invensense icm20608g improvements

- checked register mechanism and simple watchdog
  - driver checks for errors gradually and can reconfigure itself
 - respect IMU_GYRO_RATEMAX at the driver level
 - fixed sensor INT16_MIN and INT16_MAX handling (y & z axis are flipped before publishing)
This commit is contained in:
Daniel Agar 2020-02-18 21:29:38 -05:00
parent 89d4d6e4a9
commit 1d226ad2ca
11 changed files with 637 additions and 410 deletions

View File

@ -29,7 +29,7 @@ px4_add_board(
imu/adis16477
imu/adis16497
imu/invensense/icm20602
imu/invensense/icm20608-g
imu/invensense/icm20608g
#imu/invensense/mpu9250
imu/mpu6000
imu/mpu9250
@ -81,9 +81,9 @@ px4_add_board(
sensors
sih
temperature_compensation
uuv_att_control
vmount
vtol_att_control
uuv_att_control
SYSTEMCMDS
bl_update
config

View File

@ -28,6 +28,9 @@ px4_add_board(
imu/adis16448
imu/adis16477
imu/adis16497
imu/invensense/icm20602
imu/invensense/icm20608g
#imu/invensense/mpu9250
imu/mpu6000
imu/mpu9250
irlock
@ -78,6 +81,7 @@ px4_add_board(
sensors
sih
temperature_compensation
uuv_att_control
vmount
vtol_att_control
SYSTEMCMDS

View File

@ -28,6 +28,9 @@ px4_add_board(
#imu/adis16448
#imu/adis16477
#imu/adis16497
imu/invensense/icm20602
imu/invensense/icm20608g
#imu/invensense/mpu9250
imu/mpu6000
imu/mpu9250
irlock
@ -39,7 +42,6 @@ px4_add_board(
optical_flow # all available optical flow drivers
#osd
pca9685
#power_monitor/ina226
#protocol_splitter
pwm_input
pwm_out_sim
@ -72,12 +74,14 @@ px4_add_board(
mc_att_control
mc_pos_control
mc_rate_control
#micrortps_bridge
navigator
rc_update
rover_pos_control
sensors
sih
temperature_compensation
#uuv_att_control
vmount
vtol_att_control
SYSTEMCMDS

View File

@ -28,10 +28,11 @@ px4_add_board(
gps
#heater
#imu # all available imu drivers
imu/invensense/icm20602
imu/invensense/icm20608g
#imu/invensense/mpu9250
imu/mpu6000
imu/mpu9250
imu/invensense/icm20602
imu/invensense/icm20608-g
irlock
lights/blinkm
lights/rgbled
@ -82,6 +83,7 @@ px4_add_board(
sensors
sih
temperature_compensation
uuv_att_control
vmount
vtol_att_control
SYSTEMCMDS

View File

@ -28,6 +28,9 @@ px4_add_board(
gps
#heater
#imu # all available imu drivers
imu/invensense/icm20602
imu/invensense/icm20608g
#imu/invensense/mpu9250
imu/mpu6000
imu/mpu9250
irlock
@ -37,7 +40,8 @@ px4_add_board(
#lights/rgbled_pwm
magnetometer # all available magnetometer drivers
mkblctrl
optical_flow # all available optical flow drivers
#optical_flow # all available optical flow drivers
optical_flow/px4flow
#osd
pca9685
power_monitor/ina226
@ -79,6 +83,7 @@ px4_add_board(
sensors
sih
temperature_compensation
uuv_att_control
vmount
vtol_att_control
SYSTEMCMDS

