Merge remote-tracking branch 'upstream/master' into hott-esc

This commit is contained in:
Simon Wilks 2013-07-13 01:08:45 +02:00
commit 1ccfb623ee
29 changed files with 1018 additions and 801 deletions

BIN
Documentation/dsm_bind.odt Normal file

Binary file not shown.

BIN
Documentation/dsm_bind.pdf Normal file

Binary file not shown.

View File

@ -1,6 +1,12 @@
#ifndef _MAVLINK_CONVERSIONS_H_
#define _MAVLINK_CONVERSIONS_H_
/* enable math defines on Windows */
#ifdef _MSC_VER
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#endif
#include <math.h>
/**

View File

@ -109,7 +109,7 @@ int ar_multiplexing_init()
{
int fd;
fd = open(GPIO_DEVICE_PATH, 0);
fd = open(PX4FMU_DEVICE_PATH, 0);
if (fd < 0) {
warn("GPIO: open fail");

View File

@ -63,43 +63,12 @@
* they also export GPIO-like things. This is always the GPIOs on the
* main board.
*/
# define GPIO_DEVICE_PATH "/dev/px4fmu"
# define PX4FMU_DEVICE_PATH "/dev/px4fmu"
# define PX4IO_DEVICE_PATH "/dev/px4io"
#endif
#ifdef CONFIG_ARCH_BOARD_PX4IO_V1
/*
* PX4IO GPIO numbers.
*
* XXX note that these are here for reference/future use; currently
* there is no good way to wire these up without a common STM32 GPIO
* driver, which isn't implemented yet.
*/
/* outputs */
# define GPIO_ACC1_POWER (1<<0) /**< accessory power 1 */
# define GPIO_ACC2_POWER (1<<1) /**< accessory power 2 */
# define GPIO_SERVO_POWER (1<<2) /**< servo power */
# define GPIO_RELAY1 (1<<3) /**< relay 1 */
# define GPIO_RELAY2 (1<<4) /**< relay 2 */
# define GPIO_LED_BLUE (1<<5) /**< blue LED */
# define GPIO_LED_AMBER (1<<6) /**< amber/red LED */
# define GPIO_LED_SAFETY (1<<7) /**< safety LED */
/* inputs */
# define GPIO_ACC_OVERCURRENT (1<<8) /**< accessory 1/2 overcurrent detect */
# define GPIO_SERVO_OVERCURRENT (1<<9) /**< servo overcurrent detect */
# define GPIO_SAFETY_BUTTON (1<<10) /**< safety button pressed */
/**
* Default GPIO device - other devices may also support this protocol if
* they also export GPIO-like things. This is always the GPIOs on the
* main board.
*/
# define GPIO_DEVICE_PATH "/dev/px4io"
#endif
#ifndef GPIO_DEVICE_PATH
#ifndef PX4IO_DEVICE_PATH
# error No GPIO support for this board.
#endif

View File

@ -115,6 +115,15 @@ ORB_DECLARE(output_pwm);
/** clear the 'ARM ok' bit, which deactivates the safety switch */
#define PWM_SERVO_CLEAR_ARM_OK _IOC(_PWM_SERVO_BASE, 6)
/** start DSM bind */
#define DSM_BIND_START _IOC(_PWM_SERVO_BASE, 7)
/** stop DSM bind */
#define DSM_BIND_STOP _IOC(_PWM_SERVO_BASE, 8)
/** Power up DSM receiver */
#define DSM_BIND_POWER_UP _IOC(_PWM_SERVO_BASE, 9)
/** set a single servo to a specific value */
#define PWM_SERVO_SET(_servo) _IOC(_PWM_SERVO_BASE, 0x20 + _servo)

File diff suppressed because it is too large Load Diff

View File

@ -3,6 +3,7 @@
* Copyright (C) 2008-2013 PX4 Development Team. All rights reserved.
* Author: Thomas Gubler <thomasgubler@student.ethz.ch>
* Julian Oes <joes@student.ethz.ch>
* Anton Babushkin <anton.babushkin@me.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -51,23 +52,23 @@
/* MessageIDs (the ones that are used) */
#define UBX_MESSAGE_NAV_POSLLH 0x02
#define UBX_MESSAGE_NAV_SOL 0x06
#define UBX_MESSAGE_NAV_TIMEUTC 0x21
//#define UBX_MESSAGE_NAV_DOP 0x04
#define UBX_MESSAGE_NAV_SVINFO 0x30
#define UBX_MESSAGE_NAV_SOL 0x06
#define UBX_MESSAGE_NAV_VELNED 0x12
//#define UBX_MESSAGE_RXM_SVSI 0x20
#define UBX_MESSAGE_ACK_ACK 0x01
#define UBX_MESSAGE_NAV_TIMEUTC 0x21
#define UBX_MESSAGE_NAV_SVINFO 0x30
#define UBX_MESSAGE_ACK_NAK 0x00
#define UBX_MESSAGE_ACK_ACK 0x01
#define UBX_MESSAGE_CFG_PRT 0x00
#define UBX_MESSAGE_CFG_NAV5 0x24
#define UBX_MESSAGE_CFG_MSG 0x01
#define UBX_MESSAGE_CFG_RATE 0x08
#define UBX_MESSAGE_CFG_NAV5 0x24
#define UBX_CFG_PRT_LENGTH 20
#define UBX_CFG_PRT_PAYLOAD_PORTID 0x01 /**< UART1 */
#define UBX_CFG_PRT_PAYLOAD_MODE 0x000008D0 /**< 0b0000100011010000: 8N1 */
#define UBX_CFG_PRT_PAYLOAD_BAUDRATE 38400 /**< always choose 38400 as GPS baudrate */
#define UBX_CFG_PRT_PAYLOAD_BAUDRATE 38400 /**< choose 38400 as GPS baudrate */
#define UBX_CFG_PRT_PAYLOAD_INPROTOMASK 0x01 /**< UBX in */
#define UBX_CFG_PRT_PAYLOAD_OUTPROTOMASK 0x01 /**< UBX out */
@ -298,44 +299,6 @@ struct ubx_cfg_msg_rate {
// END the structures of the binary packets
// ************
typedef enum {
UBX_CONFIG_STATE_PRT = 0,
UBX_CONFIG_STATE_PRT_NEW_BAUDRATE,
UBX_CONFIG_STATE_RATE,
UBX_CONFIG_STATE_NAV5,
UBX_CONFIG_STATE_MSG_NAV_POSLLH,
UBX_CONFIG_STATE_MSG_NAV_TIMEUTC,
UBX_CONFIG_STATE_MSG_NAV_DOP,
UBX_CONFIG_STATE_MSG_NAV_SVINFO,
UBX_CONFIG_STATE_MSG_NAV_SOL,
UBX_CONFIG_STATE_MSG_NAV_VELNED,
// UBX_CONFIG_STATE_MSG_RXM_SVSI,
UBX_CONFIG_STATE_CONFIGURED
} ubx_config_state_t;
typedef enum {
CLASS_UNKNOWN = 0,
NAV = 1,
RXM = 2,
ACK = 3,
CFG = 4
} ubx_message_class_t;
typedef enum {
//these numbers do NOT correspond to the message id numbers of the ubx protocol
ID_UNKNOWN = 0,
NAV_POSLLH,
NAV_SOL,
NAV_TIMEUTC,
// NAV_DOP,
NAV_SVINFO,
NAV_VELNED,
// RXM_SVSI,
CFG_NAV5,
ACK_ACK,
ACK_NAK,
} ubx_message_id_t;
typedef enum {
UBX_DECODE_UNINIT = 0,
UBX_DECODE_GOT_SYNC1,
@ -401,17 +364,17 @@ private:
int _fd;
struct vehicle_gps_position_s *_gps_position;
ubx_config_state_t _config_state;
bool _configured;
bool _waiting_for_ack;
uint8_t _clsID_needed;
uint8_t _msgID_needed;
uint8_t _message_class_needed;
uint8_t _message_id_needed;
ubx_decode_state_t _decode_state;
uint8_t _rx_buffer[RECV_BUFFER_SIZE];
unsigned _rx_count;
uint8_t _rx_ck_a;
uint8_t _rx_ck_b;
ubx_message_class_t _message_class;
ubx_message_id_t _message_id;
uint8_t _message_class;
uint8_t _message_id;
unsigned _payload_size;
uint8_t _disable_cmd_counter;
};

