path or will get the wrong version of make.
IDEs
====
NuttX is built using command-line make. It can be used with an IDE, but some
effort will be required to create the project (There is a simple RIDE project
in the RIDE subdirectory).
Makefile Build
--------------
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
simply use the NuttX makefile to build the system. That is almost for free
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
there is a lot of help on the internet).
Native Build
------------
Here are a few tips before you start that effort:
1) Select the toolchain that you will be using in your .config file
2) Start the NuttX build at least one time from the Cygwin command line
before trying to create your project. This is necessary to create
certain auto-generated files and directories that will be needed.
3) Set up include pathes: You will need include/, arch/arm/src/stm32,
arch/arm/src/common, arch/arm/src/armv7-m, and sched/.
4) All assembly files need to have the definition option -D __ASSEMBLY__
on the command line.
Startup files will probably cause you some headaches. The NuttX startup file
is arch/arm/src/stm32/stm32_vectors.S. With RIDE, I have to build NuttX
one time from the Cygwin command line in order to obtain the pre-built
startup object needed by RIDE.
NuttX buildroot Toolchain
=========================
A GNU GCC-based toolchain is assumed. The files */setenv.sh should
be modified to point to the correct path to the Cortex-M3 GCC toolchain (if
different from the default in your PATH variable).
If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX
SourceForge download site (https://sourceforge.net/project/showfiles.php?group_id=189573).
This GNU toolchain builds and executes in the Linux or Cygwin environment.
1. You must have already configured Nuttx in <some-dir>/nuttx.
cd tools
./configure.sh stm3210e-eval/<sub-dir>
2. Download the latest buildroot package into <some-dir>
3. unpack the buildroot tarball. The resulting directory may
have versioning information on it like buildroot-x.y.z. If so,
rename <some-dir>/buildroot-x.y.z to <some-dir>/buildroot.
4. cd <some-dir>/buildroot
5. cp configs/cortexm3-defconfig-4.3.3 .config
6. make oldconfig
7. make
8. Edit setenv.h, if necessary, so that the PATH variable includes
the path to the newly built binaries.
See the file configs/README.txt in the buildroot source tree. That has more
detailed PLUS some special instructions that you will need to follow if you are
building a Cortex-M3 toolchain for Cygwin under Windows.
DFU and JTAG
============
Enbling Support for the DFU Bootloader
--------------------------------------
The linker files in these projects can be configured to indicate that you
will be loading code using STMicro built-in USB Device Firmware Upgrade (DFU)
loader or via some JTAG emulator. You can specify the DFU bootloader by
adding the following line:
CONFIG_STM32_DFU=y
to your .config file. Most of the configurations in this directory are set
up to use the DFU loader.
If CONFIG_STM32_DFU is defined, the code will not be positioned at the beginning
of FLASH (0x08000000) but will be offset to 0x08003000. This offset is needed
to make space for the DFU loader and 0x08003000 is where the DFU loader expects
to find new applications at boot time. If you need to change that origin for some
other bootloader, you will need to edit the file(s) ld.script.dfu for each
configuration.
The DFU SE PC-based software is available from the STMicro website,
http://www.st.com. General usage instructions:
1. Convert the NuttX Intel Hex file (nuttx.ihx) into a special DFU
file (nuttx.dfu)... see below for details.
2. Connect the STM3210E-EVAL board to your computer using a USB
cable.
3. Start the DFU loader on the STM3210E-EVAL board. You do this by
resetting the board while holding the "Key" button. Windows should
recognize that the DFU loader has been installed.
3. Run the DFU SE program to load nuttx.dfu into FLASH.
What if the DFU loader is not in FLASH? The loader code is available
inside of the Demo dirctory of the USBLib ZIP file that can be downloaded
from the STMicro Website. You can build it using RIDE (or other toolchains);
you will need a JTAG emulator to burn it into FLASH the first time.
In order to use STMicro's built-in DFU loader, you will have to get
the NuttX binary into a special format with a .dfu extension. The
DFU SE PC_based software installation includes a file "DFU File Manager"
conversion program that a file in Intel Hex format to the special DFU
format. When you successfully build NuttX, you will find a file called
nutt.ihx in the top-level directory. That is the file that you should
provide to the DFU File Manager. You will need to rename it to nuttx.hex
in order to find it with the DFU File Manager. You will end up with
a file called nuttx.dfu that you can use with the STMicro DFU SE program.
Enabling JTAG
-------------
If you are not using the DFU, then you will probably also need to enable
JTAG support. By default, all JTAG support is disabled but there NuttX
configuration options to enable JTAG in various different ways.
These configurations effect the setting of the SWJ_CFG[2:0] bits in the AFIO
MAPR register. These bits are used to configure the SWJ and trace alternate function I/Os. The SWJ (SerialWire JTAG) supports JTAG or SWD access to the
Cortex debug port. The default state in this port is for all JTAG support
to be disable.
CONFIG_STM32_JTAG_FULL_ENABLE - sets SWJ_CFG[2:0] to 000 which enables full
SWJ (JTAG-DP + SW-DP)
CONFIG_STM32_JTAG_NOJNTRST_ENABLE - sets SWJ_CFG[2:0] to 001 which enable
full SWJ (JTAG-DP + SW-DP) but without JNTRST.
CONFIG_STM32_JTAG_SW_ENABLE - sets SWJ_CFG[2:0] to 010 which would set JTAG-DP
disabled and SW-DP enabled
The default setting (none of the above defined) is SWJ_CFG[2:0] set to 100
which disable JTAG-DP and SW-DP.
OpenOCD
=======
I have also used OpenOCD with the STM3210E-EVAL. In this case, I used
the Olimex USB ARM OCD. See the script in configs/stm3210e-eval/tools/oocd.sh
for more information. Using the script:
1) Start the OpenOCD GDB server
cd <nuttx-build-directory>
configs/stm3210e-eval/tools/oocd.sh $PWD
2) Load Nuttx
cd <nuttx-built-directory>
arm-none-eabi-gdb nuttx
gdb> target remote localhost:3333
gdb> mon reset
gdb> mon halt
gdb> load nuttx
3) Running NuttX
gdb> mon reset
gdb> c
LEDs
====
The STM3210E-EVAL board has four LEDs labeled LD1, LD2, LD3 and LD4 on the
board.. These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is
defined. In that case, the usage by the board port is defined in
include/board.h and src/up_leds.c. The LEDs are used to encode OS-related
events as follows:
SYMBOL Meaning LED1* LED2 LED3 LED4
---------------- ----------------------- ----- ----- ----- -----
LED_STARTED NuttX has been started ON OFF OFF OFF
LED_HEAPALLOCATE Heap has been allocated OFF ON OFF OFF
LED_IRQSENABLED Interrupts enabled ON ON OFF OFF
LED_STACKCREATED Idle stack created OFF OFF ON OFF
LED_INIRQ In an interrupt** ON N/C N/C OFF
LED_SIGNAL In a signal handler*** N/C ON N/C OFF
LED_ASSERTION An assertion failed ON ON N/C OFF
LED_PANIC The system has crashed N/C N/C N/C ON
LED_IDLE STM32 is is sleep mode (Optional, not used)
* If LED1, LED2, LED3 are statically on, then NuttX probably failed to boot
and these LEDs will give you some indication of where the failure was
** The normal state is LED3 ON and LED1 faintly glowing. This faint glow
is because of timer interupts that result in the LED being illuminated
on a small proportion of the time.
*** LED2 may also flicker normally if signals are processed.
Temperature Sensor
==================
Support for the on-board LM-75 temperature sensor is available. This supported
has been verified, but has not been included in any of the available the
configurations. To set up the temperature sensor, add the following to the
NuttX configuration file
CONFIG_I2C=y
CONFIG_I2C_LM75=y
Then you can implement logic like the following to use the temperature sensor:
#include <nuttx/sensors/lm75.h>
#include <arch/board/board.h>
ret = stm32_lm75initialize("/dev/temp"); /* Register the temperature sensor */
fd = open("/dev/temp", O_RDONLY); /* Open the temperature sensor device */
ret = ioctl(fd, SNIOC_FAHRENHEIT, 0); /* Select Fahrenheit */
bytesread = read(fd, buffer, 8*sizeof(b16_t)); /* Read temperature samples */
More complex temperature sensor operations are also available. See the IOCTAL
commands enumerated in include/nuttx/sensors/lm75.h. Also read the descriptions
of the stm32_lm75initialize() and stm32_lm75attach() interfaces in the
arch/board/board.h file (sames as configs/stm3210e-eval/include/board.h).
RTC
===
The STM32 RTC may configured using the following settings.
CONFIG_RTC - Enables general support for a hardware RTC. Specific
architectures may require other specific settings.
CONFIG_RTC_HIRES - The typical RTC keeps time to resolution of 1
second, usually supporting a 32-bit time_t value. In this case,
the RTC is used to &quot;seed&quot; the normal NuttX timer and the
NuttX timer provides for higher resoution time. If CONFIG_RTC_HIRES
is enabled in the NuttX configuration, then the RTC provides higher
resolution time and completely replaces the system timer for purpose of
date and time.
CONFIG_RTC_FREQUENCY - If CONFIG_RTC_HIRES is defined, then the
frequency of the high resolution RTC must be provided. If CONFIG_RTC_HIRES
is not defined, CONFIG_RTC_FREQUENCY is assumed to be one.
CONFIG_RTC_ALARM - Enable if the RTC hardware supports setting of an alarm.
A callback function will be executed when the alarm goes off
In hi-res mode, the STM32 RTC operates only at 16384Hz. Overflow interrupts
are handled when the 32-bit RTC counter overflows every 3 days and 43 minutes.
A BKP register is incremented on each overflow interrupt creating, effectively,
a 48-bit RTC counter.
In the lo-res mode, the RTC operates at 1Hz. Overflow interrupts are not handled
(because the next overflow is not expected until the year 2106.
WARNING: Overflow interrupts are lost whenever the STM32 is powered down. The
overflow interrupt may be lost even if the STM32 is powered down only momentarily.
Therefore hi-res solution is only useful in systems where the power is always on.
STM3210E-EVAL-specific Configuration Options
============================================
CONFIG_ARCH - Identifies the arch/ subdirectory. This should
be set to:
CONFIG_ARCH=arm
CONFIG_ARCH_family - For use in C code:
CONFIG_ARCH_ARM=y
CONFIG_ARCH_architecture - For use in C code:
CONFIG_ARCH_CORTEXM3=y
CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
CONFIG_ARCH_CHIP=stm32
CONFIG_ARCH_CHIP_name - For use in C code to identify the exact
chip:
CONFIG_ARCH_CHIP_STM32F103ZET6
CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG - Enables special STM32 clock
configuration features.
CONFIG_ARCH_BOARD_STM32_CUSTOM_CLOCKCONFIG=n
CONFIG_ARCH_BOARD - Identifies the configs subdirectory and
hence, the board that supports the particular chip or SoC.
CONFIG_ARCH_BOARD=stm3210e_eval (for the STM3210E-EVAL development board)
CONFIG_ARCH_BOARD_name - For use in C code
CONFIG_ARCH_BOARD_STM3210E_EVAL=y
CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation
of delay loops
CONFIG_ENDIAN_BIG - define if big endian (default is little
endian)
CONFIG_DRAM_SIZE - Describes the installed DRAM (SRAM in this case):
CONFIG_DRAM_SIZE=0x00010000 (64Kb)
CONFIG_DRAM_START - The start address of installed DRAM
CONFIG_DRAM_START=0x20000000
CONFIG_DRAM_END - Last address+1 of installed RAM
CONFIG_DRAM_END=(CONFIG_DRAM_START+CONFIG_DRAM_SIZE)
CONFIG_ARCH_IRQPRIO - The STM32F103Z supports interrupt prioritization
CONFIG_ARCH_IRQPRIO=y
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that
have LEDs
CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
stack. If defined, this symbol is the size of the interrupt
stack in bytes. If not defined, the user task stacks will be
used during interrupt handling.
CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
cause a 100 second delay during boot-up. This 100 second delay
serves no purpose other than it allows you to calibratre
CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure
the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until
the delay actually is 100 seconds.
Individual subsystems can be enabled:
AHB
---
CONFIG_STM32_DMA1
CONFIG_STM32_DMA2
CONFIG_STM32_CRC
CONFIG_STM32_FSMC
CONFIG_STM32_SDIO
APB1
----
CONFIG_STM32_TIM2
CONFIG_STM32_TIM3
CONFIG_STM32_TIM4
CONFIG_STM32_TIM5
CONFIG_STM32_TIM6
CONFIG_STM32_TIM7
CONFIG_STM32_WWDG
CONFIG_STM32_SPI2
