Fix PPS based UTC timestamp in camera trigger and capture messages

The existing implementation has about 100ms difference to a reference clock. With the changes this error less than 25us.
- Use sensor_gps messages with hrt timestamps as RTC reference and not the system realtime clock. The PPS interrupt can then be aligned with the GPS clock system.
- Keep fallback based on system RTC when no PPS pulse was captured
This commit is contained in:
Michael Schaeuble 2021-11-11 11:05:03 +01:00 committed by Beat Küng
parent ebb657bcf4
commit 5ad8b84dec
6 changed files with 61 additions and 31 deletions

View File

@ -1,3 +1,2 @@
uint64 timestamp # time since system start (microseconds) uint64 timestamp # time since system start (microseconds) at PPS capture event
uint64 rtc_timestamp # captured time in microseconds from real-time clock at PPS event uint64 rtc_timestamp # Corrected GPS UTC timestamp at PPS capture event
int32 rtc_drift_time # time drift between RTC and PPS event in microseconds

View File

@ -106,11 +106,6 @@ CameraCapture::capture_callback(uint32_t chan_index, hrt_abstime edge_time, uint
{ {
_trigger.chan_index = chan_index; _trigger.chan_index = chan_index;
_trigger.hrt_edge_time = edge_time; _trigger.hrt_edge_time = edge_time;
timespec tv{};
px4_clock_gettime(CLOCK_REALTIME, &tv);
_trigger.rtc_edge_time = ts_to_abstime(&tv) - hrt_elapsed_time(&edge_time);
_trigger.edge_state = edge_state; _trigger.edge_state = edge_state;
_trigger.overflow = overflow; _trigger.overflow = overflow;
@ -124,11 +119,6 @@ CameraCapture::gpio_interrupt_routine(int irq, void *context, void *arg)
dev->_trigger.chan_index = 0; dev->_trigger.chan_index = 0;
dev->_trigger.hrt_edge_time = hrt_absolute_time(); dev->_trigger.hrt_edge_time = hrt_absolute_time();
timespec tv{};
px4_clock_gettime(CLOCK_REALTIME, &tv);
dev->_trigger.rtc_edge_time = ts_to_abstime(&tv);
dev->_trigger.edge_state = 0; dev->_trigger.edge_state = 0;
dev->_trigger.overflow = 0; dev->_trigger.overflow = 0;
@ -197,10 +187,23 @@ CameraCapture::publish_trigger()
pps_capture_s pps_capture; pps_capture_s pps_capture;
if (_pps_capture_sub.update(&pps_capture)) { if (_pps_capture_sub.update(&pps_capture)) {
_rtc_drift_time = pps_capture.rtc_drift_time; _pps_hrt_timestamp = pps_capture.timestamp;
_pps_rtc_timestamp = pps_capture.rtc_timestamp;
} }
trigger.timestamp_utc = _trigger.rtc_edge_time + _rtc_drift_time;
if (_pps_hrt_timestamp > 0) {
// Current RTC time (RTC time captured by the PPS module + elapsed time since capture)
uint64_t gps_utc_time = _pps_rtc_timestamp + hrt_elapsed_time(&_pps_hrt_timestamp);
// Current RTC time - elapsed time since capture interrupt event
trigger.timestamp_utc = gps_utc_time - hrt_elapsed_time(&trigger.timestamp);
} else {
// No PPS capture received, use RTC clock as fallback
timespec tv{};
px4_clock_gettime(CLOCK_REALTIME, &tv);
trigger.timestamp_utc = ts_to_abstime(&tv) - hrt_elapsed_time(&trigger.timestamp);
}
_trigger_pub.publish(trigger); _trigger_pub.publish(trigger);
} }

View File

@ -110,7 +110,6 @@ private:
struct _trig_s { struct _trig_s {
uint32_t chan_index; uint32_t chan_index;
hrt_abstime hrt_edge_time; hrt_abstime hrt_edge_time;
uint64_t rtc_edge_time;
uint32_t edge_state; uint32_t edge_state;
uint32_t overflow; uint32_t overflow;
} _trigger{}; } _trigger{};
@ -133,7 +132,8 @@ private:
hrt_abstime _last_trig_time{0}; hrt_abstime _last_trig_time{0};
uint32_t _capture_overflows{0}; uint32_t _capture_overflows{0};
int32_t _rtc_drift_time{0}; uint64_t _pps_hrt_timestamp{0};
uint64_t _pps_rtc_timestamp{0};
// Signal capture callback // Signal capture callback
void capture_callback(uint32_t chan_index, hrt_abstime edge_time, uint32_t edge_state, uint32_t overflow); void capture_callback(uint32_t chan_index, hrt_abstime edge_time, uint32_t edge_state, uint32_t overflow);

