Merge branch 'master' of github.com:PX4/Firmware into fmuv2_bringup

This commit is contained in:
Lorenz Meier 2013-08-20 16:26:15 +02:00
commit 2a58929ffd
6 changed files with 487 additions and 8 deletions

298
Debug/Nuttx.py Normal file
View File

@ -0,0 +1,298 @@
# GDB/Python functions for dealing with NuttX
import gdb, gdb.types
class NX_task(object):
"""Reference to a NuttX task and methods for introspecting it"""
def __init__(self, tcb_ptr):
self._tcb = tcb_ptr.dereference()
self._group = self._tcb['group'].dereference()
self.pid = tcb_ptr['pid']
@classmethod
def for_tcb(cls, tcb):
"""return a task with the given TCB pointer"""
pidhash_sym = gdb.lookup_global_symbol('g_pidhash')
pidhash_value = pidhash_sym.value()
pidhash_type = pidhash_sym.type
for i in range(pidhash_type.range()[0],pidhash_type.range()[1]):
pidhash_entry = pidhash_value[i]
if pidhash_entry['tcb'] == tcb:
return cls(pidhash_entry['tcb'])
return None
@classmethod
def for_pid(cls, pid):
"""return a task for the given PID"""
pidhash_sym = gdb.lookup_global_symbol('g_pidhash')
pidhash_value = pidhash_sym.value()
pidhash_type = pidhash_sym.type
for i in range(pidhash_type.range()[0],pidhash_type.range()[1]):
pidhash_entry = pidhash_value[i]
if pidhash_entry['pid'] == pid:
return cls(pidhash_entry['tcb'])
return None
@staticmethod
def pids():
"""return a list of all PIDs"""
pidhash_sym = gdb.lookup_global_symbol('g_pidhash')
pidhash_value = pidhash_sym.value()
pidhash_type = pidhash_sym.type
result = []
for i in range(pidhash_type.range()[0],pidhash_type.range()[1]):
entry = pidhash_value[i]
pid = int(entry['pid'])
if pid is not -1:
result.append(pid)
return result
@staticmethod
def tasks():
"""return a list of all tasks"""
tasks = []
for pid in NX_task.pids():
tasks.append(NX_task.for_pid(pid))
return tasks
def _state_is(self, state):
"""tests the current state of the task against the passed-in state name"""
statenames = gdb.types.make_enum_dict(gdb.lookup_type('enum tstate_e'))
if self._tcb['task_state'] == statenames[state]:
return True
return False
@property
def stack_used(self):
"""calculate the stack used by the thread"""
if 'stack_used' not in self.__dict__:
stack_base = self._tcb['stack_alloc_ptr'].cast(gdb.lookup_type('unsigned char').pointer())
if stack_base == 0:
self.__dict__['stack_used'] = 0
else:
stack_limit = self._tcb['adj_stack_size']
for offset in range(0, stack_limit):
if stack_base[offset] != 0xff:
break
self.__dict__['stack_used'] = stack_limit - offset
return self.__dict__['stack_used']
@property
def name(self):
"""return the task's name"""
return self._tcb['name'].string()
@property
def state(self):
"""return the name of the task's current state"""
statenames = gdb.types.make_enum_dict(gdb.lookup_type('enum tstate_e'))
for name,value in statenames.iteritems():
if value == self._tcb['task_state']:
return name
return 'UNKNOWN'
@property
def waiting_for(self):
"""return a description of what the task is waiting for, if it is waiting"""
if self._state_is('TSTATE_WAIT_SEM'):
waitsem = self._tcb['waitsem'].dereference()
waitsem_holder = waitsem['holder']
holder = NX_task.for_tcb(waitsem_holder['htcb'])
if holder is not None:
return '{}({})'.format(waitsem.address, holder.name)
else:
return '{}(<bad holder>)'.format(waitsem.address)
if self._state_is('TSTATE_WAIT_SIG'):
return 'signal'
return None
@property
def is_waiting(self):
"""tests whether the task is waiting for something"""
if self._state_is('TSTATE_WAIT_SEM') or self._state_is('TSTATE_WAIT_SIG'):
return True
@property
def is_runnable(self):
"""tests whether the task is runnable"""
if (self._state_is('TSTATE_TASK_PENDING') or
self._state_is('TSTATE_TASK_READYTORUN') or
self._state_is('TSTATE_TASK_RUNNING')):
return True
return False
@property
def file_descriptors(self):
"""return a dictionary of file descriptors and inode pointers"""
filelist = self._group['tg_filelist']
filearray = filelist['fl_files']
result = dict()
for i in range(filearray.type.range()[0],filearray.type.range()[1]):
inode = long(filearray[i]['f_inode'])
if inode != 0:
result[i] = inode
return result
@property
def registers(self):
if 'registers' not in self.__dict__:
registers = dict()
if self._state_is('TSTATE_TASK_RUNNING'):
# XXX need to fix this to handle interrupt context
registers['R0'] = long(gdb.parse_and_eval('$r0'))
registers['R1'] = long(gdb.parse_and_eval('$r1'))
registers['R2'] = long(gdb.parse_and_eval('$r2'))
registers['R3'] = long(gdb.parse_and_eval('$r3'))
registers['R4'] = long(gdb.parse_and_eval('$r4'))
registers['R5'] = long(gdb.parse_and_eval('$r5'))
registers['R6'] = long(gdb.parse_and_eval('$r6'))
registers['R7'] = long(gdb.parse_and_eval('$r7'))
