Tools/ecl_ekf: Update EKF log analysis

Add assessment of IMU bias and mag field estimation
Reduce warning false positives by adjusting thresholds and eliminating use of peak value plots for output observer monitoring
Clear each figure after saving to reduce memory usage
This commit is contained in:
Paul Riseborough 2017-04-20 09:56:27 +10:00 committed by Lorenz Meier
parent ed9a9b772e
commit 2a34bde0e9
3 changed files with 192 additions and 95 deletions

View File

@ -94,12 +94,9 @@ population_results = {
'imu_hfdang_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta hihg frequency delta angle vibration level (mrad)'],
'imu_hfdvel_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU high frequency delta velocity vibration level (m/s)'],
'imu_hfdvel_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta high frequency delta velocity vibration level (m/s)'],
'obs_ang_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the output observer angular tracking error magnitude (mrad)'],
'obs_ang_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the output observer angular tracking error magnitude (mrad)'],
'obs_vel_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the output observer velocity tracking error magnitude (m/s)'],
'obs_vel_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the output observer velocity tracking error magnitude (m/s)'],
'obs_pos_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the output observer position tracking error magnitude (m)'],
'obs_pos_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the output observer position tracking error magnitude (m)'],
'obs_ang_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer angular tracking error magnitude (mrad)'],
'obs_vel_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer velocity tracking error magnitude (m/s)'],
'obs_pos_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer position tracking error magnitude (m)'],
}
# get population summary statistics
@ -171,6 +168,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(1)
# Velocity Sensor (GPS)
temp = np.asarray([population_data[k].get('vel_test_max') for k in found_keys])
@ -197,6 +195,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(2)
# Position Sensor (GPS or external vision)
temp = np.asarray([population_data[k].get('pos_test_max') for k in found_keys])
@ -223,6 +222,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(3)
# Height Sensor
temp = np.asarray([population_data[k].get('hgt_test_max') for k in found_keys])
@ -249,6 +249,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(4)
# Airspeed Sensor
temp = np.asarray([population_data[k].get('tas_test_max') for k in found_keys])
@ -275,6 +276,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(5)
# Height Above Ground Sensor
temp = np.asarray([population_data[k].get('hagl_test_max') for k in found_keys])
@ -301,6 +303,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(6)
# Optical Flow Sensor
temp = np.asarray([population_data[k].get('ofx_fail_percentage') for k in found_keys])
@ -327,7 +330,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(7)
# IMU coning vibration levels
temp = np.asarray([population_data[k].get('imu_coning_peak') for k in found_keys])
@ -354,6 +357,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(8)
# IMU high frequency delta angle vibration levels
temp = np.asarray([population_data[k].get('imu_hfdang_peak') for k in found_keys])
@ -380,6 +384,7 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(9)
# IMU high frequency delta velocity vibration levels
temp = np.asarray([population_data[k].get('imu_hfdvel_peak') for k in found_keys])
@ -406,84 +411,58 @@ if (len(result1) > 0 and len(result2) > 0):