View File

@ -174,7 +174,8 @@ private:
bool _turning_on{false}; bool _turning_on{false};
matrix::Vector2f _last_shoot_position{0.f, 0.f}; matrix::Vector2f _last_shoot_position{0.f, 0.f};
bool _valid_position{false}; bool _valid_position{false};
int32_t _rtc_drift_time{0}; uint64_t _pps_hrt_timestamp{0};
uint64_t _pps_rtc_timestamp{0};
//Camera Auto Mount Pivoting Oblique Survey (CAMPOS) //Camera Auto Mount Pivoting Oblique Survey (CAMPOS)
uint32_t _CAMPOS_num_poses{0}; uint32_t _CAMPOS_num_poses{0};
@ -828,16 +829,24 @@ CameraTrigger::engage(void *arg)
pps_capture_s pps_capture; pps_capture_s pps_capture;
if (trig->_pps_capture_sub.update(&pps_capture)) { if (trig->_pps_capture_sub.update(&pps_capture)) {
trig->_rtc_drift_time = pps_capture.rtc_drift_time; trig->_pps_hrt_timestamp = pps_capture.timestamp;
trig->_pps_rtc_timestamp = pps_capture.rtc_timestamp;
} }
// Send camera trigger message. This messages indicates that we sent // Send camera trigger message. This messages indicates that we sent
// the camera trigger request. Does not guarantee capture. // the camera trigger request. Does not guarantee capture.
camera_trigger_s trigger{}; camera_trigger_s trigger{};
timespec tv{}; if (trig->_pps_hrt_timestamp > 0) {
px4_clock_gettime(CLOCK_REALTIME, &tv); // Current RTC time (RTC time captured by the PPS module + elapsed time since capture)
trigger.timestamp_utc = ts_to_abstime(&tv) + trig->_rtc_drift_time; trigger.timestamp_utc = trig->_pps_rtc_timestamp + hrt_elapsed_time(&trig->_pps_hrt_timestamp);
} else {
// No PPS capture received, use RTC clock as fallback
timespec tv{};
px4_clock_gettime(CLOCK_REALTIME, &tv);
trigger.timestamp_utc = ts_to_abstime(&tv);
}
trigger.seq = trig->_trigger_seq; trigger.seq = trig->_trigger_seq;
trigger.feedback = false; trigger.feedback = false;

View File

@ -89,14 +89,27 @@ void PPSCapture::Run()
return; return;
} }
pps_capture_s pps_capture; sensor_gps_s sensor_gps;
pps_capture.timestamp = hrt_absolute_time();
pps_capture.rtc_timestamp = ts_to_abstime(&_rtc_system_time); if (_sensor_gps_sub.update(&sensor_gps)) {
uint32_t microseconds_part = pps_capture.rtc_timestamp % USEC_IN_1_SEC; _last_gps_utc_timestamp = sensor_gps.time_utc_usec;
_last_gps_timestamp = sensor_gps.timestamp;
}
pps_capture_s pps_capture;
pps_capture.timestamp = _hrt_timestamp;
// GPS UTC time when the GPIO interrupt was triggered
// UTC time + elapsed time since the UTC time was received - eleapsed time since the PPS interrupt
// event
uint64_t gps_utc_time = _last_gps_utc_timestamp + hrt_elapsed_time(&_last_gps_timestamp)
- hrt_elapsed_time(&_hrt_timestamp);
// (For ubx F9P) The rising edge of the PPS pulse is aligned to the top of second GPS time base.
// So, remove the fraction of second and shift to the next second. The interrupt is triggered
// before the matching timestamp tranfered, which means the last received GPS time is always
// behind.
pps_capture.rtc_timestamp = gps_utc_time - (gps_utc_time % USEC_PER_SEC) + USEC_PER_SEC;
/* max drift time to detect with PPS is in the range between -0.5 s to +0.5 s */
pps_capture.rtc_drift_time = (microseconds_part >= MAX_POSITIVE_DRIFT) ? ((-1 * USEC_IN_1_SEC) + microseconds_part)
: microseconds_part;
_pps_capture_pub.publish(pps_capture); _pps_capture_pub.publish(pps_capture);
} }
@ -104,7 +117,7 @@ int PPSCapture::gpio_interrupt_callback(int irq, void *context, void *arg)
{ {
PPSCapture *instance = static_cast<PPSCapture *>(arg); PPSCapture *instance = static_cast<PPSCapture *>(arg);
px4_clock_gettime(CLOCK_REALTIME, &(instance->_rtc_system_time)); instance->_hrt_timestamp = hrt_absolute_time();
instance->ScheduleNow(); // schedule work queue to publish PPS captured time instance->ScheduleNow(); // schedule work queue to publish PPS captured time
return PX4_OK; return PX4_OK;

View File

@ -38,7 +38,9 @@
#include <px4_platform_common/module.h> #include <px4_platform_common/module.h>
#include <px4_platform_common/px4_work_queue/ScheduledWorkItem.hpp> #include <px4_platform_common/px4_work_queue/ScheduledWorkItem.hpp>
#include <uORB/Publication.hpp> #include <uORB/Publication.hpp>
#include <uORB/Subscription.hpp>
#include <uORB/topics/pps_capture.h> #include <uORB/topics/pps_capture.h>
#include <uORB/topics/sensor_gps.h>
using namespace time_literals; using namespace time_literals;
@ -69,10 +71,14 @@ private:
uint32_t _pps_capture_gpio{0}; uint32_t _pps_capture_gpio{0};
uORB::Publication<pps_capture_s> _pps_capture_pub{ORB_ID(pps_capture)}; uORB::Publication<pps_capture_s> _pps_capture_pub{ORB_ID(pps_capture)};
uORB::Subscription _sensor_gps_sub{ORB_ID(sensor_gps)};
static constexpr unsigned USEC_IN_1_SEC{1000000}; // microseconds in 1 second static constexpr unsigned USEC_IN_1_SEC{1000000}; // microseconds in 1 second
static constexpr unsigned MAX_POSITIVE_DRIFT{USEC_IN_1_SEC / 2}; // microseconds static constexpr unsigned MAX_POSITIVE_DRIFT{USEC_IN_1_SEC / 2}; // microseconds
timespec _rtc_system_time{0}; hrt_abstime _hrt_timestamp{0};
uint64_t _last_gps_timestamp{0};
uint64_t _last_gps_utc_timestamp{0};
}; };