View File

@ -1,387 +0,0 @@
/****************************************************************************
*
* Copyright (c) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM20608G.hpp"
#include <px4_platform/board_dma_alloc.h>
using namespace time_literals;
using namespace InvenSense_ICM20608G;
static constexpr int16_t combine(uint8_t msb, uint8_t lsb) { return (msb << 8u) | lsb; }
static constexpr uint32_t GYRO_RATE{8000}; // 8 kHz gyro
static constexpr uint32_t ACCEL_RATE{4000}; // 4 kHz accel
static constexpr uint32_t FIFO_INTERVAL{1000}; // 1000 us / 1000 Hz interval
static constexpr uint32_t FIFO_GYRO_SAMPLES{FIFO_INTERVAL / (1000000 / GYRO_RATE)};
static constexpr uint32_t FIFO_ACCEL_SAMPLES{FIFO_INTERVAL / (1000000 / ACCEL_RATE)};
ICM20608G::ICM20608G(int bus, uint32_t device, enum Rotation rotation) :
SPI(MODULE_NAME, nullptr, bus, device, SPIDEV_MODE3, SPI_SPEED),
ScheduledWorkItem(MODULE_NAME, px4::device_bus_to_wq(get_device_id())),
_px4_accel(get_device_id(), ORB_PRIO_VERY_HIGH, rotation),
_px4_gyro(get_device_id(), ORB_PRIO_VERY_HIGH, rotation)
{
set_device_type(DRV_ACC_DEVTYPE_ICM20608);
_px4_accel.set_device_type(DRV_ACC_DEVTYPE_ICM20608);
_px4_gyro.set_device_type(DRV_GYR_DEVTYPE_ICM20608);
_px4_accel.set_update_rate(1000000 / FIFO_INTERVAL);
_px4_gyro.set_update_rate(1000000 / FIFO_INTERVAL);
}
ICM20608G::~ICM20608G()
{
Stop();
if (_dma_data_buffer != nullptr) {
board_dma_free(_dma_data_buffer, FIFO::SIZE);
}
perf_free(_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
perf_free(_drdy_interval_perf);
}
int ICM20608G::probe()
{
const uint8_t whoami = RegisterRead(Register::WHO_AM_I);
if (whoami != WHOAMI) {
PX4_WARN("unexpected WHO_AM_I 0x%02x", whoami);
return PX4_ERROR;
}
return PX4_OK;
}
bool ICM20608G::Init()
{
if (SPI::init() != PX4_OK) {
PX4_ERR("SPI::init failed");
return false;
}
if (!Reset()) {
PX4_ERR("reset failed");
return false;
}
// allocate DMA capable buffer
_dma_data_buffer = (uint8_t *)board_dma_alloc(FIFO::SIZE);
if (_dma_data_buffer == nullptr) {
PX4_ERR("DMA alloc failed");
return false;
}
Start();
return true;
}
bool ICM20608G::Reset()
{
// PWR_MGMT_1: Device Reset
// CLKSEL[2:0] must be set to 001 to achieve full gyroscope performance.
RegisterWrite(Register::PWR_MGMT_1, PWR_MGMT_1_BIT::DEVICE_RESET);
usleep(1000);
// PWR_MGMT_1: CLKSEL[2:0] must be set to 001 to achieve full gyroscope performance.
RegisterWrite(Register::PWR_MGMT_1, PWR_MGMT_1_BIT::CLKSEL_0);
usleep(1000);
// ACCEL_CONFIG: Accel 16 G range
RegisterSetBits(Register::ACCEL_CONFIG, ACCEL_CONFIG_BIT::ACCEL_FS_SEL_16G);
_px4_accel.set_scale(CONSTANTS_ONE_G / 2048);
_px4_accel.set_range(16.0f * CONSTANTS_ONE_G);
// GYRO_CONFIG: Gyro 2000 degrees/second
RegisterSetBits(Register::GYRO_CONFIG, GYRO_CONFIG_BIT::FS_SEL_2000_DPS);
_px4_gyro.set_scale(math::radians(1.0f / 16.4f));
_px4_gyro.set_range(math::radians(2000.0f));
// reset done once data is ready
const bool reset_done = !(RegisterRead(Register::PWR_MGMT_1) & PWR_MGMT_1_BIT::DEVICE_RESET);
const bool clksel_done = (RegisterRead(Register::PWR_MGMT_1) & PWR_MGMT_1_BIT::CLKSEL_0);
const bool data_ready = (RegisterRead(Register::INT_STATUS) & INT_STATUS_BIT::DATA_RDY_INT);
return reset_done && clksel_done && data_ready;
}
void ICM20608G::ResetFIFO()
{
perf_count(_fifo_reset_perf);
// ACCEL_CONFIG2: Accel DLPF disabled for full rate (4 kHz)
RegisterSetBits(Register::ACCEL_CONFIG2, ACCEL_CONFIG2_BIT::ACCEL_FCHOICE_B_BYPASS_DLPF);