registers['R8'] = long(gdb.parse_and_eval('$r8'))
registers['R9'] = long(gdb.parse_and_eval('$r9'))
registers['R10'] = long(gdb.parse_and_eval('$r10'))
registers['R11'] = long(gdb.parse_and_eval('$r11'))
registers['R12'] = long(gdb.parse_and_eval('$r12'))
registers['R13'] = long(gdb.parse_and_eval('$r13'))
registers['SP'] = long(gdb.parse_and_eval('$sp'))
registers['R14'] = long(gdb.parse_and_eval('$r14'))
registers['LR'] = long(gdb.parse_and_eval('$lr'))
registers['R15'] = long(gdb.parse_and_eval('$r15'))
registers['PC'] = long(gdb.parse_and_eval('$pc'))
registers['XPSR'] = long(gdb.parse_and_eval('$xpsr'))
# this would only be valid if we were in an interrupt
registers['EXC_RETURN'] = 0
# we should be able to get this...
registers['PRIMASK'] = 0
else:
context = self._tcb['xcp']
regs = context['regs']
registers['R0'] = long(regs[27])
registers['R1'] = long(regs[28])
registers['R2'] = long(regs[29])
registers['R3'] = long(regs[30])
registers['R4'] = long(regs[2])
registers['R5'] = long(regs[3])
registers['R6'] = long(regs[4])
registers['R7'] = long(regs[5])
registers['R8'] = long(regs[6])
registers['R9'] = long(regs[7])
registers['R10'] = long(regs[8])
registers['R11'] = long(regs[9])
registers['R12'] = long(regs[31])
registers['R13'] = long(regs[0])
registers['SP'] = long(regs[0])
registers['R14'] = long(regs[32])
registers['LR'] = long(regs[32])
registers['R15'] = long(regs[33])
registers['PC'] = long(regs[33])
registers['XPSR'] = long(regs[34])
registers['EXC_RETURN'] = long(regs[10])
registers['PRIMASK'] = long(regs[1])
self.__dict__['registers'] = registers
return self.__dict__['registers']
def __repr__(self):
return "<NX_task {}>".format(self.pid)
def __str__(self):
return "{}:{}".format(self.pid, self.name)
def __format__(self, format_spec):
return format_spec.format(
pid = self.pid,
name = self.name,
state = self.state,
waiting_for = self.waiting_for,
stack_used = self.stack_used,
stack_limit = self._tcb['adj_stack_size'],
file_descriptors = self.file_descriptors,
registers = self.registers
)
class NX_show_task (gdb.Command):
"""(NuttX) prints information about a task"""
def __init__(self):
super(NX_show_task, self).__init__("show task", gdb.COMMAND_USER)
def invoke(self, arg, from_tty):
t = NX_task.for_pid(int(arg))
if t is not None:
my_fmt = 'PID:{pid} name:{name} state:{state}\n'
my_fmt += ' stack used {stack_used} of {stack_limit}\n'
if t.is_waiting:
my_fmt += ' waiting for {waiting_for}\n'
my_fmt += ' open files: {file_descriptors}\n'
my_fmt += ' R0 {registers[R0]:#010x} {registers[R1]:#010x} {registers[R2]:#010x} {registers[R3]:#010x}\n'
my_fmt += ' R4 {registers[R4]:#010x} {registers[R5]:#010x} {registers[R6]:#010x} {registers[R7]:#010x}\n'
my_fmt += ' R8 {registers[R8]:#010x} {registers[R9]:#010x} {registers[R10]:#010x} {registers[R11]:#010x}\n'
my_fmt += ' R12 {registers[PC]:#010x}\n'
my_fmt += ' SP {registers[SP]:#010x} LR {registers[LR]:#010x} PC {registers[PC]:#010x} XPSR {registers[XPSR]:#010x}\n'
print format(t, my_fmt)
class NX_show_tasks (gdb.Command):
"""(NuttX) prints a list of tasks"""
def __init__(self):
super(NX_show_tasks, self).__init__('show tasks', gdb.COMMAND_USER)
def invoke(self, args, from_tty):
tasks = NX_task.tasks()
for t in tasks:
print format(t, '{pid:<2} {name:<16} {state:<20} {stack_used:>4}/{stack_limit:<4}')
NX_show_task()
NX_show_tasks()
class NX_show_heap (gdb.Command):
"""(NuttX) prints the heap"""
def __init__(self):
super(NX_show_heap, self).__init__('show heap', gdb.COMMAND_USER)
if gdb.lookup_type('struct mm_allocnode_s').sizeof == 8:
self._allocflag = 0x80000000
self._allocnodesize = 8
else:
self._allocflag = 0x8000
self._allocnodesize = 4
def _node_allocated(self, allocnode):
if allocnode['preceding'] & self._allocflag:
return True
return False
def _node_size(self, allocnode):
return allocnode['size'] & ~self._allocflag
def _print_allocations(self, region_start, region_end):
if region_start >= region_end:
print 'heap region {} corrupt'.format(hex(region_start))
return
nodecount = region_end - region_start
print 'heap {} - {}'.format(region_start, region_end)
cursor = 1
while cursor < nodecount:
allocnode = region_start[cursor]
if self._node_allocated(allocnode):
state = ''
else:
state = '(free)'
print ' {} {} {}'.format(allocnode.address + 8, self._node_size(allocnode), state)
cursor += self._node_size(allocnode) / self._allocnodesize
def invoke(self, args, from_tty):
heap = gdb.lookup_global_symbol('g_mmheap').value()
nregions = heap['mm_nregions']
region_starts = heap['mm_heapstart']
region_ends = heap['mm_heapend']
print "{} heap(s)".format(nregions)
# walk the heaps
for i in range(0, nregions):
self._print_allocations(region_starts[i], region_ends[i])
NX_show_heap()