View File

@ -1,6 +1,6 @@
/****************************************************************************
*
* Copyright (c) 2012, 2013 PX4 Development Team. All rights reserved.
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -272,6 +272,11 @@ private:
*/
void _set_dlpf_filter(uint16_t frequency_hz);
/*
set sample rate (approximate) - 1kHz to 5Hz
*/
void _set_sample_rate(uint16_t desired_sample_rate_hz);
};
/**
@ -378,7 +383,8 @@ MPU6000::init()
up_udelay(1000);
// SAMPLE RATE
write_reg(MPUREG_SMPLRT_DIV, 0x04); // Sample rate = 200Hz Fsample= 1Khz/(4+1) = 200Hz
//write_reg(MPUREG_SMPLRT_DIV, 0x04); // Sample rate = 200Hz Fsample= 1Khz/(4+1) = 200Hz
_set_sample_rate(200); // default sample rate = 200Hz
usleep(1000);
// FS & DLPF FS=2000 deg/s, DLPF = 20Hz (low pass filter)
@ -493,6 +499,18 @@ MPU6000::probe()
return -EIO;
}
/*
set sample rate (approximate) - 1kHz to 5Hz, for both accel and gyro
*/
void
MPU6000::_set_sample_rate(uint16_t desired_sample_rate_hz)
{
uint8_t div = 1000 / desired_sample_rate_hz;
if(div>200) div=200;
if(div<1) div=1;
write_reg(MPUREG_SMPLRT_DIV, div-1);
}
/*
set the DLPF filter frequency. This affects both accel and gyro.
*/
@ -644,8 +662,8 @@ MPU6000::ioctl(struct file *filp, int cmd, unsigned long arg)
case ACCELIOCSSAMPLERATE:
case ACCELIOCGSAMPLERATE:
/* XXX not implemented */
return -EINVAL;
_set_sample_rate(arg);
return OK;
case ACCELIOCSLOWPASS:
case ACCELIOCGLOWPASS:
@ -702,8 +720,8 @@ MPU6000::gyro_ioctl(struct file *filp, int cmd, unsigned long arg)
case GYROIOCSSAMPLERATE:
case GYROIOCGSAMPLERATE:
/* XXX not implemented */
return -EINVAL;
_set_sample_rate(arg);
return OK;
case GYROIOCSLOWPASS:
case GYROIOCGLOWPASS:

View File

@ -166,7 +166,7 @@ PX4FMU *g_fmu;
} // namespace
PX4FMU::PX4FMU() :
CDev("fmuservo", "/dev/px4fmu"),
CDev("fmuservo", PX4FMU_DEVICE_PATH),
_mode(MODE_NONE),
_pwm_default_rate(50),
_pwm_alt_rate(50),

View File

@ -129,6 +129,16 @@ public:
*/
void print_status();
inline void set_dsm_vcc_ctl(bool enable)
{
_dsm_vcc_ctl = enable;
};
inline bool get_dsm_vcc_ctl()
{
return _dsm_vcc_ctl;
};
private:
// XXX
unsigned _max_actuators;
@ -172,6 +182,12 @@ private:
float _battery_mamphour_total;
uint64_t _battery_last_timestamp;
/**
* Relay1 is dedicated to controlling DSM receiver power
*/
bool _dsm_vcc_ctl;
/**
* Trampoline to the worker task
*/
@ -313,7 +329,7 @@ PX4IO *g_dev;
}
PX4IO::PX4IO() :
I2C("px4io", "/dev/px4io", PX4_I2C_BUS_ONBOARD, PX4_I2C_OBDEV_PX4IO, 320000),
I2C("px4io", PX4IO_DEVICE_PATH, PX4_I2C_BUS_ONBOARD, PX4_I2C_OBDEV_PX4IO, 320000),
_max_actuators(0),
_max_controls(0),
_max_rc_input(0),
@ -338,7 +354,8 @@ PX4IO::PX4IO() :
_battery_amp_per_volt(90.0f/5.0f), // this matches the 3DR current sensor
_battery_amp_bias(0),
_battery_mamphour_total(0),
_battery_last_timestamp(0)
_battery_last_timestamp(0),
_dsm_vcc_ctl(false)
{
/* we need this potentially before it could be set in task_main */
g_dev = this;
@ -700,8 +717,6 @@ PX4IO::io_set_control_state()
int
PX4IO::set_failsafe_values(const uint16_t *vals, unsigned len)
{
uint16_t regs[_max_actuators];
if (len > _max_actuators)
/* fail with error */
return E2BIG;
@ -1271,13 +1286,14 @@ PX4IO::print_status()
printf("%u bytes free\n",
io_reg_get(PX4IO_PAGE_STATUS, PX4IO_P_STATUS_FREEMEM));
uint16_t flags = io_reg_get(PX4IO_PAGE_STATUS, PX4IO_P_STATUS_FLAGS);
printf("status 0x%04x%s%s%s%s%s%s%s%s%s%s%s%s\n",
printf("status 0x%04x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
flags,
((flags & PX4IO_P_STATUS_FLAGS_ARMED) ? " ARMED" : ""),
((flags & PX4IO_P_STATUS_FLAGS_OVERRIDE) ? " OVERRIDE" : ""),
((flags & PX4IO_P_STATUS_FLAGS_RC_OK) ? " RC_OK" : " RC_FAIL"),
((flags & PX4IO_P_STATUS_FLAGS_RC_PPM) ? " PPM" : ""),
((flags & PX4IO_P_STATUS_FLAGS_RC_DSM) ? " DSM" : ""),
(((flags & PX4IO_P_STATUS_FLAGS_RC_DSM) && (!(flags & PX4IO_P_STATUS_FLAGS_RC_DSM11))) ? " DSM10" : ""),
(((flags & PX4IO_P_STATUS_FLAGS_RC_DSM) && (flags & PX4IO_P_STATUS_FLAGS_RC_DSM11)) ? " DSM11" : ""),
((flags & PX4IO_P_STATUS_FLAGS_RC_SBUS) ? " SBUS" : ""),
((flags & PX4IO_P_STATUS_FLAGS_FMU_OK) ? " FMU_OK" : " FMU_FAIL"),
((flags & PX4IO_P_STATUS_FLAGS_RAW_PWM) ? " RAW_PPM" : ""),
@ -1372,7 +1388,8 @@ PX4IO::print_status()
}
int
PX4IO::ioctl(file *filep, int cmd, unsigned long arg)
PX4IO::ioctl(file * /*filep*/, int cmd, unsigned long arg)
/* Make it obvious that file * isn't used here */
{
int ret = OK;
@ -1424,6 +1441,26 @@ PX4IO::ioctl(file *filep, int cmd, unsigned long arg)
*(unsigned *)arg = _max_actuators;
break;
case DSM_BIND_START:
io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_DSM, dsm_bind_power_down);
usleep(500000);
io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_DSM, dsm_bind_set_rx_out);
usleep(1000);
io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_DSM, dsm_bind_power_up);
usleep(100000);
io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_DSM, dsm_bind_send_pulses | (arg << 4));
break;
case DSM_BIND_STOP:
io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_DSM, dsm_bind_power_down);
io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_DSM, dsm_bind_reinit_uart);
usleep(500000);
break;
case DSM_BIND_POWER_UP:
io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_DSM, dsm_bind_power_up);
break;
case PWM_SERVO_SET(0) ... PWM_SERVO_SET(PWM_OUTPUT_MAX_CHANNELS - 1): {
/* TODO: we could go lower for e.g. TurboPWM */
@ -1466,18 +1503,31 @@ PX4IO::ioctl(file *filep, int cmd, unsigned long arg)
break;
}
case GPIO_RESET:
ret = io_reg_set(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, 0);
case GPIO_RESET: {
uint32_t bits = (1 << _max_relays) - 1;
/* don't touch relay1 if it's controlling RX vcc */
if (_dsm_vcc_ctl)
bits &= ~PX4IO_RELAY1;
ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, bits, 0);
break;
}
case GPIO_SET:
arg &= ((1 << _max_relays) - 1);
ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, 0, arg);
/* don't touch relay1 if it's controlling RX vcc */
if (_dsm_vcc_ctl & (arg & PX4IO_RELAY1))
ret = -EINVAL;
else
ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, 0, arg);
break;
case GPIO_CLEAR:
arg &= ((1 << _max_relays) - 1);
ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, arg, 0);
/* don't touch relay1 if it's controlling RX vcc */
if (_dsm_vcc_ctl & (arg & PX4IO_RELAY1))
ret = -EINVAL;
else
ret = io_reg_modify(PX4IO_PAGE_SETUP, PX4IO_P_SETUP_RELAYS, arg, 0);
break;
case GPIO_GET:
@ -1614,9 +1664,64 @@ start(int argc, char *argv[])
errx(1, "driver init failed");
}
int dsm_vcc_ctl;
if (param_get(param_find("RC_RL1_DSM_VCC"), &dsm_vcc_ctl) == OK) {
if (dsm_vcc_ctl) {
g_dev->set_dsm_vcc_ctl(true);
g_dev->ioctl(nullptr, DSM_BIND_POWER_UP, 0);
}
}
exit(0);
}
void
bind(int argc, char *argv[])
{
int pulses;
if (g_dev == nullptr)
errx(1, "px4io must be started first");
if (!g_dev->get_dsm_vcc_ctl())
errx(1, "DSM bind feature not enabled");
if (argc < 3)
errx(0, "needs argument, use dsm2 or dsmx");
if (!strcmp(argv[2], "dsm2"))
pulses = 3;
else if (!strcmp(argv[2], "dsmx"))
pulses = 7;
else
errx(1, "unknown parameter %s, use dsm2 or dsmx", argv[2]);
/* Open console directly to grab CTRL-C signal */
int console = open("/dev/console", O_NONBLOCK | O_RDONLY | O_NOCTTY);
if (!console)
errx(1, "failed opening console");
warnx("This command will only bind DSM if satellite VCC (red wire) is controlled by relay 1.");
warnx("Press CTRL-C or 'c' when done.");
g_dev->ioctl(nullptr, DSM_BIND_START, pulses);
for (;;) {
usleep(500000L);
/* Check if user wants to quit */
char c;
if (read(console, &c, 1) == 1) {
if (c == 0x03 || c == 0x63) {
warnx("Done\n");
g_dev->ioctl(nullptr, DSM_BIND_STOP, 0);
g_dev->ioctl(nullptr, DSM_BIND_POWER_UP, 0);
close(console);
exit(0);
}
}
}
}
void
test(void)
{
@ -1626,7 +1731,7 @@ test(void)
int direction = 1;
int ret;
fd = open("/dev/px4io", O_WRONLY);
fd = open(PX4IO_DEVICE_PATH, O_WRONLY);
if (fd < 0)
err(1, "failed to open device");
@ -1800,7 +1905,7 @@ px4io_main(int argc, char *argv[])
* We can cheat and call the driver directly, as it
* doesn't reference filp in ioctl()
*/
g_dev->ioctl(NULL, PX4IO_INAIR_RESTART_ENABLE, 1);
g_dev->ioctl(nullptr, PX4IO_INAIR_RESTART_ENABLE, 1);
} else {
errx(1, "not loaded");
}
@ -1844,7 +1949,7 @@ px4io_main(int argc, char *argv[])
/* we can cheat and call the driver directly, as it
* doesn't reference filp in ioctl()
*/
int ret = g_dev->ioctl(NULL, PX4IO_SET_DEBUG, level);
int ret = g_dev->ioctl(nullptr, PX4IO_SET_DEBUG, level);
if (ret != 0) {
printf("SET_DEBUG failed - %d\n", ret);
exit(1);
@ -1918,6 +2023,9 @@ px4io_main(int argc, char *argv[])
if (!strcmp(argv[1], "monitor"))
monitor();
if (!strcmp(argv[1], "bind"))
bind(argc, argv);
out:
errx(1, "need a command, try 'start', 'stop', 'status', 'test', 'monitor', 'debug', 'recovery', 'limit', 'current', 'failsafe' or 'update'");
errx(1, "need a command, try 'start', 'stop', 'status', 'test', 'monitor', 'debug', 'recovery', 'limit', 'current', 'failsafe', 'bind', or 'update'");
}