// GYRO_CONFIG: Gyro DLPF disabled for full rate (8 kHz)
RegisterClearBits(Register::GYRO_CONFIG, GYRO_CONFIG_BIT::FCHOICE_B_8KHZ_BYPASS_DLPF);
// FIFO_EN: disable FIFO
RegisterWrite(Register::FIFO_EN, 0);
RegisterClearBits(Register::USER_CTRL, USER_CTRL_BIT::FIFO_EN | USER_CTRL_BIT::FIFO_RST);
// USER_CTRL: reset FIFO then re-enable
RegisterSetBits(Register::USER_CTRL, USER_CTRL_BIT::FIFO_RST);
up_udelay(1); // bit auto clears after one clock cycle of the internal 20 MHz clock
RegisterSetBits(Register::USER_CTRL, USER_CTRL_BIT::FIFO_EN);
// CONFIG: should ensure that bit 7 of register 0x1A is set to 0 before using FIFO watermark feature
RegisterSetBits(Register::CONFIG, CONFIG_BIT::FIFO_MODE);
RegisterSetBits(Register::CONFIG, CONFIG_BIT::DLPF_CFG_BYPASS_DLPF_8KHZ);
// FIFO_EN: enable both gyro and accel
_data_ready_count = 0;
RegisterWrite(Register::FIFO_EN, FIFO_EN_BIT::XG_FIFO_EN | FIFO_EN_BIT::YG_FIFO_EN | FIFO_EN_BIT::ZG_FIFO_EN |
FIFO_EN_BIT::ACCEL_FIFO_EN);
up_udelay(10);
}
uint8_t ICM20608G::RegisterRead(Register reg)
{
uint8_t cmd[2] {};
cmd[0] = static_cast<uint8_t>(reg) | DIR_READ;
transfer(cmd, cmd, sizeof(cmd));
return cmd[1];
}
void ICM20608G::RegisterWrite(Register reg, uint8_t value)
{
uint8_t cmd[2] { (uint8_t)reg, value };
transfer(cmd, cmd, sizeof(cmd));
}
void ICM20608G::RegisterSetBits(Register reg, uint8_t setbits)
{
uint8_t val = RegisterRead(reg);
if (!(val & setbits)) {
val |= setbits;
RegisterWrite(reg, val);
}
}
void ICM20608G::RegisterClearBits(Register reg, uint8_t clearbits)
{
uint8_t val = RegisterRead(reg);
if (val & clearbits) {
val &= !clearbits;
RegisterWrite(reg, val);
}
}
int ICM20608G::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
ICM20608G *dev = reinterpret_cast<ICM20608G *>(arg);
dev->DataReady();
return 0;
}
void ICM20608G::DataReady()
{
perf_count(_drdy_interval_perf);
_data_ready_count++;
if (_data_ready_count >= 8) {
_time_data_ready = hrt_absolute_time();
_data_ready_count = 0;
// make another measurement
ScheduleNow();
}
}
void ICM20608G::Start()
{
Stop();
ResetFIFO();
// TODO: cleanup horrible DRDY define mess
#if defined(GPIO_DRDY_PORTC_PIN14)
// Setup data ready on rising edge
px4_arch_gpiosetevent(GPIO_DRDY_PORTC_PIN14, true, false, true, &ICM20608G::DataReadyInterruptCallback, this);
RegisterSetBits(Register::INT_ENABLE, INT_ENABLE_BIT::DATA_RDY_INT_EN);
#elif defined(GPIO_DRDY_ICM_2060X)
// Setup data ready on rising edge
px4_arch_gpiosetevent(GPIO_DRDY_ICM_2060X, true, false, true, &ICM20608G::DataReadyInterruptCallback, this);
RegisterSetBits(Register::INT_ENABLE, INT_ENABLE_BIT::DATA_RDY_INT_EN);
#else
ScheduleOnInterval(FIFO_INTERVAL, FIFO_INTERVAL);
#endif
}
void ICM20608G::Stop()
{
// TODO: cleanup horrible DRDY define mess
#if defined(GPIO_DRDY_PORTC_PIN14)
// Disable data ready callback
px4_arch_gpiosetevent(GPIO_DRDY_PORTC_PIN14, false, false, false, nullptr, nullptr);
RegisterClearBits(Register::INT_ENABLE, INT_ENABLE_BIT::DATA_RDY_INT_EN);
#elif defined(GPIO_DRDY_ICM_2060X)
// Disable data ready callback
px4_arch_gpiosetevent(GPIO_DRDY_ICM_2060X, false, false, false, nullptr, nullptr);
RegisterClearBits(Register::INT_ENABLE, INT_ENABLE_BIT::DATA_RDY_INT_EN);
#else
ScheduleClear();
#endif
}
void ICM20608G::Run()
{
// use timestamp from the data ready interrupt if available,
// otherwise use the time now roughly corresponding with the last sample we'll pull from the FIFO