CONFIG_STM32_SPI4
CONFIG_STM32_USART2
CONFIG_STM32_USART3
CONFIG_STM32_UART4
CONFIG_STM32_UART5
CONFIG_STM32_I2C1
CONFIG_STM32_I2C2
CONFIG_STM32_USB
CONFIG_STM32_CAN
CONFIG_STM32_BKP
CONFIG_STM32_PWR
CONFIG_STM32_DAC1
CONFIG_STM32_DAC2
CONFIG_STM32_USB
APB2
----
CONFIG_STM32_ADC1
CONFIG_STM32_ADC2
CONFIG_STM32_TIM1
CONFIG_STM32_SPI1
CONFIG_STM32_TIM8
CONFIG_STM32_USART1
CONFIG_STM32_ADC3
Timer and I2C devices may need to the following to force power to be applied
unconditionally at power up. (Otherwise, the device is powered when it is
initialized).
CONFIG_STM32_FORCEPOWER
Timer devices may be used for different purposes. One special purpose is
to generate modulated outputs for such things as motor control. If CONFIG_STM32_TIMn
is defined (as above) then the following may also be defined to indicate that
the timer is intended to be used for pulsed output modulation, ADC conversion,
or DAC conversion. Note that ADC/DAC require two definition: Not only do you have
to assign the timer (n) for used by the ADC or DAC, but then you also have to
configure which ADC or DAC (m) it is assigned to.
CONFIG_STM32_TIMn_PWM Reserve timer n for use by PWM, n=1,..,8
CONFIG_STM32_TIMn_ADC Reserve timer n for use by ADC, n=1,..,8
CONFIG_STM32_TIMn_ADCm Reserve timer n to trigger ADCm, n=1,..,8, m=1,..,3
CONFIG_STM32_TIMn_DAC Reserve timer n for use by DAC, n=1,..,8
CONFIG_STM32_TIMn_DACm Reserve timer n to trigger DACm, n=1,..,8, m=1,..,2
For each timer that is enabled for PWM usage, we need the following additional
configuration settings:
CONFIG_STM32_TIMx_CHANNEL - Specifies the timer output channel {1,..,4}
NOTE: The STM32 timers are each capable of generating different signals on
each of the four channels with different duty cycles. That capability is
not supported by this driver: Only one output channel per timer.
Alternate pin mappings (should not be used with the STM3210E-EVAL board):
CONFIG_STM32_TIM1_FULL_REMAP
CONFIG_STM32_TIM1_PARTIAL_REMAP
CONFIG_STM32_TIM2_FULL_REMAP
CONFIG_STM32_TIM2_PARTIAL_REMAP_1
CONFIG_STM32_TIM2_PARTIAL_REMAP_2
CONFIG_STM32_TIM3_FULL_REMAP
CONFIG_STM32_TIM3_PARTIAL_REMAP
CONFIG_STM32_TIM4_REMAP
CONFIG_STM32_USART1_REMAP
CONFIG_STM32_USART2_REMAP
CONFIG_STM32_USART3_FULL_REMAP
CONFIG_STM32_USART3_PARTIAL_REMAP
CONFIG_STM32_SPI1_REMAP
CONFIG_STM32_SPI3_REMAP
CONFIG_STM32_I2C1_REMAP
CONFIG_STM32_CAN1_FULL_REMAP
CONFIG_STM32_CAN1_PARTIAL_REMAP
CONFIG_STM32_CAN2_REMAP
JTAG Enable settings (by default JTAG-DP and SW-DP are disabled):
CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
but without JNTRST.
CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled
STM32F103Z specific device driver settings
CONFIG_U[S]ARTn_SERIAL_CONSOLE - selects the USARTn (n=1,2,3) or UART
m (m=4,5) for the console and ttys0 (default is the USART1).
CONFIG_U[S]ARTn_RXBUFSIZE - Characters are buffered as received.
This specific the size of the receive buffer
CONFIG_U[S]ARTn_TXBUFSIZE - Characters are buffered before
being sent. This specific the size of the transmit buffer
CONFIG_U[S]ARTn_BAUD - The configure BAUD of the UART. Must be
CONFIG_U[S]ARTn_BITS - The number of bits. Must be either 7 or 8.
CONFIG_U[S]ARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
CONFIG_U[S]ARTn_2STOP - Two stop bits
CONFIG_STM32_SPI_INTERRUPTS - Select to enable interrupt driven SPI
support. Non-interrupt-driven, poll-waiting is recommended if the
interrupt rate would be to high in the interrupt driven case.
CONFIG_STM32_SPI_DMA - Use DMA to improve SPI transfer performance.
Cannot be used with CONFIG_STM32_SPI_INTERRUPT.
CONFIG_SDIO_DMA - Support DMA data transfers. Requires CONFIG_STM32_SDIO
and CONFIG_STM32_DMA2.
CONFIG_SDIO_PRI - Select SDIO interrupt prority. Default: 128
CONFIG_SDIO_DMAPRIO - Select SDIO DMA interrupt priority.
Default: Medium
CONFIG_SDIO_WIDTH_D1_ONLY - Select 1-bit transfer mode. Default:
4-bit transfer mode.
STM3210E-EVAL CAN Configuration
CONFIG_CAN - Enables CAN support (one or both of CONFIG_STM32_CAN1 or
CONFIG_STM32_CAN2 must also be defined)
CONFIG_CAN_EXTID - Enables support for the 29-bit extended ID. Default
Standard 11-bit IDs.
CONFIG_CAN_FIFOSIZE - The size of the circular buffer of CAN messages.
Default: 8
CONFIG_CAN_NPENDINGRTR - The size of the list of pending RTR requests.
Default: 4
CONFIG_CAN_LOOPBACK - A CAN driver may or may not support a loopback
mode for testing. The STM32 CAN driver does support loopback mode.
CONFIG_CAN1_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN1 is defined.
CONFIG_CAN2_BAUD - CAN1 BAUD rate. Required if CONFIG_STM32_CAN2 is defined.
CONFIG_CAN_TSEG1 - The number of CAN time quanta in segment 1. Default: 6
CONFIG_CAN_TSEG2 - the number of CAN time quanta in segment 2. Default: 7
CONFIG_CAN_REGDEBUG - If CONFIG_DEBUG is set, this will generate an
dump of all CAN registers.
STM3210E-EVAL LCD Hardware Configuration
CONFIG_LCD_LANDSCAPE - Define for 320x240 display "landscape"
support. Default is this 320x240 "landscape" orientation
(this setting is informative only... not used).
CONFIG_LCD_PORTRAIT - Define for 240x320 display "portrait"
orientation support. In this orientation, the STM3210E-EVAL's
LCD ribbon cable is at the bottom of the display. Default is
320x240 "landscape" orientation.
CONFIG_LCD_RPORTRAIT - Define for 240x320 display "reverse
portrait" orientation support. In this orientation, the
STM3210E-EVAL's LCD ribbon cable is at the top of the display.
Default is 320x240 "landscape" orientation.
CONFIG_LCD_BACKLIGHT - Define to support a backlight.
CONFIG_LCD_PWM - If CONFIG_STM32_TIM1 is also defined, then an
adjustable backlight will be provided using timer 1 to generate
various pulse widthes. The granularity of the settings is
determined by CONFIG_LCD_MAXPOWER. If CONFIG_LCD_PWM (or
CONFIG_STM32_TIM1) is not defined, then a simple on/off backlight
is provided.
CONFIG_LCD_RDSHIFT - When reading 16-bit gram data, there appears
to be a shift in the returned data. This value fixes the offset.
Default 5.
The LCD driver dynamically selects the LCD based on the reported LCD
ID value. However, code size can be reduced by suppressing support for
individual LCDs using:
CONFIG_STM32_AM240320_DISABLE
CONFIG_STM32_SPFD5408B_DISABLE
CONFIG_STM32_R61580_DISABLE
Configurations
==============
Each STM3210E-EVAL configuration is maintained in a sudirectory and
can be selected as follow:
cd tools
./configure.sh stm3210e-eval/<subdir>
cd -
. ./setenv.sh
Where <subdir> is one of the following:
buttons:
--------
Uses apps/examples/buttons to exercise STM3210E-EVAL buttons and
button interrupts.
CONFIG_STM32_CODESOURCERYW=y : CodeSourcery under Windows
composite
---------
This configuration exercises a composite USB interface consisting
of a CDC/ACM device and a USB mass storage device. This configuration
uses apps/examples/composite.
nsh and nsh2:
------------
Configure the NuttShell (nsh) located at examples/nsh.
Differences between the two NSH configurations:
=========== ======================= ================================
nsh nsh2
=========== ======================= ================================
Toolchain: NuttX buildroot for Codesourcery for Windows (1)
Linux or Cygwin (1,2)
----------- ----------------------- --------------------------------
Loader: DfuSe DfuSe
----------- ----------------------- --------------------------------
Serial Debug output: USART1 Debug output: USART1
Console: NSH output: USART1 NSH output: USART1 (3)
----------- ----------------------- --------------------------------
microSD Yes Yes
Support
----------- ----------------------- --------------------------------
FAT FS CONFIG_FAT_LCNAME=y CONFIG_FAT_LCNAME=y
Config CONFIG_FAT_LFN=n CONFIG_FAT_LFN=y (4)
----------- ----------------------- --------------------------------
Support for No Yes
Built-in
Apps
----------- ----------------------- --------------------------------
Built-in None apps/examples/nx
Apps apps/examples/nxhello
apps/examples/usbstorage (5)
=========== ======================= ================================
(1) You will probably need to modify nsh/setenv.sh or nsh2/setenv.sh
to set up the correct PATH variable for whichever toolchain you
may use.
(2) Since DfuSe is assumed, this configuration may only work under
Cygwin without modification.
(3) When any other device other than /dev/console is used for a user
interface, (1) linefeeds (\n) will not be expanded to carriage return
/ linefeeds \r\n). You will need to configure your terminal program
to account for this. And (2) input is not automatically echoed so
you will have to turn local echo on.
(4) Microsoft holds several patents related to the design of
long file names in the FAT file system. Please refer to the
details in the top-level COPYING file. Please do not use FAT
long file name unless you are familiar with these patent issues.
(5) When built as an NSH add-on command (CONFIG_EXAMPLES_USBMSC_BUILTIN=y),
Caution should be used to assure that the SD drive is not in use when
the USB storage device is configured. Specifically, the SD driver
should be unmounted like:
nsh> mount -t vfat /dev/mmcsd0 /mnt/sdcard # Card is mounted in NSH
...
nsh> umount /mnd/sdcard # Unmount before connecting USB!!!
nsh> msconn # Connect the USB storage device
...
nsh> msdis # Disconnect USB storate device
nsh> mount -t vfat /dev/mmcsd0 /mnt/sdcard # Restore the mount
Failure to do this could result in corruption of the SD card format.
nx:
---
An example using the NuttX graphics system (NX). This example
focuses on general window controls, movement, mouse and keyboard
input.
CONFIG_STM32_CODESOURCERYW=y : CodeSourcery under Windows
CONFIG_LCD_RPORTRAIT=y : 240x320 reverse portrait
nxlines:
------
Another example using the NuttX graphics system (NX). This
example focuses on placing lines on the background in various
orientations.
CONFIG_STM32_CODESOURCERYW=y : CodeSourcery under Windows
CONFIG_LCD_RPORTRAIT=y : 240x320 reverse portrait
nxtext:
------
Another example using the NuttX graphics system (NX). This
example focuses on placing text on the background while pop-up
windows occur. Text should continue to update normally with
or without the popup windows present.
CONFIG_STM32_BUILDROOT=y : NuttX buildroot under Linux or Cygwin
CONFIG_LCD_RPORTRAIT=y : 240x320 reverse portrait
NOTE: When I tried building this example with the CodeSourcery
tools, I got a hardfault inside of its libgcc. I haven't
retested since then, but beware if you choose to change the
toolchain.
ostest:
------
This configuration directory, performs a simple OS test using
examples/ostest. By default, this project assumes that you are
using the DFU bootloader.
CONFIG_STM32_BUILDROOT=y : NuttX buildroot under Linux or Cygwin
RIDE
----
This configuration builds a trivial bring-up binary. It is
useful only because it words with the RIDE7 IDE and R-Link debugger.
CONFIG_STM32_RAISONANCE=y : Raisonance RIDE7 under Windows
usbserial:
---------
This configuration directory exercises the USB serial class
driver at examples/usbserial. See examples/README.txt for
more information.
CONFIG_STM32_BUILDROOT=y : NuttX buildroot under Linux or Cygwin
USB debug output can be enabled as by changing the following
settings in the configuration file:
-CONFIG_DEBUG=n
-CONFIG_DEBUG_VERBOSE=n
-CONFIG_DEBUG_USB=n
+CONFIG_DEBUG=y
+CONFIG_DEBUG_VERBOSE=y
+CONFIG_DEBUG_USB=y
-CONFIG_EXAMPLES_USBSERIAL_TRACEINIT=n
-CONFIG_EXAMPLES_USBSERIAL_TRACECLASS=n
-CONFIG_EXAMPLES_USBSERIAL_TRACETRANSFERS=n
-CONFIG_EXAMPLES_USBSERIAL_TRACECONTROLLER=n
-CONFIG_EXAMPLES_USBSERIAL_TRACEINTERRUPTS=n
+CONFIG_EXAMPLES_USBSERIAL_TRACEINIT=y
+CONFIG_EXAMPLES_USBSERIAL_TRACECLASS=y
+CONFIG_EXAMPLES_USBSERIAL_TRACETRANSFERS=y
+CONFIG_EXAMPLES_USBSERIAL_TRACECONTROLLER=y
+CONFIG_EXAMPLES_USBSERIAL_TRACEINTERRUPTS=y
By default, the usbserial example uses the Prolific PL2303
serial/USB converter emulation. The example can be modified
to use the CDC/ACM serial class by making the following changes
to the configuration file:
-CONFIG_PL2303=y
+CONFIG_PL2303=n
-CONFIG_CDCACM=n
+CONFIG_CDCACM=y
The example can also be converted to use the alternative
USB serial example at apps/examples/usbterm by changing the
following:
-CONFIGURED_APPS += examples/usbserial
+CONFIGURED_APPS += examples/usbterm
In either the original appconfig file (before configuring)
or in the final apps/.config file (after configuring).
usbstorage:
----------
This configuration directory exercises the USB mass storage
class driver at examples/usbstorage. See examples/README.txt for
more information.
CONFIG_STM32_BUILDROOT=y : NuttX buildroot under Linux or Cygwin