View File

@ -661,10 +661,10 @@ int KalmanNav::correctPos()
Vector y(6);
y(0) = _gps.vel_n_m_s - vN;
y(1) = _gps.vel_e_m_s - vE;
y(2) = double(_gps.lat) - lat * 1.0e7 * M_RAD_TO_DEG;
y(3) = double(_gps.lon) - lon * 1.0e7 * M_RAD_TO_DEG;
y(4) = double(_gps.alt) / 1.0e3 - alt;
y(5) = double(_sensors.baro_alt_meter) - alt;
y(2) = double(_gps.lat) - double(lat) * 1.0e7 * M_RAD_TO_DEG;
y(3) = double(_gps.lon) - double(lon) * 1.0e7 * M_RAD_TO_DEG;
y(4) = _gps.alt / 1.0e3f - alt;
y(5) = _sensors.baro_alt_meter - alt;
// compute correction
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
@ -698,7 +698,7 @@ int KalmanNav::correctPos()
vD += xCorrect(VD);
lat += double(xCorrect(LAT));
lon += double(xCorrect(LON));
alt += double(xCorrect(ALT));
alt += xCorrect(ALT);
// update state covariance
// http://en.wikipedia.org/wiki/Extended_Kalman_filter
@ -710,7 +710,7 @@ int KalmanNav::correctPos()
static int counter = 0;
if (beta > _faultPos.get() && (counter % 10 == 0)) {
warnx("fault in gps: beta = %8.4f", (double)beta);
warnx("Y/N: vN: %8.4f, vE: %8.4f, lat: %8.4f, lon: %8.4f, alt: %8.4f",
warnx("Y/N: vN: %8.4f, vE: %8.4f, lat: %8.4f, lon: %8.4f, alt: %8.4f, baro: %8.4f",
double(y(0) / sqrtf(RPos(0, 0))),
double(y(1) / sqrtf(RPos(1, 1))),
double(y(2) / sqrtf(RPos(2, 2))),