const hrt_abstime timestamp_sample = (hrt_elapsed_time(&_time_data_ready) < FIFO_INTERVAL) ? _time_data_ready :
hrt_absolute_time();
// read FIFO count
uint8_t fifo_count_buf[3] {};
fifo_count_buf[0] = static_cast<uint8_t>(Register::FIFO_COUNTH) | DIR_READ;
//const hrt_abstime timestamp_fifo_check = hrt_absolute_time();
if (transfer(fifo_count_buf, fifo_count_buf, sizeof(fifo_count_buf)) != PX4_OK) {
return;
}
const size_t fifo_count = combine(fifo_count_buf[1], fifo_count_buf[2]);
const int samples = (fifo_count / sizeof(FIFO::DATA) / 2) * 2; // round down to nearest 2
if (samples < 2) {
perf_count(_fifo_empty_perf);
return;
} else if (samples > 16) {
// not technically an overflow, but more samples than we expected
perf_count(_fifo_overflow_perf);
ResetFIFO();
return;
}
// Transfer data
struct TransferBuffer {
uint8_t cmd;
FIFO::DATA f[16]; // max 16 samples
};
static_assert(sizeof(TransferBuffer) == (sizeof(uint8_t) + 16 * sizeof(FIFO::DATA))); // ensure no struct padding
TransferBuffer *report = (TransferBuffer *)_dma_data_buffer;
const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 1, FIFO::SIZE);
memset(report, 0, transfer_size);
report->cmd = static_cast<uint8_t>(Register::FIFO_R_W) | DIR_READ;
perf_begin(_transfer_perf);
if (transfer(_dma_data_buffer, _dma_data_buffer, transfer_size) != PX4_OK) {
perf_end(_transfer_perf);
return;
}
perf_end(_transfer_perf);
PX4Accelerometer::FIFOSample accel;
accel.timestamp_sample = timestamp_sample;
accel.dt = FIFO_INTERVAL / FIFO_ACCEL_SAMPLES;
PX4Gyroscope::FIFOSample gyro;
gyro.timestamp_sample = timestamp_sample;
gyro.samples = samples;
gyro.dt = FIFO_INTERVAL / FIFO_GYRO_SAMPLES;
int accel_samples = 0;
for (int i = 0; i < samples; i++) {
const FIFO::DATA &fifo_sample = report->f[i];
// accel data is doubled
if (i % 2) {
// coordinate convention (x forward, y right, z down)
accel.x[accel_samples] = combine(fifo_sample.ACCEL_XOUT_H, fifo_sample.ACCEL_XOUT_L);
accel.y[accel_samples] = -combine(fifo_sample.ACCEL_YOUT_H, fifo_sample.ACCEL_YOUT_L);
accel.z[accel_samples] = -combine(fifo_sample.ACCEL_ZOUT_H, fifo_sample.ACCEL_ZOUT_L);
accel_samples++;
}
// coordinate convention (x forward, y right, z down)
gyro.x[i] = combine(fifo_sample.GYRO_XOUT_H, fifo_sample.GYRO_XOUT_L);
gyro.y[i] = -combine(fifo_sample.GYRO_YOUT_H, fifo_sample.GYRO_YOUT_L);
gyro.z[i] = -combine(fifo_sample.GYRO_ZOUT_H, fifo_sample.GYRO_ZOUT_L);
}
accel.samples = accel_samples;
// Temperature
if (hrt_elapsed_time(&_time_last_temperature_update) > 1_s) {
// read current temperature
uint8_t temperature_buf[3] {};
temperature_buf[0] = static_cast<uint8_t>(Register::TEMP_OUT_H) | DIR_READ;
if (transfer(temperature_buf, temperature_buf, sizeof(temperature_buf)) != PX4_OK) {
return;
}
const int16_t TEMP_OUT = combine(temperature_buf[1], temperature_buf[2]);
static constexpr float RoomTemp_Offset = 25.0f; // Room Temperature Offset 25°C
static constexpr float Temp_Sensitivity = 326.8f; // Sensitivity 326.8 LSB/°C
const float TEMP_degC = ((TEMP_OUT - RoomTemp_Offset) / Temp_Sensitivity) + 25.0f;
_px4_accel.set_temperature(TEMP_degC);
_px4_gyro.set_temperature(TEMP_degC);
}
_px4_gyro.updateFIFO(gyro);
_px4_accel.updateFIFO(accel);
}
void ICM20608G::PrintInfo()
{
perf_print_counter(_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
perf_print_counter(_drdy_interval_perf);
_px4_accel.print_status();
_px4_gyro.print_status();
}