View File

@ -0,0 +1,175 @@
############################################################################
# configs/px4fmu/common/Make.defs
#
# Copyright (C) 2011 Gregory Nutt. All rights reserved.
# Author: Gregory Nutt <gnutt@nuttx.org>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name NuttX nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# Generic Make.defs for the PX4FMU
# Do not specify/use this file directly - it is included by config-specific
# Make.defs in the per-config directories.
#
include ${TOPDIR}/tools/Config.mk
#
# We only support building with the ARM bare-metal toolchain from
# https://launchpad.net/gcc-arm-embedded on Windows, Linux or Mac OS.
#
CONFIG_ARMV7M_TOOLCHAIN := GNU_EABI
include ${TOPDIR}/arch/arm/src/armv7-m/Toolchain.defs
CC = $(CROSSDEV)gcc
CXX = $(CROSSDEV)g++
CPP = $(CROSSDEV)gcc -E
LD = $(CROSSDEV)ld
AR = $(CROSSDEV)ar rcs
NM = $(CROSSDEV)nm
OBJCOPY = $(CROSSDEV)objcopy
OBJDUMP = $(CROSSDEV)objdump
MAXOPTIMIZATION = -O3
ARCHCPUFLAGS = -mcpu=cortex-m3 \
-mthumb \
-march=armv7-m
# enable precise stack overflow tracking
#INSTRUMENTATIONDEFINES = -finstrument-functions \
# -ffixed-r10
# use our linker script
LDSCRIPT = ld.script
ifeq ($(WINTOOL),y)
# Windows-native toolchains
DIRLINK = $(TOPDIR)/tools/copydir.sh
DIRUNLINK = $(TOPDIR)/tools/unlink.sh
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
ARCHINCLUDES = -I. -isystem "${shell cygpath -w $(TOPDIR)/include}"
ARCHXXINCLUDES = -I. -isystem "${shell cygpath -w $(TOPDIR)/include}" -isystem "${shell cygpath -w $(TOPDIR)/include/cxx}"
ARCHSCRIPT = -T "${shell cygpath -w $(TOPDIR)/configs/$(CONFIG_ARCH_BOARD)/common/$(LDSCRIPT)}"
else
ifeq ($(PX4_WINTOOL),y)
# Windows-native toolchains (MSYS)
DIRLINK = $(TOPDIR)/tools/copydir.sh
DIRUNLINK = $(TOPDIR)/tools/unlink.sh
MKDEP = $(TOPDIR)/tools/mknulldeps.sh
ARCHINCLUDES = -I. -isystem $(TOPDIR)/include
ARCHXXINCLUDES = -I. -isystem $(TOPDIR)/include -isystem $(TOPDIR)/include/cxx
ARCHSCRIPT = -T$(TOPDIR)/configs/$(CONFIG_ARCH_BOARD)/common/$(LDSCRIPT)
else
# Linux/Cygwin-native toolchain
MKDEP = $(TOPDIR)/tools/mkdeps.sh
ARCHINCLUDES = -I. -isystem $(TOPDIR)/include
ARCHXXINCLUDES = -I. -isystem $(TOPDIR)/include -isystem $(TOPDIR)/include/cxx
ARCHSCRIPT = -T$(TOPDIR)/configs/$(CONFIG_ARCH_BOARD)/common/$(LDSCRIPT)
endif
endif
# tool versions
ARCHCCVERSION = ${shell $(CC) -v 2>&1 | sed -n '/^gcc version/p' | sed -e 's/^gcc version \([0-9\.]\)/\1/g' -e 's/[-\ ].*//g' -e '1q'}
ARCHCCMAJOR = ${shell echo $(ARCHCCVERSION) | cut -d'.' -f1}
# optimisation flags
ARCHOPTIMIZATION = $(MAXOPTIMIZATION) \
-fno-strict-aliasing \
-fno-strength-reduce \
-fomit-frame-pointer \
-funsafe-math-optimizations \
-fno-builtin-printf \
-ffunction-sections \
-fdata-sections
ifeq ("${CONFIG_DEBUG_SYMBOLS}","y")
ARCHOPTIMIZATION += -g
endif
ARCHCFLAGS = -std=gnu99
ARCHCXXFLAGS = -fno-exceptions -fno-rtti -std=gnu++0x
ARCHWARNINGS = -Wall \
-Wextra \
-Wdouble-promotion \
-Wshadow \
-Wfloat-equal \
-Wframe-larger-than=1024 \
-Wpointer-arith \
-Wlogical-op \
-Wmissing-declarations \
-Wpacked \
-Wno-unused-parameter
# -Wcast-qual - generates spurious noreturn attribute warnings, try again later
# -Wconversion - would be nice, but too many "risky-but-safe" conversions in the code
# -Wcast-align - would help catch bad casts in some cases, but generates too many false positives
ARCHCWARNINGS = $(ARCHWARNINGS) \
-Wbad-function-cast \
-Wstrict-prototypes \
-Wold-style-declaration \
-Wmissing-parameter-type \
-Wmissing-prototypes \
-Wnested-externs \
-Wunsuffixed-float-constants
ARCHWARNINGSXX = $(ARCHWARNINGS)
ARCHDEFINES =
ARCHPICFLAGS = -fpic -msingle-pic-base -mpic-register=r10
# this seems to be the only way to add linker flags
EXTRA_LIBS += --warn-common \
--gc-sections
CFLAGS = $(ARCHCFLAGS) $(ARCHCWARNINGS) $(ARCHOPTIMIZATION) $(ARCHCPUFLAGS) $(ARCHINCLUDES) $(INSTRUMENTATIONDEFINES) $(ARCHDEFINES) $(EXTRADEFINES) -pipe -fno-common
CPICFLAGS = $(ARCHPICFLAGS) $(CFLAGS)
CXXFLAGS = $(ARCHCXXFLAGS) $(ARCHWARNINGSXX) $(ARCHOPTIMIZATION) $(ARCHCPUFLAGS) $(ARCHXXINCLUDES) $(INSTRUMENTATIONDEFINES) $(ARCHDEFINES) $(EXTRADEFINES) -pipe
CXXPICFLAGS = $(ARCHPICFLAGS) $(CXXFLAGS)
CPPFLAGS = $(ARCHINCLUDES) $(INSTRUMENTATIONDEFINES) $(ARCHDEFINES) $(EXTRADEFINES)
AFLAGS = $(CFLAGS) -D__ASSEMBLY__
NXFLATLDFLAGS1 = -r -d -warn-common
NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat.ld -no-check-sections
LDNXFLATFLAGS = -e main -s 2048
OBJEXT = .o
LIBEXT = .a
EXEEXT =
# produce partially-linked $1 from files in $2
define PRELINK
@echo "PRELINK: $1"
$(Q) $(LD) -Ur -o $1 $2 && $(OBJCOPY) --localize-hidden $1
endef
HOSTCC = gcc
HOSTINCLUDES = -I.
HOSTCFLAGS = -Wall -Wstrict-prototypes -Wshadow -g -pipe
HOSTLDFLAGS =

View File

@ -0,0 +1,129 @@
/****************************************************************************
* configs/stm3210e-eval/nsh/ld.script
*
* Copyright (C) 2009, 2011 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <spudmonkey@racsa.co.cr>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* The STM32F100C8 has 64Kb of FLASH beginning at address 0x0800:0000 and
* 8Kb of SRAM beginning at address 0x2000:0000. When booting from FLASH,
* FLASH memory is aliased to address 0x0000:0000 where the code expects to
* begin execution by jumping to the entry point in the 0x0800:0000 address
* range.
*/
MEMORY
{
flash (rx) : ORIGIN = 0x08001000, LENGTH = 60K
sram (rwx) : ORIGIN = 0x20000000, LENGTH = 8K
}
OUTPUT_ARCH(arm)
ENTRY(__start) /* treat __start as the anchor for dead code stripping */
EXTERN(_vectors) /* force the vectors to be included in the output */
/*
* Ensure that abort() is present in the final object. The exception handling
* code pulled in by libgcc.a requires it (and that code cannot be easily avoided).
*/
EXTERN(abort)
SECTIONS
{
.text : {
_stext = ABSOLUTE(.);
*(.vectors)
*(.text .text.*)
*(.fixup)
*(.gnu.warning)
*(.rodata .rodata.*)
*(.gnu.linkonce.t.*)
*(.glue_7)
*(.glue_7t)
*(.got)
*(.gcc_except_table)
*(.gnu.linkonce.r.*)
_etext = ABSOLUTE(.);
} > flash
/*
* Init functions (static constructors and the like)
*/
.init_section : {
_sinit = ABSOLUTE(.);
KEEP(*(.init_array .init_array.*))
_einit = ABSOLUTE(.);
} > flash
.ARM.extab : {
*(.ARM.extab*)
} > flash
__exidx_start = ABSOLUTE(.);
.ARM.exidx : {
*(.ARM.exidx*)
} > flash
__exidx_end = ABSOLUTE(.);
_eronly = ABSOLUTE(.);
/* The STM32F100CB has 8Kb of SRAM beginning at the following address */
.data : {
_sdata = ABSOLUTE(.);
*(.data .data.*)
*(.gnu.linkonce.d.*)
CONSTRUCTORS
_edata = ABSOLUTE(.);
} > sram AT > flash
.bss : {
_sbss = ABSOLUTE(.);
*(.bss .bss.*)
*(.gnu.linkonce.b.*)
*(COMMON)
_ebss = ABSOLUTE(.);
} > sram
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
.stabstr 0 : { *(.stabstr) }
.stab.excl 0 : { *(.stab.excl) }
.stab.exclstr 0 : { *(.stab.exclstr) }
.stab.index 0 : { *(.stab.index) }
.stab.indexstr 0 : { *(.stab.indexstr) }
.comment 0 : { *(.comment) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_info 0 : { *(.debug_info) }
.debug_line 0 : { *(.debug_line) }
.debug_pubnames 0 : { *(.debug_pubnames) }
.debug_aranges 0 : { *(.debug_aranges) }
}

View File

@ -0,0 +1,47 @@
#!/bin/bash
# configs/stm3210e-eval/dfu/setenv.sh
#
# Copyright (C) 2009 Gregory Nutt. All rights reserved.
# Author: Gregory Nutt <gnutt@nuttx.org>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name NuttX nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
if [ "$(basename $0)" = "setenv.sh" ] ; then
echo "You must source this script, not run it!" 1>&2
exit 1
fi
if [ -z "${PATH_ORIG}" ]; then export PATH_ORIG="${PATH}"; fi
WD=`pwd`
export RIDE_BIN="/cygdrive/c/Program Files/Raisonance/Ride/arm-gcc/bin"
export BUILDROOT_BIN="${WD}/../misc/buildroot/build_arm_nofpu/staging_dir/bin"
export PATH="${BUILDROOT_BIN}:${RIDE_BIN}:/sbin:/usr/sbin:${PATH_ORIG}"
echo "PATH : ${PATH}"

View File

@ -0,0 +1 @@
This directory contains header files unique to the PX4IO board.

View File

@ -0,0 +1,173 @@
/************************************************************************************
* configs/px4io/include/board.h
* include/arch/board/board.h
*
* Copyright (C) 2009 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
#ifndef __ARCH_BOARD_BOARD_H
#define __ARCH_BOARD_BOARD_H
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#ifndef __ASSEMBLY__
# include <stdint.h>
# include <stdbool.h>
#endif
#include <stm32_rcc.h>
#include <stm32_sdio.h>
#include <stm32_internal.h>
/************************************************************************************
* Definitions
************************************************************************************/
/* Clocking *************************************************************************/
/* On-board crystal frequency is 24MHz (HSE) */
#define STM32_BOARD_XTAL 24000000ul
/* Use the HSE output as the system clock */
#define STM32_SYSCLK_SW RCC_CFGR_SW_HSE
#define STM32_SYSCLK_SWS RCC_CFGR_SWS_HSE
#define STM32_SYSCLK_FREQUENCY STM32_BOARD_XTAL
/* AHB clock (HCLK) is SYSCLK (24MHz) */
#define STM32_RCC_CFGR_HPRE RCC_CFGR_HPRE_SYSCLK
#define STM32_HCLK_FREQUENCY STM32_SYSCLK_FREQUENCY
#define STM32_BOARD_HCLK STM32_HCLK_FREQUENCY /* same as above, to satisfy compiler */
/* APB2 clock (PCLK2) is HCLK (24MHz) */
#define STM32_RCC_CFGR_PPRE2 RCC_CFGR_PPRE2_HCLK
#define STM32_PCLK2_FREQUENCY STM32_HCLK_FREQUENCY
#define STM32_APB2_CLKIN (STM32_PCLK2_FREQUENCY) /* Timers 2-4 */
/* APB2 timer 1 will receive PCLK2. */
#define STM32_APB2_TIM1_CLKIN (STM32_PCLK2_FREQUENCY)
#define STM32_APB2_TIM8_CLKIN (STM32_PCLK2_FREQUENCY)
/* APB1 clock (PCLK1) is HCLK (24MHz) */
#define STM32_RCC_CFGR_PPRE1 RCC_CFGR_PPRE1_HCLK
#define STM32_PCLK1_FREQUENCY (STM32_HCLK_FREQUENCY)
/* All timers run off PCLK */
#define STM32_APB1_TIM1_CLKIN (STM32_PCLK2_FREQUENCY)
#define STM32_APB1_TIM2_CLKIN (STM32_PCLK1_FREQUENCY)
#define STM32_APB1_TIM3_CLKIN (STM32_PCLK1_FREQUENCY)
#define STM32_APB1_TIM4_CLKIN (STM32_PCLK1_FREQUENCY)
/*
* Some of the USART pins are not available; override the GPIO
* definitions with an invalid pin configuration.
*/
#define GPIO_USART2_CTS 0xffffffff
#define GPIO_USART2_RTS 0xffffffff
#define GPIO_USART2_CK 0xffffffff
#define GPIO_USART3_TX 0xffffffff
#define GPIO_USART3_CK 0xffffffff
#define GPIO_USART3_CTS 0xffffffff
#define GPIO_USART3_RTS 0xffffffff
/*
* High-resolution timer
*/
#ifdef CONFIG_HRT_TIMER
# define HRT_TIMER 1 /* use timer1 for the HRT */
# define HRT_TIMER_CHANNEL 2 /* use capture/compare channel 2 */
#endif
/*
* PPM
*
* PPM input is handled by the HRT timer.
*
* Pin is PA8, timer 1, channel 1
*/
#if defined(CONFIG_HRT_TIMER) && defined (CONFIG_HRT_PPM)
# define HRT_PPM_CHANNEL 1 /* use capture/compare channel 1 */
# define GPIO_PPM_IN GPIO_TIM1_CH1IN
#endif
/* LED definitions ******************************************************************/
/* PX4 has two LEDs that we will encode as: */
#define LED_STARTED 0 /* LED? */
#define LED_HEAPALLOCATE 1 /* LED? */
#define LED_IRQSENABLED 2 /* LED? + LED? */
#define LED_STACKCREATED 3 /* LED? */
#define LED_INIRQ 4 /* LED? + LED? */
#define LED_SIGNAL 5 /* LED? + LED? */
#define LED_ASSERTION 6 /* LED? + LED? + LED? */
#define LED_PANIC 7 /* N/C + N/C + N/C + LED? */
/************************************************************************************
* Public Data
************************************************************************************/
#ifndef __ASSEMBLY__
#undef EXTERN
#if defined(__cplusplus)
#define EXTERN extern "C"
extern "C" {
#else
#define EXTERN extern
#endif
/************************************************************************************
* Public Function Prototypes
************************************************************************************/
/************************************************************************************
* Name: stm32_boardinitialize
*
* Description:
* All STM32 architectures must provide the following entry point. This entry point
* is called early in the intitialization -- after all memory has been configured
* and mapped but before any devices have been initialized.
*
************************************************************************************/
EXTERN void stm32_boardinitialize(void);
#endif /* __ASSEMBLY__ */
#endif /* __ARCH_BOARD_BOARD_H */