plt.ylabel("Frequency")
pp.savefig()
plt.close(10)
# Output Observer Angular Tracking
temp = np.asarray([population_data[k].get('output_obs_ang_err_peak') for k in found_keys])
result1 = 1000.0 * temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('output_obs_ang_err_mean') for k in found_keys])
result2 = 1000.0 * temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('output_obs_ang_err_median') for k in found_keys])
result = 1000.0 * temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['obs_ang_max_avg'][0] = np.mean(result1)
population_results['obs_ang_mean_avg'][0] = np.mean(result2)
if (len(result) > 0):
population_results['obs_ang_median_avg'][0] = np.mean(result)
plt.figure(11,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Output Observer Angular Tracking Error Peak")
plt.xlabel("output_obs_ang_err_peak (mrad)")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Output Observer Angular Tracking Error Mean")
plt.xlabel("output_obs_ang_err_mean (mrad)")
plt.hist(result)
plt.title("Gaussian Histogram - Output Observer Angular Tracking Error Median")
plt.xlabel("output_obs_ang_err_median (mrad)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(11)
# Output Observer Velocity Tracking
temp = np.asarray([population_data[k].get('output_obs_vel_err_peak') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('output_obs_vel_err_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('output_obs_vel_err_median') for k in found_keys])
result = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['obs_vel_max_avg'][0] = np.mean(result1)
population_results['obs_vel_mean_avg'][0] = np.mean(result2)
if (len(result) > 0):
population_results['obs_vel_median_avg'][0] = np.mean(result)
plt.figure(12,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Output Observer Velocity Tracking Error Peak")
plt.xlabel("output_obs_ang_err_peak (m/s)")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Output Observer Velocity Tracking Error Mean")
plt.xlabel("output_obs_ang_err_mean (m/s)")
plt.hist(result)
plt.title("Gaussian Histogram - Output Observer Velocity Tracking Error Median")
plt.xlabel("output_obs_ang_err_median (m/s)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(12)
# Output Observer Position Tracking
temp = np.asarray([population_data[k].get('output_obs_pos_err_peak') for k in found_keys])
result1 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('output_obs_pos_err_mean') for k in found_keys])
result2 = temp[np.isfinite(temp)]
temp = np.asarray([population_data[k].get('output_obs_pos_err_median') for k in found_keys])
result = temp[np.isfinite(temp)]
if (len(result1) > 0 and len(result2) > 0):
population_results['obs_pos_max_avg'][0] = np.mean(result1)
population_results['obs_pos_mean_avg'][0] = np.mean(result2)
if (len(result) > 0):
population_results['obs_pos_median_avg'][0] = np.mean(result)
plt.figure(13,figsize=(20,13))
plt.subplot(2,1,1)
plt.hist(result1)
plt.title("Gaussian Histogram - Output Observer Position Tracking Error Peak")
plt.xlabel("output_obs_ang_err_peak (m)")
plt.ylabel("Frequency")
plt.subplot(2,1,2)
plt.hist(result2)
plt.title("Gaussian Histogram - Output Observer Position Tracking Error Mean")
plt.xlabel("output_obs_ang_err_mean (m)")
plt.hist(result)
plt.title("Gaussian Histogram - Output Observer Position Tracking Error Median")
plt.xlabel("output_obs_ang_err_median (m)")
plt.ylabel("Frequency")
pp.savefig()
plt.close(13)
# close the pdf file
pp.close()

View File

@ -18,15 +18,14 @@ pos_amber_warn_pct,5.0
hgt_amber_warn_pct,5.0
hagl_amber_warn_pct,5.0
tas_amber_warn_pct,5.0
imu_coning_peak_warn,1.0E-5
imu_coning_peak_warn,1.8E-5
imu_coning_mean_warn,3.6E-6
imu_hfdang_peak_warn,2.4E-3