View File

@ -268,7 +268,7 @@ CONFIG_USART2_RXDMA=y
# CONFIG_USART3_RXDMA is not set
# CONFIG_UART4_RXDMA is not set
# CONFIG_UART5_RS485 is not set
CONFIG_UART5_RXDMA=n
CONFIG_UART5_RXDMA=y
# CONFIG_USART6_RS485 is not set
CONFIG_USART6_RXDMA=y
# CONFIG_USART7_RXDMA is not set

View File

@ -272,6 +272,13 @@ private:
* @return OK if the value can be supported.
*/
int set_samplerate(unsigned frequency);
/**
* Self test
*
* @return 0 on success, 1 on failure
*/
int self_test();
};
/* helper macro for handling report buffer indices */
@ -563,6 +570,9 @@ L3GD20::ioctl(struct file *filp, int cmd, unsigned long arg)
case GYROIOCGRANGE:
return _current_range;
case GYROIOCSELFTEST:
return self_test();
default:
/* give it to the superclass */
return SPI::ioctl(filp, cmd, arg);
@ -791,7 +801,8 @@ L3GD20::measure()
poll_notify(POLLIN);
/* publish for subscribers */
orb_publish(ORB_ID(sensor_gyro), _gyro_topic, report);
if (_gyro_topic > 0)
orb_publish(ORB_ID(sensor_gyro), _gyro_topic, report);
/* stop the perf counter */
perf_end(_sample_perf);
@ -805,6 +816,28 @@ L3GD20::print_info()
_num_reports, _oldest_report, _next_report, _reports);
}
int
L3GD20::self_test()
{
/* evaluate gyro offsets, complain if offset -> zero or larger than 6 dps */
if (fabsf(_gyro_scale.x_offset) > 0.1f || fabsf(_gyro_scale.x_offset) < 0.000001f)
return 1;
if (fabsf(_gyro_scale.x_scale - 1.0f) > 0.3f)
return 1;
if (fabsf(_gyro_scale.y_offset) > 0.1f || fabsf(_gyro_scale.y_offset) < 0.000001f)
return 1;
if (fabsf(_gyro_scale.y_scale - 1.0f) > 0.3f)
return 1;
if (fabsf(_gyro_scale.z_offset) > 0.1f || fabsf(_gyro_scale.z_offset) < 0.000001f)
return 1;
if (fabsf(_gyro_scale.z_scale - 1.0f) > 0.3f)
return 1;
return 0;
}
/**
* Local functions in support of the shell command.
*/