View File

@ -0,0 +1,42 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file A simple, polled I2C slave-mode driver.
*
* The master writes to and reads from a byte buffer, which the caller
* can update inbetween calls to the FSM.
*/
extern void i2c_fsm_init(uint8_t *buffer, size_t buffer_size);
extern bool i2c_fsm(void);

View File

@ -0,0 +1,3 @@
include ${TOPDIR}/.config
include $(TOPDIR)/configs/px4io/common/Make.defs

View File

@ -0,0 +1,40 @@
############################################################################
#
# Copyright (C) 2012 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
CONFIGURED_APPS += drivers/boards/px4io
CONFIGURED_APPS += drivers/stm32
CONFIGURED_APPS += px4io
# Mixer library from systemlib
CONFIGURED_APPS += systemlib/mixer

View File

@ -0,0 +1,548 @@
############################################################################
# configs/px4io/nsh/defconfig
#
# Copyright (C) 2012 PX4 Development Team. All rights reserved.
# Copyright (C) 2011-2012 Gregory Nutt. All rights reserved.
# Author: Gregory Nutt <gnutt@nuttx.org>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name NuttX nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# architecture selection
#
# CONFIG_ARCH - identifies the arch subdirectory and, hence, the
# processor architecture.
# CONFIG_ARCH_family - for use in C code. This identifies the
# particular chip family that the architecture is implemented
# in.
# CONFIG_ARCH_architecture - for use in C code. This identifies the
# specific architecture within the chip family.
# CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
# CONFIG_ARCH_CHIP_name - For use in C code
# CONFIG_ARCH_BOARD - identifies the configs subdirectory and, hence,
# the board that supports the particular chip or SoC.
# CONFIG_ARCH_BOARD_name - for use in C code
# CONFIG_ENDIAN_BIG - define if big endian (default is little endian)
# CONFIG_BOARD_LOOPSPERMSEC - for delay loops
# CONFIG_DRAM_SIZE - Describes the installed DRAM.
# CONFIG_DRAM_START - The start address of DRAM (physical)
# CONFIG_ARCH_IRQPRIO - The ST32F100CB supports interrupt prioritization
# CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
# stack. If defined, this symbol is the size of the interrupt
# stack in bytes. If not defined, the user task stacks will be
# used during interrupt handling.
# CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
# CONFIG_ARCH_BOOTLOADER - Set if you are using a bootloader.
# CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
# CONFIG_ARCH_BUTTONS - Enable support for buttons. Unique to board architecture.
# CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
# cause a 100 second delay during boot-up. This 100 second delay
# serves no purpose other than it allows you to calibrate
# CONFIG_BOARD_LOOPSPERMSEC. You simply use a stop watch to measure
# the 100 second delay then adjust CONFIG_BOARD_LOOPSPERMSEC until
# the delay actually is 100 seconds.
# CONFIG_ARCH_DMA - Support DMA initialization
#
CONFIG_ARCH="arm"
CONFIG_ARCH_ARM=y
CONFIG_ARCH_CORTEXM3=y
CONFIG_ARCH_CHIP="stm32"
CONFIG_ARCH_CHIP_STM32F100C8=y
CONFIG_ARCH_BOARD="px4io"
CONFIG_ARCH_BOARD_PX4IO=y
CONFIG_BOARD_LOOPSPERMSEC=2000
CONFIG_DRAM_SIZE=0x00002000
CONFIG_DRAM_START=0x20000000
CONFIG_ARCH_IRQPRIO=y
CONFIG_ARCH_INTERRUPTSTACK=n
CONFIG_ARCH_STACKDUMP=y
CONFIG_ARCH_BOOTLOADER=n
CONFIG_ARCH_LEDS=n
CONFIG_ARCH_BUTTONS=n
CONFIG_ARCH_CALIBRATION=n
CONFIG_ARCH_DMA=y
CONFIG_ARCH_MATH_H=y
CONFIG_ARMV7M_CMNVECTOR=y
#
# JTAG Enable settings (by default JTAG-DP and SW-DP are disabled):
#
# CONFIG_STM32_DFU - Use the DFU bootloader, not JTAG
#
# JTAG Enable options:
#
# CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
# CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
# but without JNTRST.
# CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled
#
CONFIG_STM32_DFU=n
CONFIG_STM32_JTAG_FULL_ENABLE=y
CONFIG_STM32_JTAG_NOJNTRST_ENABLE=n
CONFIG_STM32_JTAG_SW_ENABLE=n
#
# Individual subsystems can be enabled:
#
# AHB:
CONFIG_STM32_DMA1=y
CONFIG_STM32_DMA2=n
CONFIG_STM32_CRC=n
# APB1:
# Timers 2,3 and 4 are owned by the PWM driver
CONFIG_STM32_TIM2=n
CONFIG_STM32_TIM3=n
CONFIG_STM32_TIM4=n
CONFIG_STM32_TIM5=n
CONFIG_STM32_TIM6=n
CONFIG_STM32_TIM7=n
CONFIG_STM32_WWDG=n
CONFIG_STM32_SPI2=n
CONFIG_STM32_USART2=y
CONFIG_STM32_USART3=y
CONFIG_STM32_I2C1=y
CONFIG_STM32_I2C2=n
CONFIG_STM32_BKP=n
CONFIG_STM32_PWR=n
CONFIG_STM32_DAC=n
# APB2:
# We use our own ADC driver, but leave this on for clocking purposes.
CONFIG_STM32_ADC1=y
CONFIG_STM32_ADC2=n
# TIM1 is owned by the HRT
CONFIG_STM32_TIM1=n
CONFIG_STM32_SPI1=n
CONFIG_STM32_TIM8=n
CONFIG_STM32_USART1=y
CONFIG_STM32_ADC3=n
#
# STM32F100 specific serial device driver settings
#
# CONFIG_USARTn_SERIAL_CONSOLE - selects the USARTn for the
# console and ttys0 (default is the USART1).
# CONFIG_USARTn_RXBUFSIZE - Characters are buffered as received.
# This specific the size of the receive buffer
# CONFIG_USARTn_TXBUFSIZE - Characters are buffered before
# being sent. This specific the size of the transmit buffer
# CONFIG_USARTn_BAUD - The configure BAUD of the UART. Must be
# CONFIG_USARTn_BITS - The number of bits. Must be either 7 or 8.
# CONFIG_USARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
# CONFIG_USARTn_2STOP - Two stop bits
#
CONFIG_SERIAL_TERMIOS=y
CONFIG_STANDARD_SERIAL=y
CONFIG_USART1_SERIAL_CONSOLE=y
CONFIG_USART2_SERIAL_CONSOLE=n
CONFIG_USART3_SERIAL_CONSOLE=n
CONFIG_USART1_TXBUFSIZE=64
CONFIG_USART2_TXBUFSIZE=64
CONFIG_USART3_TXBUFSIZE=64
CONFIG_USART1_RXBUFSIZE=64
CONFIG_USART2_RXBUFSIZE=64
CONFIG_USART3_RXBUFSIZE=64
CONFIG_USART1_BAUD=115200
CONFIG_USART2_BAUD=115200
CONFIG_USART3_BAUD=115200
CONFIG_USART1_BITS=8
CONFIG_USART2_BITS=8
CONFIG_USART3_BITS=8
CONFIG_USART1_PARITY=0
CONFIG_USART2_PARITY=0
CONFIG_USART3_PARITY=0
CONFIG_USART1_2STOP=0
CONFIG_USART2_2STOP=0
CONFIG_USART3_2STOP=0
CONFIG_USART1_RXDMA=y
SERIAL_HAVE_CONSOLE_DMA=y
# Conflicts with I2C1 DMA
CONFIG_USART2_RXDMA=n
CONFIG_USART3_RXDMA=y
#
# PX4IO specific driver settings
#
# CONFIG_HRT_TIMER
# Enables the high-resolution timer. The board definition must
# set HRT_TIMER and HRT_TIMER_CHANNEL to the timer and capture/
# compare channels to be used.
# CONFIG_HRT_PPM
# Enables R/C PPM input using the HRT. The board definition must
# set HRT_PPM_CHANNEL to the timer capture/compare channel to be
# used, and define GPIO_PPM_IN to configure the appropriate timer
# GPIO.
# CONFIG_PWM_SERVO
# Enables the PWM servo driver. The driver configuration must be
# supplied by the board support at initialisation time.
# Note that USART2 must be disabled on the PX4 board for this to
# be available.
#
#
CONFIG_HRT_TIMER=y
CONFIG_HRT_PPM=y
#
# General build options
#
# CONFIG_RRLOAD_BINARY - make the rrload binary format used with
# BSPs from www.ridgerun.com using the tools/mkimage.sh script
# CONFIG_INTELHEX_BINARY - make the Intel HEX binary format
# used with many different loaders using the GNU objcopy program
# Should not be selected if you are not using the GNU toolchain.
# CONFIG_MOTOROLA_SREC - make the Motorola S-Record binary format
# used with many different loaders using the GNU objcopy program
# Should not be selected if you are not using the GNU toolchain.
# CONFIG_RAW_BINARY - make a raw binary format file used with many
# different loaders using the GNU objcopy program. This option
# should not be selected if you are not using the GNU toolchain.
# CONFIG_HAVE_LIBM - toolchain supports libm.a
#
CONFIG_RRLOAD_BINARY=n
CONFIG_INTELHEX_BINARY=n
CONFIG_MOTOROLA_SREC=n
CONFIG_RAW_BINARY=y
CONFIG_HAVE_LIBM=n
#
# General OS setup
#
# CONFIG_APPS_DIR - Identifies the relative path to the directory
# that builds the application to link with NuttX. Default: ../apps
# CONFIG_DEBUG - enables built-in debug options
# CONFIG_DEBUG_VERBOSE - enables verbose debug output
# CONFIG_DEBUG_SYMBOLS - build without optimization and with
# debug symbols (needed for use with a debugger).
# CONFIG_HAVE_CXX - Enable support for C++
# CONFIG_HAVE_CXXINITIALIZE - The platform-specific logic includes support
# for initialization of static C++ instances for this architecture
# and for the selected toolchain (via up_cxxinitialize()).
# CONFIG_MM_REGIONS - If the architecture includes multiple
# regions of memory to allocate from, this specifies the
# number of memory regions that the memory manager must
# handle and enables the API mm_addregion(start, end);
# CONFIG_ARCH_LOWPUTC - architecture supports low-level, boot
# time console output
# CONFIG_MSEC_PER_TICK - The default system timer is 100Hz
# or MSEC_PER_TICK=10. This setting may be defined to
# inform NuttX that the processor hardware is providing
# system timer interrupts at some interrupt interval other
# than 10 msec.
# CONFIG_RR_INTERVAL - The round robin timeslice will be set
# this number of milliseconds; Round robin scheduling can
# be disabled by setting this value to zero.
# CONFIG_SCHED_INSTRUMENTATION - enables instrumentation in
# scheduler to monitor system performance
# CONFIG_TASK_NAME_SIZE - Spcifies that maximum size of a
# task name to save in the TCB. Useful if scheduler
# instrumentation is selected. Set to zero to disable.
# CONFIG_START_YEAR, CONFIG_START_MONTH, CONFIG_START_DAY -
# Used to initialize the internal time logic.
# CONFIG_GREGORIAN_TIME - Enables Gregorian time conversions.
# You would only need this if you are concerned about accurate
# time conversions in the past or in the distant future.
# CONFIG_JULIAN_TIME - Enables Julian time conversions. You
# would only need this if you are concerned about accurate
# time conversion in the distand past. You must also define
# CONFIG_GREGORIAN_TIME in order to use Julian time.
# CONFIG_DEV_CONSOLE - Set if architecture-specific logic
# provides /dev/console. Enables stdout, stderr, stdin.
# CONFIG_DEV_LOWCONSOLE - Use the simple, low-level serial console
# driver (minimul support)
# CONFIG_MUTEX_TYPES: Set to enable support for recursive and
# errorcheck mutexes. Enables pthread_mutexattr_settype().
# CONFIG_PRIORITY_INHERITANCE : Set to enable support for priority
# inheritance on mutexes and semaphores.
# CONFIG_SEM_PREALLOCHOLDERS: This setting is only used if priority
# inheritance is enabled. It defines the maximum number of
# different threads (minus one) that can take counts on a
# semaphore with priority inheritance support. This may be
# set to zero if priority inheritance is disabled OR if you
# are only using semaphores as mutexes (only one holder) OR
# if no more than two threads participate using a counting
# semaphore.