View File

@ -39,6 +39,7 @@ px4_add_module(
ICM20608G.cpp
ICM20608G.hpp
icm20608g_main.cpp
InvenSense_ICM20608G_registers.hpp
DEPENDS
drivers_accelerometer
drivers_gyroscope

View File

@ -0,0 +1,554 @@
/****************************************************************************
*
* Copyright (c) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "ICM20608G.hpp"
#include <px4_platform/board_dma_alloc.h>
using namespace time_literals;
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
static bool fifo_accel_equal(const FIFO::DATA &f0, const FIFO::DATA &f1)
{
return (memcmp(&f0.ACCEL_XOUT_H, &f1.ACCEL_XOUT_H, 6) == 0);
}
ICM20608G::ICM20608G(int bus, uint32_t device, enum Rotation rotation) :
SPI(MODULE_NAME, nullptr, bus, device, SPIDEV_MODE3, SPI_SPEED),
ScheduledWorkItem(MODULE_NAME, px4::device_bus_to_wq(get_device_id())),
_px4_accel(get_device_id(), ORB_PRIO_VERY_HIGH, rotation),
_px4_gyro(get_device_id(), ORB_PRIO_VERY_HIGH, rotation)
{
set_device_type(DRV_ACC_DEVTYPE_ICM20608);
_px4_accel.set_device_type(DRV_ACC_DEVTYPE_ICM20608);
_px4_gyro.set_device_type(DRV_GYR_DEVTYPE_ICM20608);
}
ICM20608G::~ICM20608G()
{
Stop();
if (_dma_data_buffer != nullptr) {
board_dma_free(_dma_data_buffer, FIFO::SIZE);
}
perf_free(_transfer_perf);
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
perf_free(_drdy_interval_perf);
}
void ICM20608G::ConfigureSampleRate(int sample_rate)
{
if (sample_rate == 0) {
sample_rate = 1000; // default to 1 kHz
}
sample_rate = math::constrain(sample_rate, 250, 2000); // limit 250 - 2000 Hz
_fifo_empty_interval_us = math::max(((1000000 / sample_rate) / 250) * 250, 500); // round down to nearest 250 us
_fifo_gyro_samples = math::min(_fifo_empty_interval_us / (1000000 / GYRO_RATE), FIFO_MAX_SAMPLES);
// recompute FIFO empty interval (us) with actual gyro sample limit
_fifo_empty_interval_us = _fifo_gyro_samples * (1000000 / GYRO_RATE);
_fifo_accel_samples = math::min(_fifo_empty_interval_us / (1000000 / ACCEL_RATE), FIFO_MAX_SAMPLES);
_px4_accel.set_update_rate(1000000 / _fifo_empty_interval_us);
_px4_gyro.set_update_rate(1000000 / _fifo_empty_interval_us);
}
int ICM20608G::probe()
{
const uint8_t whoami = RegisterRead(Register::WHO_AM_I);
if (whoami != WHOAMI) {
PX4_WARN("unexpected WHO_AM_I 0x%02x", whoami);
return PX4_ERROR;
}
return PX4_OK;
}
bool ICM20608G::Init()
{
if (SPI::init() != PX4_OK) {
PX4_ERR("SPI::init failed");
return false;
}
// allocate DMA capable buffer
_dma_data_buffer = (uint8_t *)board_dma_alloc(FIFO::SIZE);
if (_dma_data_buffer == nullptr) {
PX4_ERR("DMA alloc failed");
return false;
}
if (!Reset()) {
PX4_ERR("reset failed");
return false;
}
Start();
return true;
}
bool ICM20608G::Reset()
{
// PWR_MGMT_1: Device Reset
RegisterWrite(Register::PWR_MGMT_1, PWR_MGMT_1_BIT::DEVICE_RESET);
for (int i = 0; i < 100; i++) {
// The reset value is 0x00 for all registers other than the registers below
// Document Number: RM-000030 Page 5 of 23
if ((RegisterRead(Register::WHO_AM_I) == WHOAMI)
&& (RegisterRead(Register::PWR_MGMT_1) == 0x40)) {
return true;
}
}
return false;
}
void ICM20608G::ConfigureAccel()
{
const uint8_t ACCEL_FS_SEL = RegisterRead(Register::ACCEL_CONFIG) & (Bit4 | Bit3); // [4:3] ACCEL_FS_SEL[1:0]
switch (ACCEL_FS_SEL) {
case ACCEL_FS_SEL_2G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 16384);
_px4_accel.set_range(2 * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_4G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 8192);
_px4_accel.set_range(4 * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_8G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 4096);
_px4_accel.set_range(8 * CONSTANTS_ONE_G);
break;
case ACCEL_FS_SEL_16G:
_px4_accel.set_scale(CONSTANTS_ONE_G / 2048);
_px4_accel.set_range(16 * CONSTANTS_ONE_G);
break;
}
}
void ICM20608G::ConfigureGyro()
{
const uint8_t GYRO_FS_SEL = RegisterRead(Register::GYRO_CONFIG) & (Bit4 | Bit3); // [4:3] GYRO_FS_SEL[1:0]
switch (GYRO_FS_SEL) {
case FS_SEL_250_DPS:
_px4_gyro.set_scale(math::radians(1.0f / 131.f));
_px4_gyro.set_range(math::radians(250.f));
break;
case FS_SEL_500_DPS:
_px4_gyro.set_scale(math::radians(1.0f / 65.5f));
_px4_gyro.set_range(math::radians(500.f));
break;
case FS_SEL_1000_DPS:
_px4_gyro.set_scale(math::radians(1.0f / 32.8f));
_px4_gyro.set_range(math::radians(1000.0f));
break;
case FS_SEL_2000_DPS:
_px4_gyro.set_scale(math::radians(1.0f / 16.4f));