View File

@ -44,42 +44,42 @@
/* Extended Kalman Filter covariances */
/* gyro process noise */
PARAM_DEFINE_FLOAT(EKF_ATT_V2_Q0, 1e-4f);
PARAM_DEFINE_FLOAT(EKF_ATT_V2_Q1, 0.08f);
PARAM_DEFINE_FLOAT(EKF_ATT_V2_Q2, 0.009f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_Q0, 1e-4f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_Q1, 0.08f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_Q2, 0.009f);
/* gyro offsets process noise */
PARAM_DEFINE_FLOAT(EKF_ATT_V2_Q3, 0.005f);
PARAM_DEFINE_FLOAT(EKF_ATT_V2_Q4, 0.0f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_Q3, 0.005f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_Q4, 0.0f);
/* gyro measurement noise */
PARAM_DEFINE_FLOAT(EKF_ATT_V2_R0, 0.0008f);
PARAM_DEFINE_FLOAT(EKF_ATT_V2_R1, 0.8f);
PARAM_DEFINE_FLOAT(EKF_ATT_V2_R2, 1.0f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_R0, 0.0008f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_R1, 10000.0f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_R2, 1.0f);
/* accelerometer measurement noise */
PARAM_DEFINE_FLOAT(EKF_ATT_V2_R3, 0.0f);
PARAM_DEFINE_FLOAT(EKF_ATT_V3_R3, 0.0f);
/* offsets in roll, pitch and yaw of sensor plane and body */
PARAM_DEFINE_FLOAT(ATT_ROLL_OFFS, 0.0f);
PARAM_DEFINE_FLOAT(ATT_PITCH_OFFS, 0.0f);
PARAM_DEFINE_FLOAT(ATT_YAW_OFFS, 0.0f);
PARAM_DEFINE_FLOAT(ATT_ROLL_OFF3, 0.0f);
PARAM_DEFINE_FLOAT(ATT_PITCH_OFF3, 0.0f);
PARAM_DEFINE_FLOAT(ATT_YAW_OFF3, 0.0f);
int parameters_init(struct attitude_estimator_ekf_param_handles *h)
{
/* PID parameters */
h->q0 = param_find("EKF_ATT_V2_Q0");
h->q1 = param_find("EKF_ATT_V2_Q1");
h->q2 = param_find("EKF_ATT_V2_Q2");
h->q3 = param_find("EKF_ATT_V2_Q3");
h->q4 = param_find("EKF_ATT_V2_Q4");
h->q0 = param_find("EKF_ATT_V3_Q0");
h->q1 = param_find("EKF_ATT_V3_Q1");
h->q2 = param_find("EKF_ATT_V3_Q2");
h->q3 = param_find("EKF_ATT_V3_Q3");
h->q4 = param_find("EKF_ATT_V3_Q4");
h->r0 = param_find("EKF_ATT_V2_R0");
h->r1 = param_find("EKF_ATT_V2_R1");
h->r2 = param_find("EKF_ATT_V2_R2");
h->r3 = param_find("EKF_ATT_V2_R3");
h->r0 = param_find("EKF_ATT_V3_R0");
h->r1 = param_find("EKF_ATT_V3_R1");
h->r2 = param_find("EKF_ATT_V3_R2");
h->r3 = param_find("EKF_ATT_V3_R3");
h->roll_off = param_find("ATT_ROLL_OFFS");
h->pitch_off = param_find("ATT_PITCH_OFFS");
h->yaw_off = param_find("ATT_YAW_OFFS");
h->roll_off = param_find("ATT_ROLL_OFF3");
h->pitch_off = param_find("ATT_PITCH_OFF3");
h->yaw_off = param_find("ATT_YAW_OFF3");
return OK;
}

View File

@ -1389,6 +1389,7 @@ int commander_thread_main(int argc, char *argv[])
uint64_t start_time = hrt_absolute_time();
uint64_t failsave_ll_start_time = 0;
enum VEHICLE_MANUAL_SAS_MODE manual_sas_mode;
bool state_changed = true;
bool param_init_forced = true;
@ -1828,8 +1829,9 @@ int commander_thread_main(int argc, char *argv[])
} else if (sp_man.manual_sas_switch < -STICK_ON_OFF_LIMIT) {
/* bottom stick position, set altitude hold */
current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ALTITUDE;
/* bottom stick position, set default */
/* this MUST be mapped to extremal position to switch easy in case of emergency */
current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ROLL_PITCH_ABS_YAW_ABS;
} else if (sp_man.manual_sas_switch > STICK_ON_OFF_LIMIT) {
@ -1837,8 +1839,14 @@ int commander_thread_main(int argc, char *argv[])
current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_SIMPLE;
} else {
/* center stick position, set default */
current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ROLL_PITCH_ABS_YAW_ABS;
/* center stick position, set altitude hold */
current_status.manual_sas_mode = VEHICLE_MANUAL_SAS_MODE_ALTITUDE;
}
if (current_status.manual_sas_mode != manual_sas_mode) {
/* publish SAS mode changes immediately */
manual_sas_mode = current_status.manual_sas_mode;
state_changed = true;
}
/*
@ -1849,8 +1857,10 @@ int commander_thread_main(int argc, char *argv[])
(current_status.system_type == VEHICLE_TYPE_HEXAROTOR) ||
(current_status.system_type == VEHICLE_TYPE_OCTOROTOR)
) &&
((sp_man.yaw < -STICK_ON_OFF_LIMIT)) &&
(sp_man.throttle < STICK_THRUST_RANGE * 0.2f)) {
current_status.flag_control_manual_enabled &&
current_status.manual_sas_mode == VEHICLE_MANUAL_SAS_MODE_ROLL_PITCH_ABS_YAW_ABS &&
sp_man.yaw < -STICK_ON_OFF_LIMIT &&
sp_man.throttle < STICK_THRUST_RANGE * 0.1f) {
if (stick_off_counter > STICK_ON_OFF_COUNTER_LIMIT) {
update_state_machine_disarm(stat_pub, &current_status, mavlink_fd);
stick_on_counter = 0;
@ -1862,7 +1872,10 @@ int commander_thread_main(int argc, char *argv[])
}
/* check if left stick is in lower right position --> arm */
if (sp_man.yaw > STICK_ON_OFF_LIMIT && sp_man.throttle < STICK_THRUST_RANGE * 0.2f) {
if (current_status.flag_control_manual_enabled &&
current_status.manual_sas_mode == VEHICLE_MANUAL_SAS_MODE_ROLL_PITCH_ABS_YAW_ABS &&
sp_man.yaw > STICK_ON_OFF_LIMIT &&
sp_man.throttle < STICK_THRUST_RANGE * 0.1f) {
if (stick_on_counter > STICK_ON_OFF_COUNTER_LIMIT) {
update_state_machine_arm(stat_pub, &current_status, mavlink_fd);
stick_on_counter = 0;