imu_hfdang_peak_warn,3.0E-3
imu_hfdang_mean_warn,6.0E-4
imu_hfdvel_peak_warn,2.5E-2
imu_hfdvel_peak_warn,1.8E-2
imu_hfdvel_mean_warn,3.6E-3
obs_ang_err_peak_warn,9.0E-2
obs_ang_err_mean_warn,8.0E-3
obs_vel_err_peak_warn,0.3
obs_vel_err_mean_warn,0.05
obs_pos_err_peak_warn,1.0
obs_pos_err_mean_warn,0.15
obs_ang_err_median_warn,8.0E-3
obs_vel_err_median_warn,0.05
obs_pos_err_median_warn,0.15
imu_dang_bias_median_warn,4.4E-4
imu_dvel_bias_median_warn,4.8E-3

1 mag_fail_pct 0.0
18 hgt_amber_warn_pct 5.0
19 hagl_amber_warn_pct 5.0
20 tas_amber_warn_pct 5.0
21 imu_coning_peak_warn 1.0E-5 1.8E-5
22 imu_coning_mean_warn 3.6E-6
23 imu_hfdang_peak_warn 2.4E-3 3.0E-3
24 imu_hfdang_mean_warn 6.0E-4
25 imu_hfdvel_peak_warn 2.5E-2 1.8E-2
26 imu_hfdvel_mean_warn 3.6E-3
27 obs_ang_err_peak_warn obs_ang_err_median_warn 9.0E-2 8.0E-3
28 obs_ang_err_mean_warn obs_vel_err_median_warn 8.0E-3 0.05
29 obs_vel_err_peak_warn obs_pos_err_median_warn 0.3 0.15
30 obs_vel_err_mean_warn imu_dang_bias_median_warn 0.05 4.4E-4
31 obs_pos_err_peak_warn imu_dvel_bias_median_warn 1.0 4.8E-3
obs_pos_err_mean_warn 0.15

View File

@ -68,6 +68,7 @@ if ('accel_inconsistency_m_s_s' in sensor_preflight.keys()) and ('gyro_inconsist
plt.ylabel('angular rate (rad/s)')
plt.xlabel('data index')
pp.savefig()
plt.close(0)
# vertical velocity and position innovations
plt.figure(1,figsize=(20,13))
@ -128,7 +129,7 @@ plt.text(innov_5_min_time, innov_5_min, 'min='+s_innov_5_min, fontsize=12, horiz
#plt.legend(['std='+s_innov_5_std],loc='upper left',frameon=False)
pp.savefig()
plt.close(1)
# horizontal velocity innovations
plt.figure(2,figsize=(20,13))
@ -183,6 +184,7 @@ plt.text(innov_1_min_time, innov_1_min, 'min='+s_innov_1_min, fontsize=12, horiz
#plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False)
pp.savefig()
plt.close(2)
# horizontal position innovations
plt.figure(3,figsize=(20,13))
@ -239,6 +241,7 @@ plt.text(innov_4_min_time, innov_4_min, 'min='+s_innov_4_min, fontsize=12, horiz
#plt.legend(['std='+s_innov_4_std],loc='upper left',frameon=False)
pp.savefig()
plt.close(3)
# manetometer innovations
plt.figure(4,figsize=(20,13))
@ -318,6 +321,7 @@ plt.text(innov_2_min_time, innov_2_min, 'min='+s_innov_2_min, fontsize=12, horiz
#plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False)
pp.savefig()
plt.close(4)
# magnetic heading innovations
plt.figure(5,figsize=(20,13))
@ -348,6 +352,7 @@ plt.text(innov_0_min_time, innov_0_min, 'min='+s_innov_0_min, fontsize=12, horiz
#plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False)
pp.savefig()
plt.close(5)
# air data innovations
plt.figure(6,figsize=(20,13))
@ -400,6 +405,7 @@ plt.text(beta_innov_max_time, beta_innov_max, 'max='+s_beta_innov_max, fontsize=
plt.text(beta_innov_min_time, beta_innov_min, 'min='+s_beta_innov_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
pp.savefig()
plt.close(6)
# optical flow innovations
plt.figure(7,figsize=(20,13))
@ -455,6 +461,7 @@ plt.text(flow_innov_y_min_time, flow_innov_y_min, 'min='+s_flow_innov_y_min, fon
#plt.legend(['std='+s_flow_innov_y_std],loc='upper left',frameon=False)
pp.savefig()
plt.close(7)
# generate metadata for the normalised innovation consistency test levels
# a value > 1.0 means the measurement data for that test has been rejected by the EKF
@ -541,6 +548,7 @@ if n_plots == 4:
plt.text(tas_test_max_time, tas_test_max, 'max='+str(round(tas_test_max,2))+' , mean='+str(round(tas_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b')
pp.savefig()
plt.close(8)
# extract control mode metadata from estimator_status.control_mode_flags
# 0 - true if the filter tilt alignment is complete
@ -733,6 +741,7 @@ elif np.amax(using_magdecl) > 0:
plt.text(using_magdecl_time, 0.75, 'magnetic declination aiding at '+str(round(using_magdecl_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g')
pp.savefig()
plt.close(9)
# control mode summary plot B
plt.figure(10,figsize=(20,13))
@ -767,6 +776,7 @@ plt.xlabel('time (sec)')
plt.grid()
pp.savefig()
plt.close(10)
# innovation_check_flags summary
plt.figure(11,figsize=(20,13))
@ -837,6 +847,7 @@ plt.legend(loc='upper left')
plt.grid()
pp.savefig()
plt.close(11)
# gps_check_fail_flags summary
plt.figure(12,figsize=(20,13))
@ -884,6 +895,7 @@ plt.legend(loc='upper right')
plt.grid()
pp.savefig()
plt.close(12)
# filter reported accuracy
plt.figure(13,figsize=(20,13))
@ -896,6 +908,7 @@ plt.legend(loc='upper right')
plt.grid()
pp.savefig()
plt.close(13)
# Plot the EKF IMU vibration metrics
plt.figure(14,figsize=(20,13))
@ -933,6 +946,7 @@ plt.grid()
plt.text(vibe_hf_dvel_max_time, vibe_hf_dvel_max, 'max='+str(round(vibe_hf_dvel_max,4)), fontsize=12, horizontalalignment='left', verticalalignment='top')
pp.savefig()
plt.close(14)
# Plot the EKF output observer tracking errors
plt.figure(15,figsize=(20,13))
@ -970,9 +984,114 @@ plt.grid()
plt.text(pos_track_err_max_time, pos_track_err_max, 'max='+str(round(pos_track_err_max,2)), fontsize=12, horizontalalignment='left', verticalalignment='top')
pp.savefig()
plt.close(15)
# Plot the delta angle bias estimates
plt.figure(16,figsize=(20,13))
plt.subplot(3,1,1)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[10]'],'b')
plt.title('Delta Angle Bias Estimates')
plt.ylabel('X (rad)')
plt.xlabel('time (sec)')
plt.grid()
plt.subplot(3,1,2)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[11]'],'b')
plt.ylabel('Y (rad)')
plt.xlabel('time (sec)')
plt.grid()
plt.subplot(3,1,3)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[12]'],'b')
plt.ylabel('Z (rad)')
plt.xlabel('time (sec)')
plt.grid()
pp.savefig()
plt.close(16)
# Plot the delta velocity bias estimates
plt.figure(17,figsize=(20,13))
plt.subplot(3,1,1)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[13]'],'b')
plt.title('Delta Velocity Bias Estimates')
plt.ylabel('X (m/s)')
plt.xlabel('time (sec)')
plt.grid()
plt.subplot(3,1,2)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[14]'],'b')
plt.ylabel('Y (m/s)')
plt.xlabel('time (sec)')
plt.grid()
plt.subplot(3,1,3)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[15]'],'b')
plt.ylabel('Z (m/s)')
plt.xlabel('time (sec)')
plt.grid()
pp.savefig()
plt.close(17)
# Plot the earth frame magnetic field estimates
plt.figure(18,figsize=(20,13))
plt.subplot(3,1,3)
strength = (estimator_status['states[16]']**2 + estimator_status['states[17]']**2 + estimator_status['states[18]']**2)**0.5
plt.plot(1e-6*estimator_status['timestamp'] , strength,'b')
plt.ylabel('strength (Gauss)')
plt.xlabel('time (sec)')
plt.grid()
plt.subplot(3,1,1)
rad2deg = 57.2958
declination = rad2deg * np.arctan2(estimator_status['states[17]'],estimator_status['states[16]'])
plt.plot(1e-6*estimator_status['timestamp'] , declination,'b')
plt.title('Earth Magnetic Field Estimates')
plt.ylabel('declination (deg)')
plt.xlabel('time (sec)')
plt.grid()
plt.subplot(3,1,2)
inclination = rad2deg * np.arcsin(estimator_status['states[18]'] / strength)
plt.plot(1e-6*estimator_status['timestamp'] , inclination,'b')
plt.ylabel('inclination (deg)')
plt.xlabel('time (sec)')
plt.grid()
pp.savefig()
plt.close(18)
# Plot the body frame magnetic field estimates
plt.figure(19,figsize=(20,13))
plt.subplot(3,1,1)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[19]'],'b')
plt.title('Magnetomer Bias Estimates')
plt.ylabel('X (Gauss)')
plt.xlabel('time (sec)')
plt.grid()
plt.subplot(3,1,2)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[20]'],'b')