# CONFIG_SEM_NNESTPRIO. If priority inheritance is enabled,
# then this setting is the maximum number of higher priority
# threads (minus 1) than can be waiting for another thread
# to release a count on a semaphore. This value may be set
# to zero if no more than one thread is expected to wait for
# a semaphore.
# CONFIG_FDCLONE_DISABLE. Disable cloning of all file descriptors
# by task_create() when a new task is started. If set, all
# files/drivers will appear to be closed in the new task.
# CONFIG_FDCLONE_STDIO. Disable cloning of all but the first
# three file descriptors (stdin, stdout, stderr) by task_create()
# when a new task is started. If set, all files/drivers will
# appear to be closed in the new task except for stdin, stdout,
# and stderr.
# CONFIG_SDCLONE_DISABLE. Disable cloning of all socket
# desciptors by task_create() when a new task is started. If
# set, all sockets will appear to be closed in the new task.
# CONFIG_SCHED_WORKQUEUE. Create a dedicated "worker" thread to
# handle delayed processing from interrupt handlers. This feature
# is required for some drivers but, if there are not complaints,
# can be safely disabled. The worker thread also performs
# garbage collection -- completing any delayed memory deallocations
# from interrupt handlers. If the worker thread is disabled,
# then that clean will be performed by the IDLE thread instead
# (which runs at the lowest of priority and may not be appropriate
# if memory reclamation is of high priority). If CONFIG_SCHED_WORKQUEUE
# is enabled, then the following options can also be used:
# CONFIG_SCHED_WORKPRIORITY - The execution priority of the worker
# thread. Default: 50
# CONFIG_SCHED_WORKPERIOD - How often the worker thread checks for
# work in units of microseconds. Default: 50*1000 (50 MS).
# CONFIG_SCHED_WORKSTACKSIZE - The stack size allocated for the worker
# thread. Default: CONFIG_IDLETHREAD_STACKSIZE.
# CONFIG_SIG_SIGWORK - The signal number that will be used to wake-up
# the worker thread. Default: 4
# CONFIG_SCHED_WAITPID - Enable the waitpid() API
# CONFIG_SCHED_ATEXIT - Enabled the atexit() API
#
CONFIG_USER_ENTRYPOINT="user_start"
#CONFIG_APPS_DIR=
CONFIG_DEBUG=n
CONFIG_DEBUG_VERBOSE=n
CONFIG_DEBUG_SYMBOLS=y
CONFIG_DEBUG_FS=n
CONFIG_DEBUG_GRAPHICS=n
CONFIG_DEBUG_LCD=n
CONFIG_DEBUG_USB=n
CONFIG_DEBUG_NET=n
CONFIG_DEBUG_RTC=n
CONFIG_DEBUG_ANALOG=n
CONFIG_DEBUG_PWM=n
CONFIG_DEBUG_CAN=n
CONFIG_DEBUG_I2C=n
CONFIG_DEBUG_INPUT=n
CONFIG_MSEC_PER_TICK=1
CONFIG_HAVE_CXX=y
CONFIG_HAVE_CXXINITIALIZE=y
CONFIG_MM_REGIONS=1
CONFIG_MM_SMALL=y
CONFIG_ARCH_LOWPUTC=y
CONFIG_RR_INTERVAL=0
CONFIG_SCHED_INSTRUMENTATION=n
CONFIG_TASK_NAME_SIZE=8
CONFIG_START_YEAR=1970
CONFIG_START_MONTH=1
CONFIG_START_DAY=1
CONFIG_GREGORIAN_TIME=n
CONFIG_JULIAN_TIME=n
# this eats ~1KiB of RAM ... work out why
CONFIG_DEV_CONSOLE=y
CONFIG_DEV_LOWCONSOLE=n
CONFIG_MUTEX_TYPES=n
CONFIG_PRIORITY_INHERITANCE=n
CONFIG_SEM_PREALLOCHOLDERS=0
CONFIG_SEM_NNESTPRIO=0
CONFIG_FDCLONE_DISABLE=y
CONFIG_FDCLONE_STDIO=y
CONFIG_SDCLONE_DISABLE=y
CONFIG_SCHED_WORKQUEUE=n
CONFIG_SCHED_WORKPRIORITY=50
CONFIG_SCHED_WORKPERIOD=50000
CONFIG_SCHED_WORKSTACKSIZE=1024
CONFIG_SIG_SIGWORK=4
CONFIG_SCHED_WAITPID=n
CONFIG_SCHED_ATEXIT=n
#
# The following can be used to disable categories of
# APIs supported by the OS. If the compiler supports
# weak functions, then it should not be necessary to
# disable functions unless you want to restrict usage
# of those APIs.
#
# There are certain dependency relationships in these
# features.
#
# o mq_notify logic depends on signals to awaken tasks
# waiting for queues to become full or empty.
# o pthread_condtimedwait() depends on signals to wake
# up waiting tasks.
#
CONFIG_DISABLE_CLOCK=n
CONFIG_DISABLE_POSIX_TIMERS=y
CONFIG_DISABLE_PTHREAD=y
CONFIG_DISABLE_SIGNALS=y
CONFIG_DISABLE_MQUEUE=y
CONFIG_DISABLE_MOUNTPOINT=y
CONFIG_DISABLE_ENVIRON=y
CONFIG_DISABLE_POLL=y
#
# Misc libc settings
#
# CONFIG_NOPRINTF_FIELDWIDTH - sprintf-related logic is a
# little smaller if we do not support fieldwidthes
#
CONFIG_NOPRINTF_FIELDWIDTH=n
#
# Allow for architecture optimized implementations
#
# The architecture can provide optimized versions of the
# following to improve system performance
#
CONFIG_ARCH_MEMCPY=n
CONFIG_ARCH_MEMCMP=n
CONFIG_ARCH_MEMMOVE=n
CONFIG_ARCH_MEMSET=n
CONFIG_ARCH_STRCMP=n
CONFIG_ARCH_STRCPY=n
CONFIG_ARCH_STRNCPY=n
CONFIG_ARCH_STRLEN=n
CONFIG_ARCH_STRNLEN=n
CONFIG_ARCH_BZERO=n
#
# Sizes of configurable things (0 disables)
#
# CONFIG_MAX_TASKS - The maximum number of simultaneously
# active tasks. This value must be a power of two.
# CONFIG_MAX_TASK_ARGS - This controls the maximum number of
# of parameters that a task may receive (i.e., maxmum value
# of 'argc')
# CONFIG_NPTHREAD_KEYS - The number of items of thread-
# specific data that can be retained
# CONFIG_NFILE_DESCRIPTORS - The maximum number of file
# descriptors (one for each open)
# CONFIG_NFILE_STREAMS - The maximum number of streams that
# can be fopen'ed
# CONFIG_NAME_MAX - The maximum size of a file name.
# CONFIG_STDIO_BUFFER_SIZE - Size of the buffer to allocate
# on fopen. (Only if CONFIG_NFILE_STREAMS > 0)
# CONFIG_STDIO_LINEBUFFER - If standard C buffered I/O is enabled
# (CONFIG_STDIO_BUFFER_SIZE > 0), then this option may be added
# to force automatic, line-oriented flushing the output buffer
# for putc(), fputc(), putchar(), puts(), fputs(), printf(),
# fprintf(), and vfprintf(). When a newline is encountered in
# the output string, the output buffer will be flushed. This
# (slightly) increases the NuttX footprint but supports the kind
# of behavior that people expect for printf().
# CONFIG_NUNGET_CHARS - Number of characters that can be
# buffered by ungetc() (Only if CONFIG_NFILE_STREAMS > 0)
# CONFIG_PREALLOC_MQ_MSGS - The number of pre-allocated message
# structures. The system manages a pool of preallocated
# message structures to minimize dynamic allocations
# CONFIG_MQ_MAXMSGSIZE - Message structures are allocated with
# a fixed payload size given by this settin (does not include
# other message structure overhead.
# CONFIG_MAX_WDOGPARMS - Maximum number of parameters that
# can be passed to a watchdog handler
# CONFIG_PREALLOC_WDOGS - The number of pre-allocated watchdog
# structures. The system manages a pool of preallocated
# watchdog structures to minimize dynamic allocations
# CONFIG_PREALLOC_TIMERS - The number of pre-allocated POSIX
# timer structures. The system manages a pool of preallocated
# timer structures to minimize dynamic allocations. Set to
# zero for all dynamic allocations.
#
CONFIG_MAX_TASKS=4
CONFIG_MAX_TASK_ARGS=4
CONFIG_NPTHREAD_KEYS=2
CONFIG_NFILE_DESCRIPTORS=8
CONFIG_NFILE_STREAMS=0
CONFIG_NAME_MAX=12
CONFIG_STDIO_BUFFER_SIZE=32
CONFIG_STDIO_LINEBUFFER=n
CONFIG_NUNGET_CHARS=2
CONFIG_PREALLOC_MQ_MSGS=4
CONFIG_MQ_MAXMSGSIZE=32
CONFIG_MAX_WDOGPARMS=2
CONFIG_PREALLOC_WDOGS=4
CONFIG_PREALLOC_TIMERS=0
#
# Settings for apps/nshlib
#
# CONFIG_NSH_BUILTIN_APPS - Support external registered,
# "named" applications that can be executed from the NSH
# command line (see apps/README.txt for more information).
# CONFIG_NSH_FILEIOSIZE - Size of a static I/O buffer
# CONFIG_NSH_STRERROR - Use strerror(errno)
# CONFIG_NSH_LINELEN - Maximum length of one command line
# CONFIG_NSH_NESTDEPTH - Max number of nested if-then[-else]-fi
# CONFIG_NSH_DISABLESCRIPT - Disable scripting support
# CONFIG_NSH_DISABLEBG - Disable background commands
# CONFIG_NSH_ROMFSETC - Use startup script in /etc
# CONFIG_NSH_CONSOLE - Use serial console front end
# CONFIG_NSH_TELNET - Use telnetd console front end
# CONFIG_NSH_ARCHINIT - Platform provides architecture
# specific initialization (nsh_archinitialize()).
#
# Disable NSH completely
CONFIG_NSH_CONSOLE=n
#
# Stack and heap information
#
# CONFIG_BOOT_RUNFROMFLASH - Some configurations support XIP
# operation from FLASH but must copy initialized .data sections to RAM.
# (should also be =n for the STM3210E-EVAL which always runs from flash)
# CONFIG_BOOT_COPYTORAM - Some configurations boot in FLASH
# but copy themselves entirely into RAM for better performance.
# CONFIG_CUSTOM_STACK - The up_ implementation will handle
# all stack operations outside of the nuttx model.
# CONFIG_STACK_POINTER - The initial stack pointer (arm7tdmi only)
# CONFIG_IDLETHREAD_STACKSIZE - The size of the initial stack.
# This is the thread that (1) performs the inital boot of the system up
# to the point where user_start() is spawned, and (2) there after is the
# IDLE thread that executes only when there is no other thread ready to
# run.
# CONFIG_USERMAIN_STACKSIZE - The size of the stack to allocate
# for the main user thread that begins at the user_start() entry point.
# CONFIG_PTHREAD_STACK_MIN - Minimum pthread stack size
# CONFIG_PTHREAD_STACK_DEFAULT - Default pthread stack size
# CONFIG_HEAP_BASE - The beginning of the heap
# CONFIG_HEAP_SIZE - The size of the heap
#
CONFIG_BOOT_RUNFROMFLASH=n
CONFIG_BOOT_COPYTORAM=n
CONFIG_CUSTOM_STACK=n
CONFIG_STACK_POINTER=
CONFIG_IDLETHREAD_STACKSIZE=1024
CONFIG_USERMAIN_STACKSIZE=1200
CONFIG_PTHREAD_STACK_MIN=512
CONFIG_PTHREAD_STACK_DEFAULT=1024
CONFIG_HEAP_BASE=
CONFIG_HEAP_SIZE=

View File

@ -0,0 +1,47 @@
#!/bin/bash
# configs/stm3210e-eval/dfu/setenv.sh
#
# Copyright (C) 2009 Gregory Nutt. All rights reserved.
# Author: Gregory Nutt <gnutt@nuttx.org>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name NuttX nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
if [ "$(basename $0)" = "setenv.sh" ] ; then
echo "You must source this script, not run it!" 1>&2
exit 1
fi
if [ -z "${PATH_ORIG}" ]; then export PATH_ORIG="${PATH}"; fi
WD=`pwd`
export RIDE_BIN="/cygdrive/c/Program Files/Raisonance/Ride/arm-gcc/bin"
export BUILDROOT_BIN="${WD}/../misc/buildroot/build_arm_nofpu/staging_dir/bin"
export PATH="${BUILDROOT_BIN}:${RIDE_BIN}:/sbin:/usr/sbin:${PATH_ORIG}"
echo "PATH : ${PATH}"

View File

@ -0,0 +1,3 @@
include ${TOPDIR}/.config
include $(TOPDIR)/configs/$(CONFIG_ARCH_BOARD)/common/Make.defs

View File

@ -0,0 +1,44 @@
############################################################################
# configs/stm3210e-eval/nsh/appconfig
#
# Copyright (C) 2011-2012 Gregory Nutt. All rights reserved.
# Author: Gregory Nutt <gnutt@nuttx.org>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name NuttX nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
# Path to example in apps/examples containing the user_start entry point
CONFIGURED_APPS += examples/nsh
CONFIGURED_APPS += system/readline
CONFIGURED_APPS += nshlib
CONFIGURED_APPS += reboot
CONFIGURED_APPS += drivers/boards/px4iov2

