microRTPS_transport.cxx fix code style

This commit is contained in:
Daniel Agar 2017-07-28 13:32:54 -04:00 committed by Lorenz Meier
parent 17727b5a82
commit 319c1d2046
1 changed files with 288 additions and 259 deletions

View File

@ -86,388 +86,417 @@ Transport_node::~Transport_node()
uint16_t Transport_node::crc16_byte(uint16_t crc, const uint8_t data)
{
return (crc >> 8) ^ crc16_table[(crc ^ data) & 0xff];
return (crc >> 8) ^ crc16_table[(crc ^ data) & 0xff];
}
uint16_t Transport_node::crc16(uint8_t const *buffer, size_t len)
{
uint16_t crc = 0;
while (len--) crc = crc16_byte(crc, *buffer++);
return crc;
uint16_t crc = 0;
while (len--) {
crc = crc16_byte(crc, *buffer++);
}
return crc;
}
ssize_t Transport_node::read(uint8_t* topic_ID, char out_buffer[], size_t buffer_len)
ssize_t Transport_node::read(uint8_t *topic_ID, char out_buffer[], size_t buffer_len)
{
if (nullptr == out_buffer || nullptr == topic_ID || !fds_OK()) return -1;
if (nullptr == out_buffer || nullptr == topic_ID || !fds_OK()) {
return -1;
}
*topic_ID = 255;
*topic_ID = 255;
ssize_t len = node_read((void*)(rx_buffer + rx_buff_pos), sizeof(rx_buffer) - rx_buff_pos);
if (len <= 0)
{
int errsv = errno;
if (errsv && EAGAIN != errsv && ETIMEDOUT != errsv)
{
printf("Read fail %d\n", errsv);
}
return len;
}
rx_buff_pos += len;
ssize_t len = node_read((void *)(rx_buffer + rx_buff_pos), sizeof(rx_buffer) - rx_buff_pos);
// We read some
size_t header_size = sizeof(struct Header);
if (rx_buff_pos < header_size) return 0; //but not enough
if (len <= 0) {
int errsv = errno;
uint32_t msg_start_pos = 0;
for (msg_start_pos = 0; msg_start_pos <= rx_buff_pos - header_size; ++msg_start_pos)
{
if ('>' == rx_buffer[msg_start_pos] && memcmp(rx_buffer + msg_start_pos, ">>>", 3) == 0)
{
break;
}
}
if (errsv && EAGAIN != errsv && ETIMEDOUT != errsv) {
printf("Read fail %d\n", errsv);
}
// Start not found
if (msg_start_pos > rx_buff_pos - header_size)
{
printf(" (↓↓ %u)\n", msg_start_pos);
// All we've checked so far is garbage, drop it - but save unchecked bytes
memmove(rx_buffer, rx_buffer + msg_start_pos, rx_buff_pos - msg_start_pos);
rx_buff_pos = rx_buff_pos - msg_start_pos;
return -1;
}
return len;
}
/*
* [>,>,>,topic_ID,seq,payload_length_H,payload_length_L,CRCHigh,CRCLow,payloadStart, ... ,payloadEnd]
*/
rx_buff_pos += len;
struct Header *header = (struct Header *)&rx_buffer[msg_start_pos];
uint32_t payload_len = ((uint32_t)header->payload_len_h << 8) | header->payload_len_l;
// The message won't fit the buffer.