_px4_gyro.set_range(math::radians(2000.0f));
break;
}
}
void ICM20608G::ResetFIFO()
{
perf_count(_fifo_reset_perf);
// USER_CTRL: disable FIFO and reset all signal paths
RegisterSetAndClearBits(Register::USER_CTRL, USER_CTRL_BIT::FIFO_RST | USER_CTRL_BIT::SIG_COND_RST,
USER_CTRL_BIT::FIFO_EN);
_data_ready_count.store(0);
// FIFO_EN: enable both gyro and accel
RegisterWrite(Register::FIFO_EN, FIFO_EN_BIT::XG_FIFO_EN | FIFO_EN_BIT::YG_FIFO_EN | FIFO_EN_BIT::ZG_FIFO_EN |
FIFO_EN_BIT::ACCEL_FIFO_EN);
// USER_CTRL: re-enable FIFO
RegisterSetAndClearBits(Register::USER_CTRL, USER_CTRL_BIT::FIFO_EN,
USER_CTRL_BIT::FIFO_RST | USER_CTRL_BIT::SIG_COND_RST);
}
bool ICM20608G::Configure(bool notify)
{
bool success = true;
for (const auto &reg : _register_cfg) {
if (!CheckRegister(reg, notify)) {
success = false;
}
}
return success;
}
bool ICM20608G::CheckRegister(const register_config_t &reg_cfg, bool notify)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && !(reg_value & reg_cfg.set_bits)) {
if (notify) {
PX4_ERR("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
}
success = false;
}
if (reg_cfg.clear_bits && (reg_value & reg_cfg.clear_bits)) {
if (notify) {
PX4_ERR("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
}
success = false;
}
if (!success) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
if (reg_cfg.reg == Register::ACCEL_CONFIG) {
ConfigureAccel();
} else if (reg_cfg.reg == Register::GYRO_CONFIG) {
ConfigureGyro();
}
if (notify) {
perf_count(_bad_register_perf);
}
}
return success;
}
uint8_t ICM20608G::RegisterRead(Register reg)
{
uint8_t cmd[2] {};
cmd[0] = static_cast<uint8_t>(reg) | DIR_READ;
transfer(cmd, cmd, sizeof(cmd));
return cmd[1];
}
void ICM20608G::RegisterWrite(Register reg, uint8_t value)
{
uint8_t cmd[2] { (uint8_t)reg, value };
transfer(cmd, cmd, sizeof(cmd));
}
void ICM20608G::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = orig_val;
if (setbits) {
val |= setbits;
}
if (clearbits) {
val &= ~clearbits;
}
RegisterWrite(reg, val);
}
void ICM20608G::RegisterSetBits(Register reg, uint8_t setbits)
{
RegisterSetAndClearBits(reg, setbits, 0);
}
void ICM20608G::RegisterClearBits(Register reg, uint8_t clearbits)
{
RegisterSetAndClearBits(reg, 0, clearbits);
}
int ICM20608G::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
ICM20608G *dev = reinterpret_cast<ICM20608G *>(arg);
dev->DataReady();
return 0;
}
void ICM20608G::DataReady()
{
perf_count(_drdy_interval_perf);
if (_data_ready_count.fetch_add(1) >= (_fifo_gyro_samples - 1)) {
// make another measurement
ScheduleNow();
_data_ready_count.store(0);
}
}
void ICM20608G::Start()
{
ConfigureSampleRate(_px4_gyro.get_max_rate_hz());
// attempt to configure 3 times
for (int i = 0; i < 3; i++) {
if (Configure(false)) {
break;
}
}
// TODO: cleanup horrible DRDY define mess
#if defined(GPIO_DRDY_PORTC_PIN14)
_using_data_ready_interrupt_enabled = true;
// Setup data ready on rising edge
px4_arch_gpiosetevent(GPIO_DRDY_PORTC_PIN14, true, false, true, &ICM20608G::DataReadyInterruptCallback, this);
#elif defined(GPIO_DRDY_ICM_2060X)
_using_data_ready_interrupt_enabled = true;
// Setup data ready on rising edge
px4_arch_gpiosetevent(GPIO_DRDY_ICM_2060X, true, false, true, &ICM20608G::DataReadyInterruptCallback, this);
#else
_using_data_ready_interrupt_enabled = false;
ScheduleOnInterval(FIFO_INTERVAL, FIFO_INTERVAL);
#endif
ResetFIFO();
// schedule as watchdog
if (_using_data_ready_interrupt_enabled) {
ScheduleDelayed(100_ms);
}
}
void ICM20608G::Stop()
{
Reset();
// TODO: cleanup horrible DRDY define mess
#if defined(GPIO_DRDY_PORTC_PIN14)
// Disable data ready callback
px4_arch_gpiosetevent(GPIO_DRDY_PORTC_PIN14, false, false, false, nullptr, nullptr);
#elif defined(GPIO_DRDY_ICM_2060X)
// Disable data ready callback
px4_arch_gpiosetevent(GPIO_DRDY_ICM_2060X, false, false, false, nullptr, nullptr);
#endif
ScheduleClear();
}
void ICM20608G::Run()
{
// use the time now roughly corresponding with the last sample we'll pull from the FIFO
const hrt_abstime timestamp_sample = hrt_absolute_time();
// read FIFO count
uint8_t fifo_count_buf[3] {};
fifo_count_buf[0] = static_cast<uint8_t>(Register::FIFO_COUNTH) | DIR_READ;
if (transfer(fifo_count_buf, fifo_count_buf, sizeof(fifo_count_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
}
if (_using_data_ready_interrupt_enabled) {
// re-schedule as watchdog
ScheduleDelayed(100_ms);
}