View File

@ -53,10 +53,12 @@
#include <uORB/topics/vehicle_status.h>
#include <poll.h>
#include <drivers/drv_gpio.h>
#include <modules/px4iofirmware/protocol.h>
struct gpio_led_s {
struct work_s work;
int gpio_fd;
bool use_io;
int pin;
struct vehicle_status_s status;
int vehicle_status_sub;
@ -75,51 +77,97 @@ void gpio_led_cycle(FAR void *arg);
int gpio_led_main(int argc, char *argv[])
{
int pin = GPIO_EXT_1;
if (argc < 2) {
errx(1, "no argument provided. Try 'start' or 'stop' [-p 1/2]");
errx(1, "usage: gpio_led {start|stop} [-p <1|2|a1|a2|r1|r2>]\n"
"\t-p\tUse pin:\n"
"\t\t1\tPX4FMU GPIO_EXT1 (default)\n"
"\t\t2\tPX4FMU GPIO_EXT2\n"
"\t\ta1\tPX4IO ACC1\n"
"\t\ta2\tPX4IO ACC2\n"
"\t\tr1\tPX4IO RELAY1\n"
"\t\tr2\tPX4IO RELAY2");
} else {
/* START COMMAND HANDLING */
if (!strcmp(argv[1], "start")) {
if (gpio_led_started) {
errx(1, "already running");
}
bool use_io = false;
int pin = GPIO_EXT_1;
if (argc > 2) {
if (!strcmp(argv[1], "-p")) {
if (!strcmp(argv[2], "1")) {
if (!strcmp(argv[2], "-p")) {
if (!strcmp(argv[3], "1")) {
use_io = false;
pin = GPIO_EXT_1;
} else if (!strcmp(argv[2], "2")) {
} else if (!strcmp(argv[3], "2")) {
use_io = false;
pin = GPIO_EXT_2;
} else if (!strcmp(argv[3], "a1")) {
use_io = true;
pin = PX4IO_ACC1;
} else if (!strcmp(argv[3], "a2")) {
use_io = true;
pin = PX4IO_ACC2;
} else if (!strcmp(argv[3], "r1")) {
use_io = true;
pin = PX4IO_RELAY1;
} else if (!strcmp(argv[3], "r2")) {
use_io = true;
pin = PX4IO_RELAY2;
} else {
warnx("[gpio_led] Unsupported pin: %s\n", argv[2]);
exit(1);
errx(1, "unsupported pin: %s", argv[3]);
}
}
}
memset(&gpio_led_data, 0, sizeof(gpio_led_data));
gpio_led_data.use_io = use_io;
gpio_led_data.pin = pin;
int ret = work_queue(LPWORK, &gpio_led_data.work, gpio_led_start, &gpio_led_data, 0);
if (ret != 0) {
warnx("[gpio_led] Failed to queue work: %d\n", ret);
exit(1);
errx(1, "failed to queue work: %d", ret);
} else {
gpio_led_started = true;
char pin_name[24];
if (use_io) {
if (pin & (PX4IO_ACC1 | PX4IO_ACC2)) {
sprintf(pin_name, "PX4IO ACC%i", (pin >> 3));
} else {
sprintf(pin_name, "PX4IO RELAY%i", pin);
}
} else {
sprintf(pin_name, "PX4FMU GPIO_EXT%i", pin);
}
warnx("start, using pin: %s", pin_name);
}
exit(0);
/* STOP COMMAND HANDLING */
} else if (!strcmp(argv[1], "stop")) {
gpio_led_started = false;
if (gpio_led_started) {
gpio_led_started = false;
warnx("stop");
/* INVALID COMMAND */
} else {
errx(1, "not running");
}
} else {
errx(1, "unrecognized command '%s', only supporting 'start' or 'stop'", argv[1]);
@ -131,15 +179,26 @@ void gpio_led_start(FAR void *arg)
{
FAR struct gpio_led_s *priv = (FAR struct gpio_led_s *)arg;
char *gpio_dev;
if (priv->use_io) {
gpio_dev = PX4IO_DEVICE_PATH;
} else {
gpio_dev = PX4FMU_DEVICE_PATH;
}
/* open GPIO device */
priv->gpio_fd = open(GPIO_DEVICE_PATH, 0);
priv->gpio_fd = open(gpio_dev, 0);
if (priv->gpio_fd < 0) {
warnx("[gpio_led] GPIO: open fail\n");
// TODO find way to print errors
//printf("gpio_led: GPIO device \"%s\" open fail\n", gpio_dev);
gpio_led_started = false;
return;
}
/* configure GPIO pin */
/* px4fmu only, px4io doesn't support GPIO_SET_OUTPUT and will ignore */
ioctl(priv->gpio_fd, GPIO_SET_OUTPUT, priv->pin);
/* subscribe to vehicle status topic */
@ -150,11 +209,11 @@ void gpio_led_start(FAR void *arg)
int ret = work_queue(LPWORK, &priv->work, gpio_led_cycle, priv, 0);
if (ret != 0) {
warnx("[gpio_led] Failed to queue work: %d\n", ret);
// TODO find way to print errors
//printf("gpio_led: failed to queue work: %d\n", ret);
gpio_led_started = false;
return;
}
warnx("[gpio_led] Started, using pin GPIO_EXT%i\n", priv->pin);
}
void gpio_led_cycle(FAR void *arg)
@ -200,7 +259,6 @@ void gpio_led_cycle(FAR void *arg)
if (led_state_new) {
ioctl(priv->gpio_fd, GPIO_SET, priv->pin);
} else {
ioctl(priv->gpio_fd, GPIO_CLEAR, priv->pin);
}
@ -211,7 +269,12 @@ void gpio_led_cycle(FAR void *arg)
if (priv->counter > 5)
priv->counter = 0;
/* repeat cycle at 5 Hz*/
if (gpio_led_started)
/* repeat cycle at 5 Hz */
if (gpio_led_started) {
work_queue(LPWORK, &priv->work, gpio_led_cycle, priv, USEC2TICK(200000));
} else {
/* switch off LED on stop */
ioctl(priv->gpio_fd, GPIO_CLEAR, priv->pin);
}
}

View File

@ -373,7 +373,7 @@ void check_waypoints_reached(uint64_t now, const struct vehicle_global_position_
dist = mavlink_wpm_distance_to_point_global_wgs84(wpm->current_active_wp_id, (float)global_pos->lat * 1e-7f, (float)global_pos->lon * 1e-7f, global_pos->alt);
} else if (coordinate_frame == (int)MAV_FRAME_GLOBAL_RELATIVE_ALT) {
dist = mavlink_wpm_distance_to_point_global_wgs84(wpm->current_active_wp_id, global_pos->lat, global_pos->lon, global_pos->relative_alt);
dist = mavlink_wpm_distance_to_point_global_wgs84(wpm->current_active_wp_id, (float)global_pos->lat * 1e-7f, (float)global_pos->lon * 1e-7f, global_pos->relative_alt);
} else if (coordinate_frame == (int)MAV_FRAME_LOCAL_ENU || coordinate_frame == (int)MAV_FRAME_LOCAL_NED) {
dist = mavlink_wpm_distance_to_point_local(wpm->current_active_wp_id, local_pos->x, local_pos->y, local_pos->z);

View File

@ -95,9 +95,16 @@ controls_tick() {
*/
perf_begin(c_gather_dsm);
bool dsm_updated = dsm_input(r_raw_rc_values, &r_raw_rc_count);
if (dsm_updated)
uint16_t temp_count = r_raw_rc_count;
bool dsm_updated = dsm_input(r_raw_rc_values, &temp_count);
if (dsm_updated) {
r_status_flags |= PX4IO_P_STATUS_FLAGS_RC_DSM;
r_raw_rc_count = temp_count & 0x7fff;
if (temp_count & 0x8000)
r_status_flags |= PX4IO_P_STATUS_FLAGS_RC_DSM11;
else
r_status_flags &= ~PX4IO_P_STATUS_FLAGS_RC_DSM11;
}
perf_end(c_gather_dsm);
perf_begin(c_gather_sbus);

View File

@ -40,6 +40,7 @@
*/
#include <nuttx/config.h>
#include <nuttx/arch.h>
#include <fcntl.h>
#include <unistd.h>
@ -101,6 +102,41 @@ dsm_init(const char *device)
return dsm_fd;
}
void
dsm_bind(uint16_t cmd, int pulses)
{
const uint32_t usart1RxAsOutp = GPIO_OUTPUT|GPIO_CNF_OUTPP|GPIO_MODE_50MHz|GPIO_OUTPUT_SET|GPIO_PORTA|GPIO_PIN10;
if (dsm_fd < 0)
return;
switch (cmd) {
case dsm_bind_power_down:
// power down DSM satellite
POWER_RELAY1(0);
break;
case dsm_bind_power_up:
POWER_RELAY1(1);
dsm_guess_format(true);
break;
case dsm_bind_set_rx_out:
stm32_configgpio(usart1RxAsOutp);
break;
case dsm_bind_send_pulses:
for (int i = 0; i < pulses; i++) {
stm32_gpiowrite(usart1RxAsOutp, false);
up_udelay(50);
stm32_gpiowrite(usart1RxAsOutp, true);
up_udelay(50);
}
break;
case dsm_bind_reinit_uart:
// Restore USART rx pin
stm32_configgpio(GPIO_USART1_RX);
break;
}
}
bool
dsm_input(uint16_t *values, uint16_t *num_values)
{
@ -218,7 +254,7 @@ dsm_guess_format(bool reset)
/*
* Iterate the set of sensible sniffed channel sets and see whether
* decoding in 10 or 11-bit mode has yielded anything we recognise.
* decoding in 10 or 11-bit mode has yielded anything we recognize.
*
* XXX Note that due to what seem to be bugs in the DSM2 high-resolution
* stream, we may want to sniff for longer in some cases when we think we
@ -349,6 +385,9 @@ dsm_decode(hrt_abstime frame_time, uint16_t *values, uint16_t *num_values)
values[channel] = value;
}
if (channel_shift == 11)
*num_values |= 0x8000;
/*
* XXX Note that we may be in failsafe here; we need to work out how to detect that.
*/