if (buffer_len < header_size + payload_len) return -EMSGSIZE;
// We do not have a complete message yet
if(msg_start_pos + header_size + payload_len > rx_buff_pos)
{
// If there's garbage at the beginning, drop it
if (msg_start_pos > 0)
{
printf(" (↓ %u)\n", msg_start_pos);
memmove(rx_buffer, rx_buffer + msg_start_pos, rx_buff_pos - msg_start_pos);
rx_buff_pos -= msg_start_pos;
}
return 0;
}
// We read some
size_t header_size = sizeof(struct Header);
uint16_t read_crc = ((uint16_t)header->crc_h << 8) | header->crc_l;
uint16_t calc_crc = crc16((uint8_t*)rx_buffer + msg_start_pos + header_size, payload_len);
if (read_crc != calc_crc)
{
printf("BAD CRC %u != %u\n", read_crc, calc_crc);
printf(" (↓ %lu)\n", (unsigned long)(header_size + payload_len));
len = -1;
}
else
{
// copy message to outbuffer and set other return values
memmove(out_buffer, rx_buffer + msg_start_pos + header_size, payload_len);
*topic_ID = header->topic_ID;
len = payload_len + header_size;
}
// but not enough
if (rx_buff_pos < header_size) {
return 0;
}
// discard message from rx_buffer
rx_buff_pos -= header_size + payload_len;
memmove(rx_buffer, rx_buffer + msg_start_pos + header_size + payload_len, rx_buff_pos);
uint32_t msg_start_pos = 0;
return len;
for (msg_start_pos = 0; msg_start_pos <= rx_buff_pos - header_size; ++msg_start_pos) {
if ('>' == rx_buffer[msg_start_pos] && memcmp(rx_buffer + msg_start_pos, ">>>", 3) == 0) {
break;
}
}
// Start not found
if (msg_start_pos > rx_buff_pos - header_size) {
printf(" (↓↓ %u)\n", msg_start_pos);
// All we've checked so far is garbage, drop it - but save unchecked bytes
memmove(rx_buffer, rx_buffer + msg_start_pos, rx_buff_pos - msg_start_pos);
rx_buff_pos = rx_buff_pos - msg_start_pos;
return -1;
}
/*
* [>,>,>,topic_ID,seq,payload_length_H,payload_length_L,CRCHigh,CRCLow,payloadStart, ... ,payloadEnd]
*/
struct Header *header = (struct Header *)&rx_buffer[msg_start_pos];
uint32_t payload_len = ((uint32_t)header->payload_len_h << 8) | header->payload_len_l;
// The message won't fit the buffer.
if (buffer_len < header_size + payload_len) {
return -EMSGSIZE;
}
// We do not have a complete message yet
if (msg_start_pos + header_size + payload_len > rx_buff_pos) {
// If there's garbage at the beginning, drop it
if (msg_start_pos > 0) {
printf(" (↓ %u)\n", msg_start_pos);
memmove(rx_buffer, rx_buffer + msg_start_pos, rx_buff_pos - msg_start_pos);
rx_buff_pos -= msg_start_pos;
}
return 0;
}
uint16_t read_crc = ((uint16_t)header->crc_h << 8) | header->crc_l;
uint16_t calc_crc = crc16((uint8_t *)rx_buffer + msg_start_pos + header_size, payload_len);
if (read_crc != calc_crc) {
printf("BAD CRC %u != %u\n", read_crc, calc_crc);
printf(" (↓ %lu)\n", (unsigned long)(header_size + payload_len));
len = -1;
} else {
// copy message to outbuffer and set other return values
memmove(out_buffer, rx_buffer + msg_start_pos + header_size, payload_len);
*topic_ID = header->topic_ID;
len = payload_len + header_size;
}
// discard message from rx_buffer
rx_buff_pos -= header_size + payload_len;
memmove(rx_buffer, rx_buffer + msg_start_pos + header_size + payload_len, rx_buff_pos);
return len;
}
ssize_t Transport_node::write(const uint8_t topic_ID, char buffer[], size_t length)
{
if (!fds_OK()) return -1;
if (!fds_OK()) {
return -1;
}
static struct Header header
{
.marker = {'>','>','>'},
.topic_ID = 0u,
.seq = 0u,
.payload_len_h = 0u,
.payload_len_l = 0u,
.crc_h = 0u,
.crc_l = 0u