View File

@ -0,0 +1,567 @@
############################################################################
# configs/px4io/nsh/defconfig
#
# Copyright (C) 2009-2012 Gregory Nutt. All rights reserved.
# Author: Gregory Nutt <gnutt@nuttx.org>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name NuttX nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# architecture selection
#
# CONFIG_ARCH - identifies the arch subdirectory and, hence, the
# processor architecture.
# CONFIG_ARCH_family - for use in C code. This identifies the
# particular chip family that the architecture is implemented
# in.
# CONFIG_ARCH_architecture - for use in C code. This identifies the
# specific architecture within the chip familyl.
# CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory
# CONFIG_ARCH_CHIP_name - For use in C code
# CONFIG_ARCH_BOARD - identifies the configs subdirectory and, hence,
# the board that supports the particular chip or SoC.
# CONFIG_ARCH_BOARD_name - for use in C code
# CONFIG_ENDIAN_BIG - define if big endian (default is little endian)
# CONFIG_BOARD_LOOPSPERMSEC - for delay loops
# CONFIG_DRAM_SIZE - Describes the installed DRAM.
# CONFIG_DRAM_START - The start address of DRAM (physical)
# CONFIG_DRAM_END - Last address+1 of installed RAM
# CONFIG_ARCH_IRQPRIO - The ST32F100CB supports interrupt prioritization
# CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt
# stack. If defined, this symbol is the size of the interrupt
# stack in bytes. If not defined, the user task stacks will be
# used during interrupt handling.
# CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions
# CONFIG_ARCH_BOOTLOADER - Set if you are using a bootloader.
# CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture.
# CONFIG_ARCH_BUTTONS - Enable support for buttons. Unique to board architecture.
# CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that
# cause a 100 second delay during boot-up. This 100 second delay
# serves no purpose other than it allows you to calibrate
# CONFIG_BOARD_LOOPSPERMSEC. You simply use a stop watch to measure
# the 100 second delay then adjust CONFIG_BOARD_LOOPSPERMSEC until
# the delay actually is 100 seconds.
# CONFIG_ARCH_DMA - Support DMA initialization
#
CONFIG_ARCH=arm
CONFIG_ARCH_ARM=y
CONFIG_ARCH_CORTEXM3=y
CONFIG_ARCH_CHIP=stm32
CONFIG_ARCH_CHIP_STM32F100C8=y
CONFIG_ARCH_BOARD=px4iov2
CONFIG_ARCH_BOARD_PX4IOV2=y
CONFIG_BOARD_LOOPSPERMSEC=24000
CONFIG_DRAM_SIZE=0x00002000
CONFIG_DRAM_START=0x20000000
CONFIG_DRAM_END=(CONFIG_DRAM_START+CONFIG_DRAM_SIZE)
CONFIG_ARCH_IRQPRIO=y
CONFIG_ARCH_INTERRUPTSTACK=n
CONFIG_ARCH_STACKDUMP=y
CONFIG_ARCH_BOOTLOADER=n
CONFIG_ARCH_LEDS=n
CONFIG_ARCH_BUTTONS=y
CONFIG_ARCH_CALIBRATION=n
CONFIG_ARCH_DMA=n
CONFIG_ARMV7M_CMNVECTOR=y
#
# JTAG Enable settings (by default JTAG-DP and SW-DP are disabled):
#
# CONFIG_STM32_DFU - Use the DFU bootloader, not JTAG
#
# JTAG Enable options:
#
# CONFIG_STM32_JTAG_FULL_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
# CONFIG_STM32_JTAG_NOJNTRST_ENABLE - Enables full SWJ (JTAG-DP + SW-DP)
# but without JNTRST.
# CONFIG_STM32_JTAG_SW_ENABLE - Set JTAG-DP disabled and SW-DP enabled
#
CONFIG_STM32_DFU=n
CONFIG_STM32_JTAG_FULL_ENABLE=y
CONFIG_STM32_JTAG_NOJNTRST_ENABLE=n
CONFIG_STM32_JTAG_SW_ENABLE=n
#
# Individual subsystems can be enabled:
# AHB:
CONFIG_STM32_DMA1=n
CONFIG_STM32_DMA2=n
CONFIG_STM32_CRC=n
# APB1:
# Timers 2,3 and 4 are owned by the PWM driver
CONFIG_STM32_TIM2=n
CONFIG_STM32_TIM3=n
CONFIG_STM32_TIM4=n
CONFIG_STM32_TIM5=n
CONFIG_STM32_TIM6=n
CONFIG_STM32_TIM7=n
CONFIG_STM32_WWDG=n
CONFIG_STM32_SPI2=n
CONFIG_STM32_USART2=y
CONFIG_STM32_USART3=y
CONFIG_STM32_I2C1=y
CONFIG_STM32_I2C2=n
CONFIG_STM32_BKP=n
CONFIG_STM32_PWR=n
CONFIG_STM32_DAC=n
# APB2:
CONFIG_STM32_ADC1=y
CONFIG_STM32_ADC2=n
# TIM1 is owned by the HRT
CONFIG_STM32_TIM1=n
CONFIG_STM32_SPI1=n
CONFIG_STM32_TIM8=n
CONFIG_STM32_USART1=y
CONFIG_STM32_ADC3=n
#
# Timer and I2C devices may need to the following to force power to be applied:
#
#CONFIG_STM32_FORCEPOWER=y
#
# STM32F100 specific serial device driver settings
#
# CONFIG_USARTn_SERIAL_CONSOLE - selects the USARTn for the
# console and ttys0 (default is the USART1).
# CONFIG_USARTn_RXBUFSIZE - Characters are buffered as received.
# This specific the size of the receive buffer
# CONFIG_USARTn_TXBUFSIZE - Characters are buffered before
# being sent. This specific the size of the transmit buffer
# CONFIG_USARTn_BAUD - The configure BAUD of the UART. Must be
# CONFIG_USARTn_BITS - The number of bits. Must be either 7 or 8.
# CONFIG_USARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity
# CONFIG_USARTn_2STOP - Two stop bits
#
CONFIG_USART1_SERIAL_CONSOLE=y
CONFIG_USART2_SERIAL_CONSOLE=n
CONFIG_USART3_SERIAL_CONSOLE=n
CONFIG_USART1_TXBUFSIZE=64
CONFIG_USART2_TXBUFSIZE=64
CONFIG_USART3_TXBUFSIZE=64
CONFIG_USART1_RXBUFSIZE=64
CONFIG_USART2_RXBUFSIZE=64
CONFIG_USART3_RXBUFSIZE=64
CONFIG_USART1_BAUD=57600
CONFIG_USART2_BAUD=115200
CONFIG_USART3_BAUD=115200
CONFIG_USART1_BITS=8
CONFIG_USART2_BITS=8
CONFIG_USART3_BITS=8
CONFIG_USART1_PARITY=0
CONFIG_USART2_PARITY=0
CONFIG_USART3_PARITY=0
CONFIG_USART1_2STOP=0
CONFIG_USART2_2STOP=0
CONFIG_USART3_2STOP=0
#
# PX4IO specific driver settings
#
# CONFIG_HRT_TIMER
# Enables the high-resolution timer. The board definition must
# set HRT_TIMER and HRT_TIMER_CHANNEL to the timer and capture/
# compare channels to be used.
# CONFIG_HRT_PPM
# Enables R/C PPM input using the HRT. The board definition must
# set HRT_PPM_CHANNEL to the timer capture/compare channel to be
# used, and define GPIO_PPM_IN to configure the appropriate timer
# GPIO.
# CONFIG_PWM_SERVO
# Enables the PWM servo driver. The driver configuration must be
# supplied by the board support at initialisation time.
# Note that USART2 must be disabled on the PX4 board for this to
# be available.
#
#
CONFIG_HRT_TIMER=y
CONFIG_HRT_PPM=y
CONFIG_PWM_SERVO=y
#
# General build options
#
# CONFIG_RRLOAD_BINARY - make the rrload binary format used with
# BSPs from www.ridgerun.com using the tools/mkimage.sh script
# CONFIG_INTELHEX_BINARY - make the Intel HEX binary format
# used with many different loaders using the GNU objcopy program
# Should not be selected if you are not using the GNU toolchain.
# CONFIG_MOTOROLA_SREC - make the Motorola S-Record binary format
# used with many different loaders using the GNU objcopy program
# Should not be selected if you are not using the GNU toolchain.
# CONFIG_RAW_BINARY - make a raw binary format file used with many
# different loaders using the GNU objcopy program. This option
# should not be selected if you are not using the GNU toolchain.
# CONFIG_HAVE_LIBM - toolchain supports libm.a
#
CONFIG_RRLOAD_BINARY=n
CONFIG_INTELHEX_BINARY=n
CONFIG_MOTOROLA_SREC=n
CONFIG_RAW_BINARY=y
CONFIG_HAVE_LIBM=n
#
# General OS setup
#
# CONFIG_APPS_DIR - Identifies the relative path to the directory
# that builds the application to link with NuttX. Default: ../apps
# CONFIG_DEBUG - enables built-in debug options
# CONFIG_DEBUG_VERBOSE - enables verbose debug output
# CONFIG_DEBUG_SYMBOLS - build without optimization and with
# debug symbols (needed for use with a debugger).
# CONFIG_HAVE_CXX - Enable support for C++
# CONFIG_HAVE_CXXINITIALIZE - The platform-specific logic includes support
# for initialization of static C++ instances for this architecture
# and for the selected toolchain (via up_cxxinitialize()).
# CONFIG_MM_REGIONS - If the architecture includes multiple
# regions of memory to allocate from, this specifies the
# number of memory regions that the memory manager must
# handle and enables the API mm_addregion(start, end);
# CONFIG_ARCH_LOWPUTC - architecture supports low-level, boot
# time console output
# CONFIG_MSEC_PER_TICK - The default system timer is 100Hz
# or MSEC_PER_TICK=10. This setting may be defined to
# inform NuttX that the processor hardware is providing
# system timer interrupts at some interrupt interval other
# than 10 msec.
# CONFIG_RR_INTERVAL - The round robin timeslice will be set
# this number of milliseconds; Round robin scheduling can
# be disabled by setting this value to zero.
# CONFIG_SCHED_INSTRUMENTATION - enables instrumentation in
# scheduler to monitor system performance
# CONFIG_TASK_NAME_SIZE - Spcifies that maximum size of a
# task name to save in the TCB. Useful if scheduler
# instrumentation is selected. Set to zero to disable.
# CONFIG_START_YEAR, CONFIG_START_MONTH, CONFIG_START_DAY -
# Used to initialize the internal time logic.
# CONFIG_GREGORIAN_TIME - Enables Gregorian time conversions.
# You would only need this if you are concerned about accurate
# time conversions in the past or in the distant future.
# CONFIG_JULIAN_TIME - Enables Julian time conversions. You
# would only need this if you are concerned about accurate
# time conversion in the distand past. You must also define
# CONFIG_GREGORIAN_TIME in order to use Julian time.
# CONFIG_DEV_CONSOLE - Set if architecture-specific logic
# provides /dev/console. Enables stdout, stderr, stdin.
# CONFIG_DEV_LOWCONSOLE - Use the simple, low-level serial console
# driver (minimul support)
# CONFIG_MUTEX_TYPES: Set to enable support for recursive and
# errorcheck mutexes. Enables pthread_mutexattr_settype().
# CONFIG_PRIORITY_INHERITANCE : Set to enable support for priority
# inheritance on mutexes and semaphores.
# CONFIG_SEM_PREALLOCHOLDERS: This setting is only used if priority
# inheritance is enabled. It defines the maximum number of
# different threads (minus one) that can take counts on a
# semaphore with priority inheritance support. This may be
# set to zero if priority inheritance is disabled OR if you
# are only using semaphores as mutexes (only one holder) OR
# if no more than two threads participate using a counting
# semaphore.
# CONFIG_SEM_NNESTPRIO. If priority inheritance is enabled,
# then this setting is the maximum number of higher priority
# threads (minus 1) than can be waiting for another thread
# to release a count on a semaphore. This value may be set
# to zero if no more than one thread is expected to wait for
# a semaphore.
# CONFIG_FDCLONE_DISABLE. Disable cloning of all file descriptors
# by task_create() when a new task is started. If set, all
# files/drivers will appear to be closed in the new task.
# CONFIG_FDCLONE_STDIO. Disable cloning of all but the first
# three file descriptors (stdin, stdout, stderr) by task_create()
# when a new task is started. If set, all files/drivers will
# appear to be closed in the new task except for stdin, stdout,
# and stderr.
# CONFIG_SDCLONE_DISABLE. Disable cloning of all socket
# desciptors by task_create() when a new task is started. If
# set, all sockets will appear to be closed in the new task.
# CONFIG_NXFLAT. Enable support for the NXFLAT binary format.
# This format will support execution of NuttX binaries located
# in a ROMFS filesystem (see examples/nxflat).
# CONFIG_SCHED_WORKQUEUE. Create a dedicated "worker" thread to
# handle delayed processing from interrupt handlers. This feature
# is required for some drivers but, if there are not complaints,
# can be safely disabled. The worker thread also performs
# garbage collection -- completing any delayed memory deallocations
# from interrupt handlers. If the worker thread is disabled,
# then that clean will be performed by the IDLE thread instead
# (which runs at the lowest of priority and may not be appropriate
# if memory reclamation is of high priority). If CONFIG_SCHED_WORKQUEUE
# is enabled, then the following options can also be used:
# CONFIG_SCHED_WORKPRIORITY - The execution priority of the worker
# thread. Default: 50
# CONFIG_SCHED_WORKPERIOD - How often the worker thread checks for
# work in units of microseconds. Default: 50*1000 (50 MS).
# CONFIG_SCHED_WORKSTACKSIZE - The stack size allocated for the worker
# thread. Default: CONFIG_IDLETHREAD_STACKSIZE.
# CONFIG_SIG_SIGWORK - The signal number that will be used to wake-up
# the worker thread. Default: 4
#
#CONFIG_APPS_DIR=
CONFIG_DEBUG=n
CONFIG_DEBUG_VERBOSE=n
CONFIG_DEBUG_SYMBOLS=y
CONFIG_HAVE_CXX=y
CONFIG_HAVE_CXXINITIALIZE=n
CONFIG_MM_REGIONS=1
CONFIG_MM_SMALL=y
CONFIG_ARCH_LOWPUTC=y
CONFIG_RR_INTERVAL=200
CONFIG_SCHED_INSTRUMENTATION=n
CONFIG_TASK_NAME_SIZE=0
CONFIG_START_YEAR=2009
CONFIG_START_MONTH=9
CONFIG_START_DAY=21
CONFIG_GREGORIAN_TIME=n
CONFIG_JULIAN_TIME=n
CONFIG_DEV_CONSOLE=y
CONFIG_DEV_LOWCONSOLE=n
CONFIG_MUTEX_TYPES=n
CONFIG_PRIORITY_INHERITANCE=n
CONFIG_SEM_PREALLOCHOLDERS=0
CONFIG_SEM_NNESTPRIO=0
CONFIG_FDCLONE_DISABLE=n
CONFIG_FDCLONE_STDIO=y
CONFIG_SDCLONE_DISABLE=y
CONFIG_NXFLAT=n
CONFIG_SCHED_WORKQUEUE=n
CONFIG_SCHED_WORKPRIORITY=50
CONFIG_SCHED_WORKPERIOD=(50*1000)
CONFIG_SCHED_WORKSTACKSIZE=512
CONFIG_SIG_SIGWORK=4
CONFIG_USER_ENTRYPOINT="nsh_main"
#
# The following can be used to disable categories of
# APIs supported by the OS. If the compiler supports
# weak functions, then it should not be necessary to
# disable functions unless you want to restrict usage
# of those APIs.
#
# There are certain dependency relationships in these
# features.
#
# o mq_notify logic depends on signals to awaken tasks
# waiting for queues to become full or empty.
# o pthread_condtimedwait() depends on signals to wake
# up waiting tasks.
#
CONFIG_DISABLE_CLOCK=n
CONFIG_DISABLE_POSIX_TIMERS=y
CONFIG_DISABLE_PTHREAD=n
CONFIG_DISABLE_SIGNALS=n
CONFIG_DISABLE_MQUEUE=y
CONFIG_DISABLE_MOUNTPOINT=y
CONFIG_DISABLE_ENVIRON=y
CONFIG_DISABLE_POLL=y
#
# Misc libc settings
#
# CONFIG_NOPRINTF_FIELDWIDTH - sprintf-related logic is a
# little smaller if we do not support fieldwidthes
#
CONFIG_NOPRINTF_FIELDWIDTH=n
#
# Allow for architecture optimized implementations
#
# The architecture can provide optimized versions of the
# following to improve system performance
#
CONFIG_ARCH_MEMCPY=n
CONFIG_ARCH_MEMCMP=n
CONFIG_ARCH_MEMMOVE=n
CONFIG_ARCH_MEMSET=n
CONFIG_ARCH_STRCMP=n
CONFIG_ARCH_STRCPY=n
CONFIG_ARCH_STRNCPY=n
CONFIG_ARCH_STRLEN=n
CONFIG_ARCH_STRNLEN=n
CONFIG_ARCH_BZERO=n
#
# Sizes of configurable things (0 disables)
#
# CONFIG_MAX_TASKS - The maximum number of simultaneously
# active tasks. This value must be a power of two.
# CONFIG_MAX_TASK_ARGS - This controls the maximum number of
# of parameters that a task may receive (i.e., maxmum value
# of 'argc')
# CONFIG_NPTHREAD_KEYS - The number of items of thread-
# specific data that can be retained
# CONFIG_NFILE_DESCRIPTORS - The maximum number of file
# descriptors (one for each open)
# CONFIG_NFILE_STREAMS - The maximum number of streams that
# can be fopen'ed
# CONFIG_NAME_MAX - The maximum size of a file name.
# CONFIG_STDIO_BUFFER_SIZE - Size of the buffer to allocate
# on fopen. (Only if CONFIG_NFILE_STREAMS > 0)
# CONFIG_NUNGET_CHARS - Number of characters that can be
# buffered by ungetc() (Only if CONFIG_NFILE_STREAMS > 0)
# CONFIG_PREALLOC_MQ_MSGS - The number of pre-allocated message
# structures. The system manages a pool of preallocated
# message structures to minimize dynamic allocations
# CONFIG_MQ_MAXMSGSIZE - Message structures are allocated with
# a fixed payload size given by this settin (does not include
# other message structure overhead.
# CONFIG_MAX_WDOGPARMS - Maximum number of parameters that
# can be passed to a watchdog handler
# CONFIG_PREALLOC_WDOGS - The number of pre-allocated watchdog
# structures. The system manages a pool of preallocated
# watchdog structures to minimize dynamic allocations
# CONFIG_PREALLOC_TIMERS - The number of pre-allocated POSIX
# timer structures. The system manages a pool of preallocated
# timer structures to minimize dynamic allocations. Set to
# zero for all dynamic allocations.
#
CONFIG_MAX_TASKS=4
CONFIG_MAX_TASK_ARGS=4
CONFIG_NPTHREAD_KEYS=2
CONFIG_NFILE_DESCRIPTORS=6
CONFIG_NFILE_STREAMS=4
CONFIG_NAME_MAX=32
CONFIG_STDIO_BUFFER_SIZE=64
CONFIG_NUNGET_CHARS=2
CONFIG_PREALLOC_MQ_MSGS=1
CONFIG_MQ_MAXMSGSIZE=32
CONFIG_MAX_WDOGPARMS=2
CONFIG_PREALLOC_WDOGS=3
CONFIG_PREALLOC_TIMERS=1
#
# Settings for apps/nshlib
#
# CONFIG_NSH_BUILTIN_APPS - Support external registered,
# "named" applications that can be executed from the NSH
# command line (see apps/README.txt for more information).
# CONFIG_NSH_FILEIOSIZE - Size of a static I/O buffer
# CONFIG_NSH_STRERROR - Use strerror(errno)
# CONFIG_NSH_LINELEN - Maximum length of one command line
# CONFIG_NSH_NESTDEPTH - Max number of nested if-then[-else]-fi
# CONFIG_NSH_DISABLESCRIPT - Disable scripting support
# CONFIG_NSH_DISABLEBG - Disable background commands
# CONFIG_NSH_ROMFSETC - Use startup script in /etc
# CONFIG_NSH_CONSOLE - Use serial console front end
# CONFIG_NSH_TELNET - Use telnetd console front end
# CONFIG_NSH_ARCHINIT - Platform provides architecture
# specific initialization (nsh_archinitialize()).
#
# If CONFIG_NSH_TELNET is selected:
# CONFIG_NSH_IOBUFFER_SIZE -- Telnetd I/O buffer size
# CONFIG_NSH_DHCPC - Obtain address using DHCP
# CONFIG_NSH_IPADDR - Provides static IP address
# CONFIG_NSH_DRIPADDR - Provides static router IP address
# CONFIG_NSH_NETMASK - Provides static network mask
# CONFIG_NSH_NOMAC - Use a bogus MAC address
#
# If CONFIG_NSH_ROMFSETC is selected:
# CONFIG_NSH_ROMFSMOUNTPT - ROMFS mountpoint
# CONFIG_NSH_INITSCRIPT - Relative path to init script
# CONFIG_NSH_ROMFSDEVNO - ROMFS RAM device minor
# CONFIG_NSH_ROMFSSECTSIZE - ROMF sector size
# CONFIG_NSH_FATDEVNO - FAT FS RAM device minor
# CONFIG_NSH_FATSECTSIZE - FAT FS sector size
# CONFIG_NSH_FATNSECTORS - FAT FS number of sectors
# CONFIG_NSH_FATMOUNTPT - FAT FS mountpoint
#
CONFIG_BUILTIN=y
CONFIG_NSH_BUILTIN_APPS=y
CONFIG_NSH_FILEIOSIZE=64
CONFIG_NSH_STRERROR=n
CONFIG_NSH_LINELEN=64
CONFIG_NSH_NESTDEPTH=1
CONFIG_NSH_DISABLESCRIPT=y
CONFIG_NSH_DISABLEBG=n
CONFIG_NSH_ROMFSETC=n
CONFIG_NSH_CONSOLE=y
CONFIG_NSH_TELNET=n
CONFIG_NSH_ARCHINIT=n
CONFIG_NSH_IOBUFFER_SIZE=256
CONFIG_NSH_STACKSIZE=1024
CONFIG_NSH_DHCPC=n
CONFIG_NSH_NOMAC=n
CONFIG_NSH_IPADDR=(10<<24|0<<16|0<<8|2)
CONFIG_NSH_DRIPADDR=(10<<24|0<<16|0<<8|1)
CONFIG_NSH_NETMASK=(255<<24|255<<16|255<<8|0)
CONFIG_NSH_ROMFSMOUNTPT="/etc"
CONFIG_NSH_INITSCRIPT="init.d/rcS"
CONFIG_NSH_ROMFSDEVNO=0
CONFIG_NSH_ROMFSSECTSIZE=64
CONFIG_NSH_FATDEVNO=1
CONFIG_NSH_FATSECTSIZE=512
CONFIG_NSH_FATNSECTORS=1024
CONFIG_NSH_FATMOUNTPT=/tmp
#
# Architecture-specific NSH options
#
CONFIG_NSH_MMCSDSPIPORTNO=0
CONFIG_NSH_MMCSDSLOTNO=0
CONFIG_NSH_MMCSDMINOR=0
#
# Stack and heap information
#
# CONFIG_BOOT_RUNFROMFLASH - Some configurations support XIP
# operation from FLASH but must copy initialized .data sections to RAM.
# (should also be =n for the STM3210E-EVAL which always runs from flash)
# CONFIG_BOOT_COPYTORAM - Some configurations boot in FLASH
# but copy themselves entirely into RAM for better performance.
# CONFIG_CUSTOM_STACK - The up_ implementation will handle
# all stack operations outside of the nuttx model.
# CONFIG_STACK_POINTER - The initial stack pointer (arm7tdmi only)
# CONFIG_IDLETHREAD_STACKSIZE - The size of the initial stack.
# This is the thread that (1) performs the inital boot of the system up
# to the point where user_start() is spawned, and (2) there after is the
# IDLE thread that executes only when there is no other thread ready to
# run.
# CONFIG_USERMAIN_STACKSIZE - The size of the stack to allocate
# for the main user thread that begins at the user_start() entry point.
# CONFIG_PTHREAD_STACK_MIN - Minimum pthread stack size
# CONFIG_PTHREAD_STACK_DEFAULT - Default pthread stack size
# CONFIG_HEAP_BASE - The beginning of the heap
# CONFIG_HEAP_SIZE - The size of the heap
#
CONFIG_BOOT_RUNFROMFLASH=n
CONFIG_BOOT_COPYTORAM=n
CONFIG_CUSTOM_STACK=n
CONFIG_STACK_POINTER=
CONFIG_IDLETHREAD_STACKSIZE=800
CONFIG_USERMAIN_STACKSIZE=1024
CONFIG_PTHREAD_STACK_MIN=256
CONFIG_PTHREAD_STACK_DEFAULT=512
CONFIG_HEAP_BASE=
CONFIG_HEAP_SIZE=