View File

@ -105,6 +105,7 @@
#define PX4IO_P_STATUS_FLAGS_ARM_SYNC (1 << 9) /* the arming state between IO and FMU is in sync */
#define PX4IO_P_STATUS_FLAGS_INIT_OK (1 << 10) /* initialisation of the IO completed without error */
#define PX4IO_P_STATUS_FLAGS_FAILSAFE (1 << 11) /* failsafe is active */
#define PX4IO_P_STATUS_FLAGS_RC_DSM11 (1 << 12) /* DSM input is 11 bit data */
#define PX4IO_P_STATUS_ALARMS 3 /* alarm flags - alarms latch, write 1 to a bit to clear it */
#define PX4IO_P_STATUS_ALARMS_VBATT_LOW (1 << 0) /* VBatt is very close to regulator dropout */
@ -156,7 +157,22 @@
#define PX4IO_P_SETUP_PWM_DEFAULTRATE 3 /* 'low' PWM frame output rate in Hz */
#define PX4IO_P_SETUP_PWM_ALTRATE 4 /* 'high' PWM frame output rate in Hz */
#define PX4IO_P_SETUP_RELAYS 5 /* bitmask of relay/switch outputs, 0 = off, 1 = on */
/* px4io relay bit definitions */
#define PX4IO_RELAY1 (1<<0)
#define PX4IO_RELAY2 (1<<1)
#define PX4IO_ACC1 (1<<2)
#define PX4IO_ACC2 (1<<3)
#define PX4IO_P_SETUP_VBATT_SCALE 6 /* battery voltage correction factor (float) */
#define PX4IO_P_SETUP_DSM 7 /* DSM bind state */
enum { /* DSM bind states */
dsm_bind_power_down = 0,
dsm_bind_power_up,
dsm_bind_set_rx_out,
dsm_bind_send_pulses,
dsm_bind_reinit_uart
};
#define PX4IO_P_SETUP_SET_DEBUG 9 /* debug level for IO board */
/* autopilot control values, -10000..10000 */

View File

@ -184,6 +184,7 @@ extern void controls_init(void);
extern void controls_tick(void);
extern int dsm_init(const char *device);
extern bool dsm_input(uint16_t *values, uint16_t *num_values);
extern void dsm_bind(uint16_t cmd, int pulses);
extern int sbus_init(const char *device);
extern bool sbus_input(uint16_t *values, uint16_t *num_values);

View File

@ -349,10 +349,10 @@ registers_set_one(uint8_t page, uint8_t offset, uint16_t value)
case PX4IO_P_SETUP_RELAYS:
value &= PX4IO_P_SETUP_RELAYS_VALID;
r_setup_relays = value;
POWER_RELAY1(value & (1 << 0) ? 1 : 0);
POWER_RELAY2(value & (1 << 1) ? 1 : 0);
POWER_ACC1(value & (1 << 2) ? 1 : 0);
POWER_ACC2(value & (1 << 3) ? 1 : 0);
POWER_RELAY1(value & PX4IO_RELAY1 ? 1 : 0);
POWER_RELAY2(value & PX4IO_RELAY2 ? 1 : 0);
POWER_ACC1(value & PX4IO_ACC1 ? 1 : 0);
POWER_ACC2(value & PX4IO_ACC2 ? 1 : 0);
break;
case PX4IO_P_SETUP_SET_DEBUG:
@ -360,6 +360,10 @@ registers_set_one(uint8_t page, uint8_t offset, uint16_t value)
isr_debug(0, "set debug %u\n", (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG]);
break;
case PX4IO_P_SETUP_DSM:
dsm_bind(value & 0x0f, (value >> 4) & 7);
break;
default:
return -1;
}

View File

@ -72,6 +72,7 @@
#include <uORB/topics/vehicle_local_position.h>
#include <uORB/topics/vehicle_local_position_setpoint.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_global_position_setpoint.h>
#include <uORB/topics/vehicle_gps_position.h>
#include <uORB/topics/vehicle_vicon_position.h>
#include <uORB/topics/optical_flow.h>
@ -615,7 +616,7 @@ int sdlog2_thread_main(int argc, char *argv[])
/* --- IMPORTANT: DEFINE NUMBER OF ORB STRUCTS TO WAIT FOR HERE --- */
/* number of messages */
const ssize_t fdsc = 18;
const ssize_t fdsc = 19;
/* Sanity check variable and index */
ssize_t fdsc_count = 0;
/* file descriptors to wait for */
@ -637,6 +638,7 @@ int sdlog2_thread_main(int argc, char *argv[])
struct vehicle_local_position_s local_pos;
struct vehicle_local_position_setpoint_s local_pos_sp;
struct vehicle_global_position_s global_pos;
struct vehicle_global_position_setpoint_s global_pos_sp;
struct vehicle_gps_position_s gps_pos;
struct vehicle_vicon_position_s vicon_pos;
struct optical_flow_s flow;
@ -660,6 +662,7 @@ int sdlog2_thread_main(int argc, char *argv[])
int local_pos_sub;
int local_pos_sp_sub;
int global_pos_sub;
int global_pos_sp_sub;
int gps_pos_sub;
int vicon_pos_sub;
int flow_sub;
@ -689,6 +692,7 @@ int sdlog2_thread_main(int argc, char *argv[])
struct log_ARSP_s log_ARSP;
struct log_FLOW_s log_FLOW;
struct log_GPOS_s log_GPOS;
struct log_GPSP_s log_GPSP;
struct log_ESC_s log_ESC;
} body;
} log_msg = {
@ -775,6 +779,12 @@ int sdlog2_thread_main(int argc, char *argv[])
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- GLOBAL POSITION SETPOINT--- */
subs.global_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint));
fds[fdsc_count].fd = subs.global_pos_sp_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- VICON POSITION --- */
subs.vicon_pos_sub = orb_subscribe(ORB_ID(vehicle_vicon_position));
fds[fdsc_count].fd = subs.vicon_pos_sub;
@ -1077,6 +1087,25 @@ int sdlog2_thread_main(int argc, char *argv[])
LOGBUFFER_WRITE_AND_COUNT(GPOS);
}
/* --- GLOBAL POSITION SETPOINT --- */
if (fds[ifds++].revents & POLLIN) {
orb_copy(ORB_ID(vehicle_global_position_setpoint), subs.global_pos_sp_sub, &buf.global_pos_sp);
log_msg.msg_type = LOG_GPSP_MSG;
log_msg.body.log_GPSP.altitude_is_relative = buf.global_pos_sp.altitude_is_relative;
log_msg.body.log_GPSP.lat = buf.global_pos_sp.lat;
log_msg.body.log_GPSP.lon = buf.global_pos_sp.lon;
log_msg.body.log_GPSP.altitude = buf.global_pos_sp.altitude;
log_msg.body.log_GPSP.yaw = buf.global_pos_sp.yaw;
log_msg.body.log_GPSP.loiter_radius = buf.global_pos_sp.loiter_radius;
log_msg.body.log_GPSP.loiter_direction = buf.global_pos_sp.loiter_direction;
log_msg.body.log_GPSP.nav_cmd = buf.global_pos_sp.nav_cmd;
log_msg.body.log_GPSP.param1 = buf.global_pos_sp.param1;
log_msg.body.log_GPSP.param2 = buf.global_pos_sp.param2;
log_msg.body.log_GPSP.param3 = buf.global_pos_sp.param3;
log_msg.body.log_GPSP.param4 = buf.global_pos_sp.param4;
LOGBUFFER_WRITE_AND_COUNT(GPSP);
}
/* --- VICON POSITION --- */
if (fds[ifds++].revents & POLLIN) {
orb_copy(ORB_ID(vehicle_vicon_position), subs.vicon_pos_sub, &buf.vicon_pos);