static struct Header header = {
.marker = {'>', '>', '>'},
.topic_ID = 0u,
.seq = 0u,
.payload_len_h = 0u,
.payload_len_l = 0u,
.crc_h = 0u,
.crc_l = 0u
};
static uint8_t seq = 0;
};
// [>,>,>,topic_ID,seq,payload_length,CRCHigh,CRCLow,payload_start, ... ,payload_end]
static uint8_t seq = 0;
uint16_t crc = crc16((uint8_t*)buffer, length);
// [>,>,>,topic_ID,seq,payload_length,CRCHigh,CRCLow,payload_start, ... ,payload_end]
header.topic_ID = topic_ID;
header.seq = seq++;
header.payload_len_h = (length >> 8) & 0xff;
header.payload_len_l = length & 0xff;
header.crc_h = (crc >> 8) & 0xff;
header.crc_l = crc & 0xff;
uint16_t crc = crc16((uint8_t *)buffer, length);
ssize_t len = node_write(&header, sizeof(header));
if (len != sizeof(header)) goto err;
len = node_write(buffer, length);
if (len != ssize_t(length)) goto err;
header.topic_ID = topic_ID;
header.seq = seq++;
header.payload_len_h = (length >> 8) & 0xff;
header.payload_len_l = length & 0xff;
header.crc_h = (crc >> 8) & 0xff;
header.crc_l = crc & 0xff;
return len + sizeof(header);
ssize_t len = node_write(&header, sizeof(header));
if (len != sizeof(header)) {
goto err;
}
len = node_write(buffer, length);
if (len != ssize_t(length)) {
goto err;
}
return len + sizeof(header);
err:
//int errsv = errno;
//if (len == -1 ) printf(" => Writing error '%d'\n", errsv);
//else printf(" => Wrote '%ld' != length(%lu) error '%d'\n", (long)len, (unsigned long)length, errsv);
//int errsv = errno;
//if (len == -1 ) printf(" => Writing error '%d'\n", errsv);
//else printf(" => Wrote '%ld' != length(%lu) error '%d'\n", (long)len, (unsigned long)length, errsv);
return len;
return len;
}
UART_node::UART_node(const char *_uart_name, uint32_t _baudrate, uint32_t _poll_ms):
uart_fd(-1),
baudrate(_baudrate),
poll_ms(_poll_ms)
uart_fd(-1),
baudrate(_baudrate),
poll_ms(_poll_ms)
{
if (nullptr != _uart_name) strcpy(uart_name, _uart_name);
if (nullptr != _uart_name) {
strcpy(uart_name, _uart_name);
}
}
UART_node::~UART_node()
{
close();
close();
}
int UART_node::init()
{
// Open a serial port
uart_fd = open(uart_name, O_RDWR | O_NOCTTY | O_NONBLOCK);
// Open a serial port
uart_fd = open(uart_name, O_RDWR | O_NOCTTY | O_NONBLOCK);
if (uart_fd < 0)
{
printf("failed to open device: %s (%d)\n", uart_name, errno);
return -errno;
}
if (uart_fd < 0) {
printf("failed to open device: %s (%d)\n", uart_name, errno);
return -errno;
}
// If using shared UART, no need to set it up
if (baudrate == 0) {
return uart_fd;
}
// If using shared UART, no need to set it up
if (baudrate == 0) {
return uart_fd;
}
// Try to set baud rate
struct termios uart_config;
int termios_state;
// Back up the original uart configuration to restore it after exit
if ((termios_state = tcgetattr(uart_fd, &uart_config)) < 0)
{
int errno_bkp = errno;
printf("ERR GET CONF %s: %d (%d)\n", uart_name, termios_state, errno);
close();
return -errno_bkp;
}
// Try to set baud rate
struct termios uart_config;
int termios_state;
// Clear ONLCR flag (which appends a CR for every LF)
uart_config.c_oflag &= ~ONLCR;
// Back up the original uart configuration to restore it after exit
if ((termios_state = tcgetattr(uart_fd, &uart_config)) < 0) {
int errno_bkp = errno;
printf("ERR GET CONF %s: %d (%d)\n", uart_name, termios_state, errno);
close();
return -errno_bkp;
}
// USB serial is indicated by /dev/ttyACM0
if (strcmp(uart_name, "/dev/ttyACM0") != 0 && strcmp(uart_name, "/dev/ttyACM1") != 0)
{
// Set baud rate