View File

@ -285,12 +285,26 @@ private:
uint16_t swap16(uint16_t val) { return (val >> 8) | (val << 8); }
/**
* Self test
* Measurement self test
*
* @return 0 on success, 1 on failure
*/
int self_test();
/**
* Accel self test
*
* @return 0 on success, 1 on failure
*/
int accel_self_test();
/**
* Gyro self test
*
* @return 0 on success, 1 on failure
*/
int gyro_self_test();
/*
set low pass filter frequency
*/
@ -321,6 +335,7 @@ protected:
void parent_poll_notify();
private:
MPU6000 *_parent;
};
/** driver 'main' command */
@ -653,6 +668,56 @@ MPU6000::self_test()
return (_reads > 0) ? 0 : 1;
}
int
MPU6000::accel_self_test()
{
if (self_test())
return 1;
/* inspect accel offsets */
if (fabsf(_accel_scale.x_offset) < 0.000001f)
return 1;
if (fabsf(_accel_scale.x_scale - 1.0f) > 0.4f || fabsf(_accel_scale.x_scale - 1.0f) < 0.000001f)
return 1;
if (fabsf(_accel_scale.y_offset) < 0.000001f)
return 1;
if (fabsf(_accel_scale.y_scale - 1.0f) > 0.4f || fabsf(_accel_scale.y_scale - 1.0f) < 0.000001f)
return 1;
if (fabsf(_accel_scale.z_offset) < 0.000001f)
return 1;
if (fabsf(_accel_scale.z_scale - 1.0f) > 0.4f || fabsf(_accel_scale.z_scale - 1.0f) < 0.000001f)
return 1;
return 0;
}
int
MPU6000::gyro_self_test()
{
if (self_test())
return 1;
/* evaluate gyro offsets, complain if offset -> zero or larger than 6 dps */
if (fabsf(_gyro_scale.x_offset) > 0.1f || fabsf(_gyro_scale.x_offset) < 0.000001f)
return 1;
if (fabsf(_gyro_scale.x_scale - 1.0f) > 0.3f)
return 1;
if (fabsf(_gyro_scale.y_offset) > 0.1f || fabsf(_gyro_scale.y_offset) < 0.000001f)
return 1;
if (fabsf(_gyro_scale.y_scale - 1.0f) > 0.3f)
return 1;
if (fabsf(_gyro_scale.z_offset) > 0.1f || fabsf(_gyro_scale.z_offset) < 0.000001f)
return 1;
if (fabsf(_gyro_scale.z_scale - 1.0f) > 0.3f)
return 1;
return 0;
}
ssize_t
MPU6000::gyro_read(struct file *filp, char *buffer, size_t buflen)
{
@ -835,7 +900,7 @@ MPU6000::ioctl(struct file *filp, int cmd, unsigned long arg)
return _accel_range_m_s2;
case ACCELIOCSELFTEST:
return self_test();
return accel_self_test();
default:
/* give it to the superclass */
@ -918,7 +983,7 @@ MPU6000::gyro_ioctl(struct file *filp, int cmd, unsigned long arg)
return _gyro_range_rad_s;
case GYROIOCSELFTEST:
return self_test();
return gyro_self_test();
default:
/* give it to the superclass */

View File

@ -226,6 +226,12 @@ int do_accel_calibration_mesurements(int mavlink_fd, float accel_offs[3], float
if (orient < 0)
return ERROR;
if (data_collected[orient]) {
sprintf(str, "%s direction already measured, please rotate", orientation_strs[orient]);
mavlink_log_info(mavlink_fd, str);
continue;
}
sprintf(str, "meas started: %s", orientation_strs[orient]);
mavlink_log_info(mavlink_fd, str);
read_accelerometer_avg(sensor_combined_sub, &(accel_ref[orient][0]), samples_num);
@ -380,6 +386,8 @@ int read_accelerometer_avg(int sensor_combined_sub, float accel_avg[3], int samp
int count = 0;
float accel_sum[3] = { 0.0f, 0.0f, 0.0f };
int errcount = 0;
while (count < samples_num) {
int poll_ret = poll(fds, 1, 1000);
if (poll_ret == 1) {
@ -389,8 +397,12 @@ int read_accelerometer_avg(int sensor_combined_sub, float accel_avg[3], int samp
accel_sum[i] += sensor.accelerometer_m_s2[i];
count++;
} else {
return ERROR;
errcount++;
continue;
}
if (errcount > samples_num / 10)
return ERROR;
}
for (int i = 0; i < 3; i++) {