View File

@ -149,15 +149,15 @@ struct log_ATTC_s {
/* --- STAT - VEHICLE STATE --- */
#define LOG_STAT_MSG 10
struct log_STAT_s {
unsigned char state;
unsigned char flight_mode;
unsigned char manual_control_mode;
unsigned char manual_sas_mode;
unsigned char armed;
uint8_t state;
uint8_t flight_mode;
uint8_t manual_control_mode;
uint8_t manual_sas_mode;
uint8_t armed;
float battery_voltage;
float battery_current;
float battery_remaining;
unsigned char battery_warning;
uint8_t battery_warning;
};
/* --- RC - RC INPUT CHANNELS --- */
@ -210,13 +210,29 @@ struct log_GPOS_s {
float vel_d;
};
/* --- GPSP - GLOBAL POSITION SETPOINT --- */
#define LOG_GPSP_MSG 17
struct log_GPSP_s {
uint8_t altitude_is_relative;
int32_t lat;
int32_t lon;
float altitude;
float yaw;
float loiter_radius;
int8_t loiter_direction;
uint8_t nav_cmd;
float param1;
float param2;
float param3;
float param4;
};
/* --- ESC - ESC STATE --- */
#define LOG_ESC_MSG 64
#define LOG_ESC_MSG 18
struct log_ESC_s {
uint16_t counter;
uint8_t esc_count;
uint8_t esc_connectiontype;
uint8_t esc_num;
uint16_t esc_address;
uint16_t esc_version;
@ -227,6 +243,7 @@ struct log_ESC_s {
float esc_setpoint;
uint16_t esc_setpoint_raw;
};
#pragma pack(pop)
/* construct list of all message formats */
@ -248,6 +265,7 @@ static const struct log_format_s log_formats[] = {
LOG_FORMAT(ARSP, "fff", "RollRateSP,PitchRateSP,YawRateSP"),
LOG_FORMAT(FLOW, "hhfffBB", "RawX,RawY,CompX,CompY,Dist,Q,SensID"),
LOG_FORMAT(GPOS, "LLffff", "Lat,Lon,Alt,VelN,VelE,VelD"),
LOG_FORMAT(GPSP, "BLLfffbBffff", "AltRel,Lat,Lon,Alt,Yaw,LoiterR,LoiterDir,NavCmd,P1,P2,P3,P4"),
LOG_FORMAT(ESC, "HBBBHHHHHHfH", "Counter,NumESC,Conn,No,Version,Adr,Volt,Amp,RPM,Temp,SetP,SetPRAW"),
};

View File

@ -155,6 +155,7 @@ PARAM_DEFINE_FLOAT(RC14_REV, 1.0f);
PARAM_DEFINE_FLOAT(RC14_DZ, 0.0f);
PARAM_DEFINE_INT32(RC_TYPE, 1); /** 1 = FUTABA, 2 = Spektrum, 3 = Graupner HoTT, 4 = Turnigy 9x */
PARAM_DEFINE_INT32(RC_RL1_DSM_VCC, 0); /* Relay 1 controls DSM VCC */
/* default is conversion factor for the PX4IO / PX4IOAR board, the factor for PX4FMU standalone is different */
PARAM_DEFINE_FLOAT(BAT_V_SCALING, (3.3f * 52.0f / 5.0f / 4095.0f));

View File

@ -230,6 +230,8 @@ private:
float rc_scale_flaps;
float battery_voltage_scaling;
int rc_rl1_DSM_VCC_control;
} _parameters; /**< local copies of interesting parameters */
struct {
@ -278,6 +280,8 @@ private:
param_t rc_scale_flaps;
param_t battery_voltage_scaling;
param_t rc_rl1_DSM_VCC_control;
} _parameter_handles; /**< handles for interesting parameters */
@ -514,6 +518,9 @@ Sensors::Sensors() :
_parameter_handles.battery_voltage_scaling = param_find("BAT_V_SCALING");
/* DSM VCC relay control */
_parameter_handles.rc_rl1_DSM_VCC_control = param_find("RC_RL1_DSM_VCC");
/* fetch initial parameter values */
parameters_update();
}
@ -730,6 +737,11 @@ Sensors::parameters_update()
warnx("Failed updating voltage scaling param");
}
/* relay 1 DSM VCC control */
if (param_get(_parameter_handles.rc_rl1_DSM_VCC_control, &(_parameters.rc_rl1_DSM_VCC_control)) != OK) {
warnx("Failed updating relay 1 DSM VCC control");
}
return OK;
}

View File

@ -71,8 +71,6 @@ extern FAR struct _TCB *sched_gettcb(pid_t pid);
void cpuload_initialize_once()
{
// if (!system_load.initialized)
// {
system_load.start_time = hrt_absolute_time();
int i;
@ -80,27 +78,29 @@ void cpuload_initialize_once()
system_load.tasks[i].valid = false;
}
system_load.total_count = 0;
uint64_t now = hrt_absolute_time();
/* initialize idle thread statically */
system_load.tasks[0].start_time = now;
system_load.tasks[0].total_runtime = 0;
system_load.tasks[0].curr_start_time = 0;
system_load.tasks[0].tcb = sched_gettcb(0);
system_load.tasks[0].valid = true;
system_load.total_count++;
int static_tasks_count = 2; // there are at least 2 threads that should be initialized statically - "idle" and "init"
/* initialize init thread statically */
system_load.tasks[1].start_time = now;
system_load.tasks[1].total_runtime = 0;
system_load.tasks[1].curr_start_time = 0;
system_load.tasks[1].tcb = sched_gettcb(1);
system_load.tasks[1].valid = true;
/* count init thread */
system_load.total_count++;
// }
#ifdef CONFIG_PAGING
static_tasks_count++; // include paging thread in initialization
#endif /* CONFIG_PAGING */
#if CONFIG_SCHED_WORKQUEUE
static_tasks_count++; // include high priority work0 thread in initialization
#endif /* CONFIG_SCHED_WORKQUEUE */
#if CONFIG_SCHED_LPWORK
static_tasks_count++; // include low priority work1 thread in initialization
#endif /* CONFIG_SCHED_WORKQUEUE */
// perform static initialization of "system" threads
for (system_load.total_count = 0; system_load.total_count < static_tasks_count; system_load.total_count++)
{
system_load.tasks[system_load.total_count].start_time = now;
system_load.tasks[system_load.total_count].total_runtime = 0;
system_load.tasks[system_load.total_count].curr_start_time = 0;
system_load.tasks[system_load.total_count].tcb = sched_gettcb(system_load.total_count); // it is assumed that these static threads have consecutive PIDs
system_load.tasks[system_load.total_count].valid = true;
}
}
void sched_note_start(FAR struct tcb_s *tcb)

View File

@ -66,7 +66,7 @@ struct vehicle_global_position_setpoint_s
float altitude; /**< altitude in meters */
float yaw; /**< in radians NED -PI..+PI */
float loiter_radius; /**< loiter radius in meters, 0 for a VTOL to hover */
uint8_t loiter_direction; /**< 1: positive / clockwise, -1, negative. */
int8_t loiter_direction; /**< 1: positive / clockwise, -1, negative. */
enum NAV_CMD nav_cmd; /**< true if loitering is enabled */
float param1;
float param2;

View File

@ -92,7 +92,7 @@ int test_gpio(int argc, char *argv[])
int fd;
int ret = 0;
fd = open(GPIO_DEVICE_PATH, 0);
fd = open(PX4IO_DEVICE_PATH, 0);
if (fd < 0) {
printf("GPIO: open fail\n");