View File

@ -0,0 +1,47 @@
#!/bin/bash
# configs/stm3210e-eval/dfu/setenv.sh
#
# Copyright (C) 2009 Gregory Nutt. All rights reserved.
# Author: Gregory Nutt <spudmonkey@racsa.co.cr>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name NuttX nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
if [ "$(basename $0)" = "setenv.sh" ] ; then
echo "You must source this script, not run it!" 1>&2
exit 1
fi
if [ -z "${PATH_ORIG}" ]; then export PATH_ORIG="${PATH}"; fi
WD=`pwd`
export RIDE_BIN="/cygdrive/c/Program Files/Raisonance/Ride/arm-gcc/bin"
export BUILDROOT_BIN="${WD}/../buildroot/build_arm_nofpu/staging_dir/bin"
export PATH="${BUILDROOT_BIN}:${RIDE_BIN}:/sbin:/usr/sbin:${PATH_ORIG}"
echo "PATH : ${PATH}"

View File

@ -0,0 +1,84 @@
############################################################################
# configs/stm3210e-eval/src/Makefile
#
# Copyright (C) 2009-2010 Gregory Nutt. All rights reserved.
# Author: Gregory Nutt <spudmonkey@racsa.co.cr>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name NuttX nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
-include $(TOPDIR)/Make.defs
CFLAGS += -I$(TOPDIR)/sched
ASRCS =
AOBJS = $(ASRCS:.S=$(OBJEXT))
CSRCS = empty.c
COBJS = $(CSRCS:.c=$(OBJEXT))
SRCS = $(ASRCS) $(CSRCS)
OBJS = $(AOBJS) $(COBJS)
ARCH_SRCDIR = $(TOPDIR)/arch/$(CONFIG_ARCH)/src
ifeq ($(WINTOOL),y)
CFLAGS += -I "${shell cygpath -w $(ARCH_SRCDIR)/chip}" \
-I "${shell cygpath -w $(ARCH_SRCDIR)/common}" \
-I "${shell cygpath -w $(ARCH_SRCDIR)/armv7-m}"
else
CFLAGS += -I$(ARCH_SRCDIR)/chip -I$(ARCH_SRCDIR)/common -I$(ARCH_SRCDIR)/armv7-m
endif
all: libboard$(LIBEXT)
$(AOBJS): %$(OBJEXT): %.S
$(call ASSEMBLE, $<, $@)
$(COBJS) $(LINKOBJS): %$(OBJEXT): %.c
$(call COMPILE, $<, $@)
libboard$(LIBEXT): $(OBJS)
$(call ARCHIVE, $@, $(OBJS))
.depend: Makefile $(SRCS)
@$(MKDEP) $(CC) -- $(CFLAGS) -- $(SRCS) >Make.dep
@touch $@
depend: .depend
clean:
$(call DELFILE, libboard$(LIBEXT))
$(call CLEAN)
distclean: clean
$(call DELFILE, Make.dep)
$(call DELFILE, .depend)
-include Make.dep

View File

@ -0,0 +1 @@
This directory contains drivers unique to the STMicro STM3210E-EVAL development board.