View File

@ -129,7 +129,23 @@ do_gyro(int argc, char *argv[])
ioctl(fd, GYROIOCSRANGE, i);
}
} else if (!(argc > 0 && !strcmp(argv[0], "info"))) {
} else if (argc > 0) {
if(!strcmp(argv[0], "check")) {
int ret = ioctl(fd, GYROIOCSELFTEST, 0);
if (ret) {
warnx("gyro self test FAILED! Check calibration:");
struct gyro_scale scale;
ret = ioctl(fd, GYROIOCGSCALE, (long unsigned int)&scale);
warnx("offsets: X: % 9.6f Y: % 9.6f Z: % 9.6f", scale.x_offset, scale.y_offset, scale.z_offset);
warnx("scale: X: % 9.6f Y: % 9.6f Z: % 9.6f", scale.x_scale, scale.y_scale, scale.z_scale);
} else {
warnx("gyro calibration and self test OK");
}
}
} else {
warnx("no arguments given. Try: \n\n\t'sampling 500' to set sampling to 500 Hz\n\t'rate 500' to set publication rate to 500 Hz\n\t'range 2000' to set measurement range to 2000 dps\n\t");
}
@ -148,6 +164,45 @@ do_gyro(int argc, char *argv[])
static void
do_mag(int argc, char *argv[])
{
int fd;
fd = open(MAG_DEVICE_PATH, 0);
if (fd < 0) {
warn("%s", MAG_DEVICE_PATH);
errx(1, "FATAL: no magnetometer found");
} else {
if (argc > 0) {
if (!strcmp(argv[0], "check")) {
int ret = ioctl(fd, MAGIOCSELFTEST, 0);
if (ret) {
warnx("mag self test FAILED! Check calibration.");
struct mag_scale scale;
ret = ioctl(fd, MAGIOCGSCALE, (long unsigned int)&scale);
warnx("offsets: X: % 9.6f Y: % 9.6f Z: % 9.6f", scale.x_offset, scale.y_offset, scale.z_offset);
warnx("scale: X: % 9.6f Y: % 9.6f Z: % 9.6f", scale.x_scale, scale.y_scale, scale.z_scale);
} else {
warnx("mag calibration and self test OK");
}
}
} else {
warnx("no arguments given. Try: \n\n\t'check' or 'info'\n\t");
}
int srate = -1;//ioctl(fd, MAGIOCGSAMPLERATE, 0);
int prate = ioctl(fd, SENSORIOCGPOLLRATE, 0);
int range = -1;//ioctl(fd, MAGIOCGRANGE, 0);
warnx("mag: \n\tsample rate:\t%d Hz\n\tread rate:\t%d Hz\n\trange:\t%d gauss", srate, prate, range);
close(fd);
}
exit(0);
}
@ -183,7 +238,23 @@ do_accel(int argc, char *argv[])
/* set the range to i dps */
ioctl(fd, ACCELIOCSRANGE, i);
}
} else if (!(argc > 0 && !strcmp(argv[0], "info"))) {
} else if (argc > 0) {
if (!strcmp(argv[0], "check")) {
int ret = ioctl(fd, ACCELIOCSELFTEST, 0);
if (ret) {
warnx("accel self test FAILED! Check calibration.");
struct accel_scale scale;
ret = ioctl(fd, ACCELIOCGSCALE, (long unsigned int)&scale);
warnx("offsets: X: % 9.6f Y: % 9.6f Z: % 9.6f", scale.x_offset, scale.y_offset, scale.z_offset);
warnx("scale: X: % 9.6f Y: % 9.6f Z: % 9.6f", scale.x_scale, scale.y_scale, scale.z_scale);
} else {
warnx("accel calibration and self test OK");
}
}
} else {
warnx("no arguments given. Try: \n\n\t'sampling 500' to set sampling to 500 Hz\n\t'rate 500' to set publication rate to 500 Hz\n\t'range 2' to set measurement range to 2 G\n\t");
}