if (cfsetispeed(&uart_config, baudrate) < 0 || cfsetospeed(&uart_config, baudrate) < 0)
{
int errno_bkp = errno;
printf("ERR SET BAUD %s: %d (%d)\n", uart_name, termios_state, errno);
close();
return -errno_bkp;
}
}
// Clear ONLCR flag (which appends a CR for every LF)
uart_config.c_oflag &= ~ONLCR;
if ((termios_state = tcsetattr(uart_fd, TCSANOW, &uart_config)) < 0)
{
int errno_bkp = errno;
printf("ERR SET CONF %s (%d)\n", uart_name, errno);
close();
return -errno_bkp;
}
// USB serial is indicated by /dev/ttyACM0
if (strcmp(uart_name, "/dev/ttyACM0") != 0 && strcmp(uart_name, "/dev/ttyACM1") != 0) {
// Set baud rate
if (cfsetispeed(&uart_config, baudrate) < 0 || cfsetospeed(&uart_config, baudrate) < 0) {
int errno_bkp = errno;
printf("ERR SET BAUD %s: %d (%d)\n", uart_name, termios_state, errno);
close();
return -errno_bkp;
}
}
char aux[64];
bool flush = false;
while (0 < ::read(uart_fd, (void*)&aux, 64))
{
//printf("%s ", aux);
flush = true;
usleep(1000);
}
if (flush)
{
printf("flush\n");
}
else
{
printf("no flush\n");
}
if ((termios_state = tcsetattr(uart_fd, TCSANOW, &uart_config)) < 0) {
int errno_bkp = errno;
printf("ERR SET CONF %s (%d)\n", uart_name, errno);
close();
return -errno_bkp;
}
poll_fd[0].fd = uart_fd;
poll_fd[0].events = POLLIN;
char aux[64];
bool flush = false;
return uart_fd;
while (0 < ::read(uart_fd, (void *)&aux, 64)) {
//printf("%s ", aux);
flush = true;
usleep(1000);
}
if (flush) {
printf("flush\n");
} else {
printf("no flush\n");
}
poll_fd[0].fd = uart_fd;
poll_fd[0].events = POLLIN;
return uart_fd;
}
bool UART_node::fds_OK()
{
return (-1 != uart_fd);
return (-1 != uart_fd);
}
uint8_t UART_node::close()
{
if (-1 != uart_fd)
{
printf("Close UART\n");
::close(uart_fd);
uart_fd = -1;
memset(&poll_fd, 0, sizeof(poll_fd));
}
return 0;
if (-1 != uart_fd) {
printf("Close UART\n");
::close(uart_fd);
uart_fd = -1;
memset(&poll_fd, 0, sizeof(poll_fd));
}
return 0;
}
ssize_t UART_node::node_read(void *buffer, size_t len)
{
if (nullptr == buffer || !fds_OK()) return -1;
ssize_t ret = 0;
int r = poll(poll_fd, 1, poll_ms);
if (r == 1 && (poll_fd[0].revents & POLLIN))
{
ret = ::read(uart_fd, buffer, len);
}
return ret;
if (nullptr == buffer || !fds_OK()) {
return -1;
}
ssize_t ret = 0;
int r = poll(poll_fd, 1, poll_ms);
if (r == 1 && (poll_fd[0].revents & POLLIN)) {
ret = ::read(uart_fd, buffer, len);
}
return ret;
}
ssize_t UART_node::node_write(void *buffer, size_t len)
{
if (nullptr == buffer || !fds_OK()) return -1;
return ::write(uart_fd, buffer, len);
if (nullptr == buffer || !fds_OK()) {
return -1;
}
return ::write(uart_fd, buffer, len);
}
UDP_node::UDP_node(uint16_t _udp_port_recv, uint16_t _udp_port_send):
sender_fd(-1),
receiver_fd(-1),
udp_port_recv(_udp_port_recv),
udp_port_send(_udp_port_send)
sender_fd(-1),
receiver_fd(-1),
udp_port_recv(_udp_port_recv),
udp_port_send(_udp_port_send)
{
}
UDP_node::~UDP_node()
{
close();
close();
}
int UDP_node::init()
{
if (0 > init_receiver(udp_port_recv) || 0 > init_sender(udp_port_send))
{
return -1;
}
return 0;
if (0 > init_receiver(udp_port_recv) || 0 > init_sender(udp_port_send)) {
return -1;
}
return 0;
}
bool UDP_node::fds_OK()
{
return (-1 != sender_fd && -1 != receiver_fd);
return (-1 != sender_fd && -1 != receiver_fd);
}
int UDP_node::init_receiver(uint16_t udp_port)
{
#ifndef __PX4_NUTTX
// udp socket data
memset((char *)&receiver_inaddr, 0, sizeof(receiver_inaddr));
receiver_inaddr.sin_family = AF_INET;
receiver_inaddr.sin_port = htons(udp_port);