// check registers
if (hrt_elapsed_time(&_last_config_check) > 100_ms) {
_checked_register = (_checked_register + 1) % size_register_cfg;
if (CheckRegister(_register_cfg[_checked_register])) {
// delay next register check if current succeeded
_last_config_check = hrt_absolute_time();
} else {
// if register check failed reconfigure all
Configure();
ResetFIFO();
return;
}
}
const uint16_t fifo_count = combine(fifo_count_buf[1], fifo_count_buf[2]);
const uint8_t samples = (fifo_count / sizeof(FIFO::DATA) / 2) * 2; // round down to nearest 2
if (samples < 2) {
perf_count(_fifo_empty_perf);
return;
} else if (samples > FIFO_MAX_SAMPLES) {
// not technically an overflow, but more samples than we expected or can publish
perf_count(_fifo_overflow_perf);
ResetFIFO();
return;
}
// Transfer data
struct TransferBuffer {
uint8_t cmd;
FIFO::DATA f[FIFO_MAX_SAMPLES];
};
// ensure no struct padding
static_assert(sizeof(TransferBuffer) == (sizeof(uint8_t) + FIFO_MAX_SAMPLES * sizeof(FIFO::DATA)));
TransferBuffer *report = (TransferBuffer *)_dma_data_buffer;
const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 1, FIFO::SIZE);
memset(report, 0, transfer_size);
report->cmd = static_cast<uint8_t>(Register::FIFO_R_W) | DIR_READ;
perf_begin(_transfer_perf);
if (transfer(_dma_data_buffer, _dma_data_buffer, transfer_size) != PX4_OK) {
perf_end(_transfer_perf);
perf_count(_bad_transfer_perf);
return;
}
perf_end(_transfer_perf);
PX4Accelerometer::FIFOSample accel;
accel.timestamp_sample = timestamp_sample;
accel.dt = _fifo_empty_interval_us / _fifo_accel_samples;
// accel data is doubled in FIFO, but might be shifted
int accel_first_sample = 0;
if (samples >= 3) {
if (fifo_accel_equal(report->f[0], report->f[1])) {
// [A0, A1, A2, A3]
// A0==A1, A2==A3
accel_first_sample = 1;
} else if (fifo_accel_equal(report->f[1], report->f[2])) {
// [A0, A1, A2, A3]
// A0, A1==A2, A3
accel_first_sample = 0;
} else {
perf_count(_bad_transfer_perf);
return;
}
}
int accel_samples = 0;
for (int i = accel_first_sample; i < samples; i = i + 2) {
const FIFO::DATA &fifo_sample = report->f[i];
int16_t accel_x = combine(fifo_sample.ACCEL_XOUT_H, fifo_sample.ACCEL_XOUT_L);
int16_t accel_y = combine(fifo_sample.ACCEL_YOUT_H, fifo_sample.ACCEL_YOUT_L);
int16_t accel_z = combine(fifo_sample.ACCEL_ZOUT_H, fifo_sample.ACCEL_ZOUT_L);
// sensor's frame is +x forward, +y left, +z up, flip y & z to publish right handed (x forward, y right, z down)
accel.x[accel_samples] = accel_x;
accel.y[accel_samples] = (accel_y == INT16_MIN) ? INT16_MAX : -accel_y;
accel.z[accel_samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
accel_samples++;
}
accel.samples = accel_samples;
PX4Gyroscope::FIFOSample gyro;
gyro.timestamp_sample = timestamp_sample;
gyro.samples = samples;
gyro.dt = _fifo_empty_interval_us / _fifo_gyro_samples;
for (int i = 0; i < samples; i++) {
const FIFO::DATA &fifo_sample = report->f[i];
const int16_t gyro_x = combine(fifo_sample.GYRO_XOUT_H, fifo_sample.GYRO_XOUT_L);
const int16_t gyro_y = combine(fifo_sample.GYRO_YOUT_H, fifo_sample.GYRO_YOUT_L);
const int16_t gyro_z = combine(fifo_sample.GYRO_ZOUT_H, fifo_sample.GYRO_ZOUT_L);
// sensor's frame is +x forward, +y left, +z up, flip y & z to publish right handed (x forward, y right, z down)
gyro.x[i] = gyro_x;
gyro.y[i] = (gyro_y == INT16_MIN) ? INT16_MAX : -gyro_y;
gyro.z[i] = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
}
// Temperature
if (hrt_elapsed_time(&_time_last_temperature_update) > 1_s) {
// read current temperature
uint8_t temperature_buf[3] {};
temperature_buf[0] = static_cast<uint8_t>(Register::TEMP_OUT_H) | DIR_READ;
if (transfer(temperature_buf, temperature_buf, sizeof(temperature_buf)) != PX4_OK) {
return;
}
const int16_t TEMP_OUT = combine(temperature_buf[1], temperature_buf[2]);
const float TEMP_degC = ((TEMP_OUT - ROOM_TEMPERATURE_OFFSET) / TEMPERATURE_SENSITIVITY) + ROOM_TEMPERATURE_OFFSET;
_px4_accel.set_temperature(TEMP_degC);
_px4_gyro.set_temperature(TEMP_degC);
}
_px4_gyro.updateFIFO(gyro);
_px4_accel.updateFIFO(accel);
}
void ICM20608G::PrintInfo()
{
PX4_INFO("FIFO empty interval: %d us (%.3f Hz)", _fifo_empty_interval_us,
static_cast<double>(1000000 / _fifo_empty_interval_us));
perf_print_counter(_transfer_perf);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
perf_print_counter(_drdy_interval_perf);
_px4_accel.print_status();
_px4_gyro.print_status();
}