plt.ylabel('Y (Gauss)')
plt.xlabel('time (sec)')
plt.grid()
plt.subplot(3,1,3)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[21]'],'b')
plt.ylabel('Z (Gauss)')
plt.xlabel('time (sec)')
plt.grid()
pp.savefig()
plt.close(19)
# Plot the EKF wind estimates
plt.figure(16,figsize=(20,13))
plt.figure(20,figsize=(20,13))
plt.subplot(2,1,1)
plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[22]'],'b')
@ -988,6 +1107,7 @@ plt.xlabel('time (sec)')
plt.grid()
pp.savefig()
plt.close(20)
# close the pdf file
pp.close()
@ -1073,12 +1193,11 @@ test_results = {
'imu_hfdang_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle high frequency vibration metric (rad)'],
'imu_hfdvel_peak':[float('NaN'),'Peak in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'],
'imu_hfdvel_mean':[float('NaN'),'Mean in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'],
'output_obs_ang_err_peak':[float('NaN'),'Peak in-flight value of the output observer angular error (rad)'],
'output_obs_ang_err_mean':[float('NaN'),'Mean in-flight value of the output observer angular error (rad)'],
'output_obs_vel_err_peak':[float('NaN'),'Peak in-flight value of the output observer velocity error (m/s)'],
'output_obs_vel_err_mean':[float('NaN'),'Mean in-flight value of the output observer velocity error (m/s)'],
'output_obs_pos_err_peak':[float('NaN'),'Peak in-flight value of the output observer position error (m)'],
'output_obs_pos_err_mean':[float('NaN'),'Mean in-flight value of the output observer position error (m)'],
'output_obs_ang_err_median':[float('NaN'),'Median in-flight value of the output observer angular error (rad)'],
'output_obs_vel_err_median':[float('NaN'),'Median in-flight value of the output observer velocity error (m/s)'],
'output_obs_pos_err_median':[float('NaN'),'Median in-flight value of the output observer position error (m)'],
'imu_dang_bias_median':[float('NaN'),'Median in-flight value of the delta angle bias vector length (rad)'],
'imu_dvel_bias_median':[float('NaN'),'Median in-flight value of the delta velocity bias vector length (m/s)'],
'tilt_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the tilt alignment. A nan value indicates that the alignment had completed before logging started or alignment did not complete.'],
'yaw_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the yaw alignment.'],
'in_air_transition_time':[round(in_air_transition_time,1),'The time in seconds measured from startup that the EKF transtioned into in-air mode. Set to a nan if a transition event is not detected.'],
@ -1090,18 +1209,9 @@ test_results = {
# reduction of innovation message data
if (innov_early_end_index > (innov_late_start_index + 100)):
# Output Observer Tracking Errors
temp = np.amax(ekf2_innovations['output_tracking_error[0]'][innov_late_start_index:innov_early_end_index])
if (temp > 0.0):
test_results['output_obs_ang_err_peak'][0] = temp
test_results['output_obs_ang_err_mean'][0] = np.mean(ekf2_innovations['output_tracking_error[0]'][innov_late_start_index:innov_early_end_index])
temp = np.amax(ekf2_innovations['output_tracking_error[1]'][innov_late_start_index:innov_early_end_index])
if (temp > 0.0):
test_results['output_obs_vel_err_peak'][0] = temp
test_results['output_obs_vel_err_mean'][0] = np.mean(ekf2_innovations['output_tracking_error[1]'][innov_late_start_index:innov_early_end_index])
temp = np.amax(ekf2_innovations['output_tracking_error[2]'][innov_late_start_index:innov_early_end_index])
if (temp > 0.0):
test_results['output_obs_pos_err_peak'][0] = temp
test_results['output_obs_pos_err_mean'][0] = np.mean(ekf2_innovations['output_tracking_error[2]'][innov_late_start_index:innov_early_end_index])