receiver_inaddr.sin_addr.s_addr = htonl(INADDR_ANY);
// udp socket data
memset((char *)&receiver_inaddr, 0, sizeof(receiver_inaddr));
receiver_inaddr.sin_family = AF_INET;
receiver_inaddr.sin_port = htons(udp_port);
receiver_inaddr.sin_addr.s_addr = htonl(INADDR_ANY);
if ((receiver_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{
printf("create socket failed\n");
return -1;
}
if ((receiver_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
printf("create socket failed\n");
return -1;
}
printf("Trying to connect...\n");
printf("Trying to connect...\n");
if (bind(receiver_fd, (struct sockaddr *)&receiver_inaddr, sizeof(receiver_inaddr)) < 0)
{
printf("bind failed\n");
return -1;
}
if (bind(receiver_fd, (struct sockaddr *)&receiver_inaddr, sizeof(receiver_inaddr)) < 0) {
printf("bind failed\n");
return -1;
}
printf("connected to server!\n");
printf("connected to server!\n");
#endif /* __PX4_NUTTX */
return 0;
return 0;
}
int UDP_node::init_sender(uint16_t udp_port)
{
#ifndef __PX4_NUTTX
if ((sender_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{
printf("create socket failed\n");
return -1;
}
memset((char *) &sender_outaddr, 0, sizeof(sender_outaddr));
sender_outaddr.sin_family = AF_INET;
sender_outaddr.sin_port = htons(udp_port);
if ((sender_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
printf("create socket failed\n");
return -1;
}
memset((char *) &sender_outaddr, 0, sizeof(sender_outaddr));
sender_outaddr.sin_family = AF_INET;
sender_outaddr.sin_port = htons(udp_port);
if (inet_aton("127.0.0.1", &sender_outaddr.sin_addr) == 0) {
printf("inet_aton() failed\n");
return -1;
}
if (inet_aton("127.0.0.1" , &sender_outaddr.sin_addr) == 0)
{
printf("inet_aton() failed\n");
return -1;
}
#endif /* __PX4_NUTTX */
return 0;
return 0;
}
uint8_t UDP_node::close()
{
#ifndef __PX4_NUTTX
if (sender_fd != -1)
{
printf("Close sender socket\n");
shutdown(sender_fd, SHUT_RDWR);
::close(sender_fd);
sender_fd = -1;
}
if (receiver_fd != -1)
{
printf("Close receiver socket\n");
shutdown(receiver_fd, SHUT_RDWR);
::close(receiver_fd);
receiver_fd = -1;
}
if (sender_fd != -1) {
printf("Close sender socket\n");
shutdown(sender_fd, SHUT_RDWR);
::close(sender_fd);
sender_fd = -1;
}
if (receiver_fd != -1) {
printf("Close receiver socket\n");
shutdown(receiver_fd, SHUT_RDWR);
::close(receiver_fd);
receiver_fd = -1;
}
#endif /* __PX4_NUTTX */
return 0;
return 0;
}
ssize_t UDP_node::node_read(void *buffer, size_t len)
{
if (nullptr == buffer || !fds_OK()) return -1;
int ret = 0;
if (nullptr == buffer || !fds_OK()) {
return -1;
}
int ret = 0;
#ifndef __PX4_NUTTX
// Blocking call
static socklen_t addrlen = sizeof(receiver_outaddr);
ret = recvfrom(receiver_fd, buffer, len, 0, (struct sockaddr*) &receiver_outaddr, &addrlen);
// Blocking call
static socklen_t addrlen = sizeof(receiver_outaddr);
ret = recvfrom(receiver_fd, buffer, len, 0, (struct sockaddr *) &receiver_outaddr, &addrlen);
#endif /* __PX4_NUTTX */
return ret;
return ret;
}
ssize_t UDP_node::node_write(void *buffer, size_t len)
{
if (nullptr == buffer || !fds_OK()) return -1;
int ret = 0;
if (nullptr == buffer || !fds_OK()) {
return -1;
}
int ret = 0;
#ifndef __PX4_NUTTX
ret = sendto(sender_fd, buffer, len, 0, (struct sockaddr *)&sender_outaddr, sizeof(sender_outaddr));
ret = sendto(sender_fd, buffer, len, 0, (struct sockaddr *)&sender_outaddr, sizeof(sender_outaddr));
#endif /* __PX4_NUTTX */
return ret;
return ret;
}