View File

@ -48,9 +48,10 @@
#include <lib/drivers/gyroscope/PX4Gyroscope.hpp>
#include <lib/ecl/geo/geo.h>
#include <lib/perf/perf_counter.h>
#include <px4_platform_common/atomic.h>
#include <px4_platform_common/px4_work_queue/ScheduledWorkItem.hpp>
using InvenSense_ICM20608G::Register;
using namespace InvenSense_ICM20608G;
class ICM20608G : public device::SPI, public px4::ScheduledWorkItem
{
@ -65,6 +66,13 @@ public:
void PrintInfo();
private:
struct register_config_t {
Register reg;
uint8_t set_bits{0};
uint8_t clear_bits{0};
};
int probe() override;
static int DataReadyInterruptCallback(int irq, void *context, void *arg);
@ -72,10 +80,17 @@ private:
void Run() override;
bool CheckRegister(const register_config_t &reg_cfg, bool notify = true);
bool Configure(bool notify = true);
void ConfigureAccel();
void ConfigureGyro();
void ConfigureSampleRate(int sample_rate);
uint8_t RegisterRead(Register reg);
void RegisterWrite(Register reg, uint8_t value);
void RegisterSetBits(Register reg, uint8_t setbits);
void RegisterClearBits(Register reg, uint8_t clearbits);
void RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits);
void RegisterSetBits(Register reg, uint8_t setbits);
void RegisterWrite(Register reg, uint8_t value);
void ResetFIFO();
@ -85,12 +100,41 @@ private:
PX4Gyroscope _px4_gyro;
perf_counter_t _transfer_perf{perf_alloc(PC_ELAPSED, MODULE_NAME": transfer")};
perf_counter_t _bad_register_perf{perf_alloc(PC_COUNT, MODULE_NAME": bad register")};
perf_counter_t _bad_transfer_perf{perf_alloc(PC_COUNT, MODULE_NAME": bad transfer")};
perf_counter_t _fifo_empty_perf{perf_alloc(PC_COUNT, MODULE_NAME": fifo empty")};
perf_counter_t _fifo_overflow_perf{perf_alloc(PC_COUNT, MODULE_NAME": fifo overflow")};
perf_counter_t _fifo_reset_perf{perf_alloc(PC_COUNT, MODULE_NAME": fifo reset")};
perf_counter_t _drdy_interval_perf{perf_alloc(PC_INTERVAL, MODULE_NAME": drdy interval")};
hrt_abstime _time_data_ready{0};
hrt_abstime _last_config_check{0};
hrt_abstime _time_last_temperature_update{0};
int _data_ready_count{0};
px4::atomic<int> _data_ready_count{0};
uint8_t _checked_register{0};
bool _using_data_ready_interrupt_enabled{false};
// Sensor Configuration
static constexpr uint32_t GYRO_RATE{8000}; // 8 kHz gyro
static constexpr uint32_t ACCEL_RATE{4000}; // 4 kHz accel
static constexpr uint32_t FIFO_MAX_SAMPLES{ math::min(FIFO::SIZE / sizeof(FIFO::DATA) + 1, sizeof(PX4Gyroscope::FIFOSample::x) / sizeof(PX4Gyroscope::FIFOSample::x[0]))};
uint16_t _fifo_empty_interval_us{1000}; // 1000 us / 1000 Hz transfer interval
uint8_t _fifo_gyro_samples{static_cast<uint8_t>(_fifo_empty_interval_us / (1000000 / GYRO_RATE))};
uint8_t _fifo_accel_samples{static_cast<uint8_t>(_fifo_empty_interval_us / (1000000 / ACCEL_RATE))};
static constexpr uint8_t size_register_cfg{11};
register_config_t _register_cfg[size_register_cfg] {
// Register | Set bits, Clear bits
{ Register::PWR_MGMT_1, PWR_MGMT_1_BIT::CLKSEL_0, PWR_MGMT_1_BIT::DEVICE_RESET | PWR_MGMT_1_BIT::SLEEP },
{ Register::ACCEL_CONFIG, ACCEL_CONFIG_BIT::ACCEL_FS_SEL_16G, 0 },
{ Register::ACCEL_CONFIG2, ACCEL_CONFIG2_BIT::ACCEL_FCHOICE_B_BYPASS_DLPF, 0 },
{ Register::GYRO_CONFIG, GYRO_CONFIG_BIT::FS_SEL_2000_DPS, GYRO_CONFIG_BIT::FCHOICE_B_8KHZ_BYPASS_DLPF },
{ Register::CONFIG, CONFIG_BIT::DLPF_CFG_BYPASS_DLPF_8KHZ, Bit7 | CONFIG_BIT::FIFO_MODE },
{ Register::USER_CTRL, USER_CTRL_BIT::FIFO_EN | USER_CTRL_BIT::I2C_IF_DIS, 0 },
{ Register::FIFO_EN, FIFO_EN_BIT::XG_FIFO_EN | FIFO_EN_BIT::YG_FIFO_EN | FIFO_EN_BIT::ZG_FIFO_EN | FIFO_EN_BIT::ACCEL_FIFO_EN, FIFO_EN_BIT::TEMP_FIFO_EN },
{ Register::INT_ENABLE, INT_ENABLE_BIT::FIFO_OFLOW_EN | INT_ENABLE_BIT::DATA_RDY_INT_EN }
};
};

View File

@ -40,6 +40,8 @@
#pragma once
#include <cstdint>
// TODO: move to a central header
static constexpr uint8_t Bit0 = (1 << 0);
static constexpr uint8_t Bit1 = (1 << 1);
@ -57,6 +59,9 @@ static constexpr uint8_t DIR_READ = 0x80;
static constexpr uint8_t WHOAMI = 0xAF;
static constexpr float TEMPERATURE_SENSITIVITY = 326.8f; // LSB/C
static constexpr float ROOM_TEMPERATURE_OFFSET = 25.f; // C
enum class Register : uint8_t {
CONFIG = 0x1A,
GYRO_CONFIG = 0x1B,
@ -65,8 +70,6 @@ enum class Register : uint8_t {
FIFO_EN = 0x23,
INT_STATUS = 0x3A,
INT_ENABLE = 0x38,
TEMP_OUT_H = 0x41,
@ -97,7 +100,7 @@ enum GYRO_CONFIG_BIT : uint8_t {
FS_SEL_2000_DPS = Bit4 | Bit3, // 0b11000
// FCHOICE_B [1:0]
FCHOICE_B_8KHZ_BYPASS_DLPF = Bit1 | Bit0, // 0b10 - 3-dB BW: 3281 Noise BW (Hz): 3451.0 8 kHz
FCHOICE_B_8KHZ_BYPASS_DLPF = Bit1 | Bit0, // 0b00 - 3-dB BW: 3281 Noise BW (Hz): 3451.0 8 kHz
};
// ACCEL_CONFIG
@ -129,27 +132,24 @@ enum INT_ENABLE_BIT : uint8_t {
DATA_RDY_INT_EN = Bit0
};
// INT_STATUS
enum INT_STATUS_BIT : uint8_t {
FIFO_OFLOW_INT = Bit4,
DATA_RDY_INT = Bit0,
};
// USER_CTRL
enum USER_CTRL_BIT : uint8_t {
FIFO_EN = Bit6,
FIFO_RST = Bit2,
FIFO_EN = Bit6,
I2C_IF_DIS = Bit4,
FIFO_RST = Bit2,
SIG_COND_RST = Bit0,
};
// PWR_MGMT_1
enum PWR_MGMT_1_BIT : uint8_t {
DEVICE_RESET = Bit7,
SLEEP = Bit6,
CLKSEL_2 = Bit2,
CLKSEL_1 = Bit1,
CLKSEL_0 = Bit0,
};
namespace FIFO
{
static constexpr size_t SIZE = 512;