test_results['output_obs_ang_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[0]'][innov_late_start_index:innov_early_end_index])
test_results['output_obs_vel_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[1]'][innov_late_start_index:innov_early_end_index])
test_results['output_obs_pos_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[2]'][innov_late_start_index:innov_early_end_index])
# reduction of status message data
if (early_end_index > (late_start_index + 100)):
@ -1186,6 +1296,10 @@ if (early_end_index > (late_start_index + 100)):
test_results['ofx_fail_percentage'][0] = 100.0 * (ofx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
test_results['ofy_fail_percentage'][0] = 100.0 * (ofy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
# IMU bias checks
test_results['imu_dang_bias_median'][0] = (np.median(estimator_status['states[10]'])**2 + np.median(estimator_status['states[11]'])**2 + np.median(estimator_status['states[12]'])**2)**0.5
test_results['imu_dvel_bias_median'][0] = (np.median(estimator_status['states[13]'])**2 + np.median(estimator_status['states[14]'])**2 + np.median(estimator_status['states[15]'])**2)**0.5
# Check for internal filter nummerical faults
test_results['filter_faults_max'][0] = np.amax(estimator_status['filter_fault_flags'])
@ -1232,6 +1346,8 @@ if (test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_
if (test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_warn_pct')):
test_results['master_status'][0] = 'Warning'
test_results['tas_sensor_status'][0] = 'Warning'
# check for IMU sensor warnings
if ((test_results.get('imu_coning_peak')[0] > check_levels.get('imu_coning_peak_warn')) or
(test_results.get('imu_coning_mean')[0] > check_levels.get('imu_coning_mean_warn')) or
(test_results.get('imu_hfdang_peak')[0] > check_levels.get('imu_hfdang_peak_warn')) or
@ -1239,15 +1355,18 @@ if ((test_results.get('imu_coning_peak')[0] > check_levels.get('imu_coning_peak_
(test_results.get('imu_hfdvel_peak')[0] > check_levels.get('imu_hfdvel_peak_warn')) or
(test_results.get('imu_hfdvel_mean')[0] > check_levels.get('imu_hfdvel_mean_warn'))):
test_results['master_status'][0] = 'Warning'
test_results['imu_sensor_status'][0] = 'Warning'
if ((test_results.get('output_obs_ang_err_peak')[0] > check_levels.get('obs_ang_err_peak_warn')) or
(test_results.get('output_obs_ang_err_mean')[0] > check_levels.get('obs_ang_err_mean_warn')) or
(test_results.get('output_obs_vel_err_peak')[0] > check_levels.get('obs_vel_err_peak_warn')) or
(test_results.get('output_obs_vel_err_mean')[0] > check_levels.get('obs_vel_err_mean_warn')) or
(test_results.get('output_obs_pos_err_peak')[0] > check_levels.get('obs_pos_err_peak_warn')) or
(test_results.get('output_obs_pos_err_mean')[0] > check_levels.get('obs_pos_err_mean_warn'))):
test_results['imu_sensor_status'][0] = 'Warning - Vibration'
if ((test_results.get('imu_dang_bias_median')[0] > check_levels.get('imu_dang_bias_median_warn')) or
(test_results.get('imu_dvel_bias_median')[0] > check_levels.get('imu_dvel_bias_median_warn'))):
test_results['master_status'][0] = 'Warning'
test_results['imu_sensor_status'][0] = 'Warning'
test_results['imu_sensor_status'][0] = 'Warning - Bias'
if ((test_results.get('output_obs_ang_err_median')[0] > check_levels.get('obs_ang_err_median_warn')) or
(test_results.get('output_obs_vel_err_median')[0] > check_levels.get('obs_vel_err_median_warn')) or
(test_results.get('output_obs_pos_err_median')[0] > check_levels.get('obs_pos_err_median_warn'))):
test_results['master_status'][0] = 'Warning'
test_results['imu_sensor_status'][0] = 'Warning - Output Predictor'
# check for failures
if ((test_results.get('magx_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or