View File

@ -0,0 +1,618 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file A simple, polled I2C slave-mode driver.
*
* The master writes to and reads from a byte buffer, which the caller
* can update inbetween calls to the FSM.
*/
#include <stdbool.h>
#include "stm32_i2c.h"
#include <string.h>
/*
* I2C register definitions.
*/
#define I2C_BASE STM32_I2C1_BASE
#define REG(_reg) (*(volatile uint32_t *)(I2C_BASE + _reg))
#define rCR1 REG(STM32_I2C_CR1_OFFSET)
#define rCR2 REG(STM32_I2C_CR2_OFFSET)
#define rOAR1 REG(STM32_I2C_OAR1_OFFSET)
#define rOAR2 REG(STM32_I2C_OAR2_OFFSET)
#define rDR REG(STM32_I2C_DR_OFFSET)
#define rSR1 REG(STM32_I2C_SR1_OFFSET)
#define rSR2 REG(STM32_I2C_SR2_OFFSET)
#define rCCR REG(STM32_I2C_CCR_OFFSET)
#define rTRISE REG(STM32_I2C_TRISE_OFFSET)
/*
* "event" values (cr2 << 16 | cr1) as described in the ST DriverLib
*/
#define I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED ((uint32_t)0x00020002) /* BUSY and ADDR flags */
#define I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */
#define I2C_EVENT_SLAVE_BYTE_RECEIVED ((uint32_t)0x00020040) /* BUSY and RXNE flags */
#define I2C_EVENT_SLAVE_STOP_DETECTED ((uint32_t)0x00000010) /* STOPF flag */
#define I2C_EVENT_SLAVE_BYTE_TRANSMITTED ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */
#define I2C_EVENT_SLAVE_BYTE_TRANSMITTING ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */
#define I2C_EVENT_SLAVE_ACK_FAILURE ((uint32_t)0x00000400) /* AF flag */
/**
* States implemented by the I2C FSM.
*/
enum fsm_state {
BAD_PHASE, // must be zero, default exit on a bad state transition
WAIT_FOR_MASTER,
/* write from master */
WAIT_FOR_COMMAND,
RECEIVE_COMMAND,
RECEIVE_DATA,
HANDLE_COMMAND,
/* read from master */
WAIT_TO_SEND,
SEND_STATUS,
SEND_DATA,
NUM_STATES
};
/**
* Events recognised by the I2C FSM.
*/
enum fsm_event {
/* automatic transition */
AUTO,
/* write from master */
ADDRESSED_WRITE,
BYTE_RECEIVED,
STOP_RECEIVED,
/* read from master */
ADDRESSED_READ,
BYTE_SENDABLE,
ACK_FAILED,
NUM_EVENTS
};
/**
* Context for the I2C FSM
*/
static struct fsm_context {
enum fsm_state state;
/* XXX want to eliminate these */
uint8_t command;
uint8_t status;
uint8_t *data_ptr;
uint32_t data_count;
size_t buffer_size;
uint8_t *buffer;
} context;
/**
* Structure defining one FSM state and its outgoing transitions.
*/
struct fsm_transition {
void (*handler)(void);
enum fsm_state next_state[NUM_EVENTS];
};
static bool i2c_command_received;
static void fsm_event(enum fsm_event event);
static void go_bad(void);
static void go_wait_master(void);
static void go_wait_command(void);
static void go_receive_command(void);
static void go_receive_data(void);
static void go_handle_command(void);
static void go_wait_send(void);
static void go_send_status(void);
static void go_send_buffer(void);
/**
* The FSM state graph.
*/
static const struct fsm_transition fsm[NUM_STATES] = {
[BAD_PHASE] = {
.handler = go_bad,
.next_state = {
[AUTO] = WAIT_FOR_MASTER,
},
},
[WAIT_FOR_MASTER] = {
.handler = go_wait_master,
.next_state = {
[ADDRESSED_WRITE] = WAIT_FOR_COMMAND,
[ADDRESSED_READ] = WAIT_TO_SEND,
},
},
/* write from master*/
[WAIT_FOR_COMMAND] = {
.handler = go_wait_command,
.next_state = {
[BYTE_RECEIVED] = RECEIVE_COMMAND,
[STOP_RECEIVED] = WAIT_FOR_MASTER,
},
},
[RECEIVE_COMMAND] = {
.handler = go_receive_command,
.next_state = {
[BYTE_RECEIVED] = RECEIVE_DATA,
[STOP_RECEIVED] = HANDLE_COMMAND,
},
},
[RECEIVE_DATA] = {
.handler = go_receive_data,
.next_state = {
[BYTE_RECEIVED] = RECEIVE_DATA,
[STOP_RECEIVED] = HANDLE_COMMAND,
},
},
[HANDLE_COMMAND] = {
.handler = go_handle_command,
.next_state = {
[AUTO] = WAIT_FOR_MASTER,
},
},
/* buffer send */
[WAIT_TO_SEND] = {
.handler = go_wait_send,
.next_state = {
[BYTE_SENDABLE] = SEND_STATUS,
},
},
[SEND_STATUS] = {
.handler = go_send_status,
.next_state = {
[BYTE_SENDABLE] = SEND_DATA,
[ACK_FAILED] = WAIT_FOR_MASTER,
},
},
[SEND_DATA] = {
.handler = go_send_buffer,
.next_state = {
[BYTE_SENDABLE] = SEND_DATA,
[ACK_FAILED] = WAIT_FOR_MASTER,
},
},
};
/* debug support */
#if 1
struct fsm_logentry {
char kind;
uint32_t code;
};
#define LOG_ENTRIES 32
static struct fsm_logentry fsm_log[LOG_ENTRIES];
int fsm_logptr;
#define LOG_NEXT(_x) (((_x) + 1) % LOG_ENTRIES)
#define LOGx(_kind, _code) \
do { \
fsm_log[fsm_logptr].kind = _kind; \
fsm_log[fsm_logptr].code = _code; \
fsm_logptr = LOG_NEXT(fsm_logptr); \
fsm_log[fsm_logptr].kind = 0; \
} while(0)
#define LOG(_kind, _code) \
do {\
if (fsm_logptr < LOG_ENTRIES) { \
fsm_log[fsm_logptr].kind = _kind; \
fsm_log[fsm_logptr].code = _code; \
fsm_logptr++;\
}\
}while(0)
#else
#define LOG(_kind, _code)
#endif
static void i2c_setclock(uint32_t frequency);
/**
* Initialise I2C
*
*/
void
i2c_fsm_init(uint8_t *buffer, size_t buffer_size)
{
/* save the buffer */
context.buffer = buffer;
context.buffer_size = buffer_size;
// initialise the FSM
context.status = 0;
context.command = 0;
context.state = BAD_PHASE;
fsm_event(AUTO);
#if 0
// enable the i2c block clock and reset it
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_I2C1EN);
modifyreg32(STM32_RCC_APB1RSTR, 0, RCC_APB1RSTR_I2C1RST);
modifyreg32(STM32_RCC_APB1RSTR, RCC_APB1RSTR_I2C1RST, 0);
// configure the i2c GPIOs
stm32_configgpio(GPIO_I2C1_SCL);
stm32_configgpio(GPIO_I2C1_SDA);
// set the peripheral clock to match the APB clock
rCR2 = STM32_PCLK1_FREQUENCY / 1000000;
// configure for 100kHz operation
i2c_setclock(100000);
// enable i2c
rCR1 = I2C_CR1_PE;
#endif
}
/**
* Run the I2C FSM for some period.
*
* @return True if the buffer has been updated by a command.
*/
bool
i2c_fsm(void)
{
uint32_t event;
int idle_iterations = 0;
for (;;) {
// handle bus error states by discarding the current operation
if (rSR1 & I2C_SR1_BERR) {
context.state = WAIT_FOR_MASTER;
rSR1 = ~I2C_SR1_BERR;
}
// we do not anticipate over/underrun errors as clock-stretching is enabled
// fetch the most recent event
event = ((rSR2 << 16) | rSR1) & 0x00ffffff;
// generate FSM events based on I2C events
switch (event) {
case I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED:
LOG('w', 0);
fsm_event(ADDRESSED_WRITE);
break;
case I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED:
LOG('r', 0);
fsm_event(ADDRESSED_READ);
break;
case I2C_EVENT_SLAVE_BYTE_RECEIVED:
LOG('R', 0);
fsm_event(BYTE_RECEIVED);
break;
case I2C_EVENT_SLAVE_STOP_DETECTED:
LOG('s', 0);
fsm_event(STOP_RECEIVED);
break;
case I2C_EVENT_SLAVE_BYTE_TRANSMITTING:
//case I2C_EVENT_SLAVE_BYTE_TRANSMITTED:
LOG('T', 0);
fsm_event(BYTE_SENDABLE);
break;
case I2C_EVENT_SLAVE_ACK_FAILURE:
LOG('a', 0);
fsm_event(ACK_FAILED);
break;
default:
idle_iterations++;
// if ((event) && (event != 0x00020000))
// LOG('e', event);
break;
}
/* if we have just received something, drop out and let the caller handle it */
if (i2c_command_received) {
i2c_command_received = false;
return true;
}
/* if we have done nothing recently, drop out and let the caller have a slice */
if (idle_iterations > 1000)
return false;
}
}
/**
* Update the FSM with an event
*
* @param event New event.
*/
static void
fsm_event(enum fsm_event event)
{
// move to the next state
context.state = fsm[context.state].next_state[event];
LOG('f', context.state);
// call the state entry handler
if (fsm[context.state].handler) {
fsm[context.state].handler();
}
}
static void
go_bad()
{
LOG('B', 0);
fsm_event(AUTO);
}
/**
* Wait for the master to address us.
*
*/
static void
go_wait_master()
{
// We currently don't have a command byte.
//
context.command = '\0';
// The data pointer starts pointing to the start of the data buffer.
//
context.data_ptr = context.buffer;
// The data count is either:
// - the size of the data buffer
// - some value less than or equal the size of the data buffer during a write or a read
//
context.data_count = context.buffer_size;
// (re)enable the peripheral, clear the stop event flag in
// case we just finished receiving data
rCR1 |= I2C_CR1_PE;
// clear the ACK failed flag in case we just finished sending data
rSR1 = ~I2C_SR1_AF;
}
/**
* Prepare to receive a command byte.
*
*/
static void
go_wait_command()
{
// NOP
}
/**
* Command byte has been received, save it and prepare to handle the data.
*
*/
static void
go_receive_command()
{
// fetch the command byte
context.command = (uint8_t)rDR;
LOG('c', context.command);
}
/**
* Receive a data byte.
*
*/
static void
go_receive_data()
{
uint8_t d;
// fetch the byte
d = (uint8_t)rDR;
LOG('d', d);
// if we have somewhere to put it, do so
if (context.data_count) {
*context.data_ptr++ = d;
context.data_count--;
}
}
/**
* Handle a command once the host is done sending it to us.
*
*/
static void
go_handle_command()
{
// presume we are happy with the command
context.status = 0;
// make a note that the buffer contains a fresh command
i2c_command_received = true;
// kick along to the next state
fsm_event(AUTO);
}
/**
* Wait to be able to send the status byte.
*
*/
static void
go_wait_send()
{
// NOP
}
/**
* Send the status byte.
*
*/
static void
go_send_status()
{
rDR = context.status;
LOG('?', context.status);
}
/**
* Send a data or pad byte.
*
*/
static void
go_send_buffer()
{
if (context.data_count) {
LOG('D', *context.data_ptr);
rDR = *(context.data_ptr++);
context.data_count--;
} else {
LOG('-', 0);
rDR = 0xff;
}
}
/* cribbed directly from the NuttX master driver */
static void
i2c_setclock(uint32_t frequency)
{
uint16_t cr1;
uint16_t ccr;
uint16_t trise;
uint16_t freqmhz;
uint16_t speed;
/* Disable the selected I2C peripheral to configure TRISE */
cr1 = rCR1;
rCR1 &= ~I2C_CR1_PE;
/* Update timing and control registers */
freqmhz = (uint16_t)(STM32_PCLK1_FREQUENCY / 1000000);
ccr = 0;
/* Configure speed in standard mode */
if (frequency <= 100000) {
/* Standard mode speed calculation */
speed = (uint16_t)(STM32_PCLK1_FREQUENCY / (frequency << 1));
/* The CCR fault must be >= 4 */
if (speed < 4) {
/* Set the minimum allowed value */
speed = 4;
}
ccr |= speed;
/* Set Maximum Rise Time for standard mode */
trise = freqmhz + 1;
/* Configure speed in fast mode */
} else { /* (frequency <= 400000) */
/* Fast mode speed calculation with Tlow/Thigh = 16/9 */
#ifdef CONFIG_I2C_DUTY16_9
speed = (uint16_t)(STM32_PCLK1_FREQUENCY / (frequency * 25));
/* Set DUTY and fast speed bits */
ccr |= (I2C_CCR_DUTY|I2C_CCR_FS);
#else
/* Fast mode speed calculation with Tlow/Thigh = 2 */
speed = (uint16_t)(STM32_PCLK1_FREQUENCY / (frequency * 3));
/* Set fast speed bit */
ccr |= I2C_CCR_FS;
#endif
/* Verify that the CCR speed value is nonzero */
if (speed < 1) {
/* Set the minimum allowed value */
speed = 1;
}
ccr |= speed;
/* Set Maximum Rise Time for fast mode */
trise = (uint16_t)(((freqmhz * 300) / 1000) + 1);
}
/* Write the new values of the CCR and TRISE registers */
rCCR = ccr;
rTRISE = trise;
/* Bit 14 of OAR1 must be configured and kept at 1 */
rOAR1 = I2C_OAR1_ONE);
/* Re-enable the peripheral (or not) */
rCR1 = cr1;
}

View File

@ -0,0 +1,4 @@
/*
* There are no source files here, but libboard.a can't be empty, so
* we have this empty source file to keep it company.
*/