View File

@ -51,19 +51,46 @@
#include <systemlib/cpuload.h>
#include <drivers/drv_hrt.h>
#define CL "\033[K" // clear line
/**
* Start the top application.
*/
__EXPORT int top_main(int argc, char *argv[]);
__EXPORT int top_main(void);
extern struct system_load_s system_load;
bool top_sigusr1_rcvd = false;
int top_main(int argc, char *argv[])
static const char *
tstate_name(const tstate_t s)
{
int t;
switch (s) {
case TSTATE_TASK_INVALID: return "init";
case TSTATE_TASK_PENDING: return "PEND";
case TSTATE_TASK_READYTORUN: return "READY";
case TSTATE_TASK_RUNNING: return "RUN";
case TSTATE_TASK_INACTIVE: return "inact";
case TSTATE_WAIT_SEM: return "w:sem";
#ifndef CONFIG_DISABLE_SIGNALS
case TSTATE_WAIT_SIG: return "w:sig";
#endif
#ifndef CONFIG_DISABLE_MQUEUE
case TSTATE_WAIT_MQNOTEMPTY: return "w:mqe";
case TSTATE_WAIT_MQNOTFULL: return "w:mqf";
#endif
#ifdef CONFIG_PAGING
case TSTATE_WAIT_PAGEFILL: return "w:pgf";
#endif
default:
return "ERROR";
}
}
int
top_main(void)
{
uint64_t total_user_time = 0;
int running_count = 0;
@ -75,7 +102,7 @@ int top_main(int argc, char *argv[])
uint64_t last_times[CONFIG_MAX_TASKS];
float curr_loads[CONFIG_MAX_TASKS];
for (t = 0; t < CONFIG_MAX_TASKS; t++)
for (int t = 0; t < CONFIG_MAX_TASKS; t++)
last_times[t] = 0;
float interval_time_ms_inv = 0.f;
@ -83,16 +110,16 @@ int top_main(int argc, char *argv[])
/* Open console directly to grab CTRL-C signal */
int console = open("/dev/console", O_NONBLOCK | O_RDONLY | O_NOCTTY);
while (true)
// for (t = 0; t < 10; t++)
{
int i;
/* clear screen */
printf("\033[2J");
uint64_t curr_time_ms = (hrt_absolute_time() / 1000LLU);
unsigned int curr_time_s = curr_time_ms / 1000LLU;
for (;;) {
int i;
uint64_t curr_time_us;
uint64_t idle_time_us;
uint64_t idle_time_total_ms = (system_load.tasks[0].total_runtime / 1000LLU);
unsigned int idle_time_total_s = idle_time_total_ms / 1000LLU;
curr_time_us = hrt_absolute_time();
idle_time_us = system_load.tasks[0].total_runtime;
if (new_time > interval_start_time)
interval_time_ms_inv = 1.f / ((float)((new_time - interval_start_time) / 1000));
@ -102,7 +129,38 @@ int top_main(int argc, char *argv[])
total_user_time = 0;
for (i = 0; i < CONFIG_MAX_TASKS; i++) {
uint64_t interval_runtime = (system_load.tasks[i].valid && last_times[i] > 0 && system_load.tasks[i].total_runtime > last_times[i]) ? (system_load.tasks[i].total_runtime - last_times[i]) / 1000 : 0;
uint64_t interval_runtime;
if (system_load.tasks[i].valid) {
switch (system_load.tasks[i].tcb->task_state) {
case TSTATE_TASK_PENDING:
case TSTATE_TASK_READYTORUN:
case TSTATE_TASK_RUNNING:
running_count++;
break;
case TSTATE_TASK_INVALID:
case TSTATE_TASK_INACTIVE:
case TSTATE_WAIT_SEM:
#ifndef CONFIG_DISABLE_SIGNALS
case TSTATE_WAIT_SIG:
#endif
#ifndef CONFIG_DISABLE_MQUEUE
case TSTATE_WAIT_MQNOTEMPTY:
case TSTATE_WAIT_MQNOTFULL:
#endif
#ifdef CONFIG_PAGING
case TSTATE_WAIT_PAGEFILL:
#endif
blocked_count++;
break;
}
}
interval_runtime = (system_load.tasks[i].valid && last_times[i] > 0 &&
system_load.tasks[i].total_runtime > last_times[i])
? (system_load.tasks[i].total_runtime - last_times[i]) / 1000
: 0;
last_times[i] = system_load.tasks[i].total_runtime;
@ -111,7 +169,6 @@ int top_main(int argc, char *argv[])
if (i > 0)
total_user_time += interval_runtime;
} else
curr_loads[i] = 0;
}
@ -119,127 +176,99 @@ int top_main(int argc, char *argv[])
for (i = 0; i < CONFIG_MAX_TASKS; i++) {
if (system_load.tasks[i].valid && (new_time > interval_start_time)) {
if (system_load.tasks[i].tcb->pid == 0) {
float idle = curr_loads[0];
float task_load = (float)(total_user_time) * interval_time_ms_inv;
float idle;
float task_load;
float sched_load;
if (task_load > (1.f - idle)) task_load = (1.f - idle); /* this can happen if one tasks total runtime was not computed correctly by the scheduler instrumentation TODO */
idle = curr_loads[0];
task_load = (float)(total_user_time) * interval_time_ms_inv;
float sched_load = 1.f - idle - task_load;
/* this can happen if one tasks total runtime was not computed
correctly by the scheduler instrumentation TODO */
if (task_load > (1.f - idle))
task_load = (1.f - idle);
sched_load = 1.f - idle - task_load;
/* print system information */
printf("\033[H"); /* cursor home */
printf("\033[KProcesses: %d total, %d running, %d sleeping\n", system_load.total_count, running_count, blocked_count);
printf("\033[KCPU usage: %d.%02d%% tasks, %d.%02d%% sched, %d.%02d%% idle\n", (int)(task_load * 100), (int)((task_load * 10000.0f) - (int)(task_load * 100.0f) * 100), (int)(sched_load * 100), (int)((sched_load * 10000.0f) - (int)(sched_load * 100.0f) * 100), (int)(idle * 100), (int)((idle * 10000.0f) - ((int)(idle * 100)) * 100));
printf("\033[KUptime: %u.%03u s total, %d.%03d s idle\n\033[K\n", curr_time_s, (unsigned int)(curr_time_ms - curr_time_s * 1000LLU), idle_time_total_s, (int)(idle_time_total_ms - idle_time_total_s * 1000));
printf("\033[H"); /* move cursor home and clear screen */
printf(CL "Processes: %d total, %d running, %d sleeping\n",
system_load.total_count,
running_count,
blocked_count);
printf(CL "CPU usage: %.2f%% tasks, %.2f%% sched, %.2f%% idle\n",
(double)(task_load * 100.f),
(double)(sched_load * 100.f),
(double)(idle * 100.f));
printf(CL "Uptime: %.3fs total, %.3fs idle\n\n",
(double)curr_time_us / 1000000.d,
(double)idle_time_us / 1000000.d);
/* 34 chars command name length (32 chars plus two spaces) */
char header_spaces[CONFIG_TASK_NAME_SIZE + 1];
memset(header_spaces, ' ', CONFIG_TASK_NAME_SIZE);
header_spaces[CONFIG_TASK_NAME_SIZE] = '\0';
/* header for task list */
printf(CL "%4s %*-s %8s %6s %11s %10s %-6s\n",
"PID",
CONFIG_TASK_NAME_SIZE, "COMMAND",
"CPU(ms)",
"CPU(%)",
"USED/STACK",
"PRIO(BASE)",
#if CONFIG_RR_INTERVAL > 0
printf("\033[KPID\tCOMMAND%s CPU TOTAL \t%%CPU CURR \tSTACK USE\tCURR (BASE) PRIO\tRR SLICE\n", header_spaces);
"TSLICE"
#else
printf("\033[KPID\tCOMMAND%s CPU TOTAL \t%%CPU CURR \tSTACK USE\tCURR (BASE) PRIO\n", header_spaces);
#endif
} else {
enum tstate_e task_state = (enum tstate_e)system_load.tasks[i].tcb->task_state;
if (task_state == TSTATE_TASK_PENDING ||
task_state == TSTATE_TASK_READYTORUN ||
task_state == TSTATE_TASK_RUNNING) {
running_count++;
}
if (task_state == TSTATE_TASK_INACTIVE || /* BLOCKED - Initialized but not yet activated */
task_state == TSTATE_WAIT_SEM /* BLOCKED - Waiting for a semaphore */
#ifndef CONFIG_DISABLE_SIGNALS
|| task_state == TSTATE_WAIT_SIG /* BLOCKED - Waiting for a signal */
#endif
#ifndef CONFIG_DISABLE_MQUEUE
|| task_state == TSTATE_WAIT_MQNOTEMPTY /* BLOCKED - Waiting for a MQ to become not empty. */
|| task_state == TSTATE_WAIT_MQNOTFULL /* BLOCKED - Waiting for a MQ to become not full. */
#endif
#ifdef CONFIG_PAGING
|| task_state == TSTATE_WAIT_PAGEFILL /* BLOCKED - Waiting for page fill */
#endif
) {
blocked_count++;
}
char spaces[CONFIG_TASK_NAME_SIZE + 2];
/* count name len */
int namelen = 0;
while (namelen < CONFIG_TASK_NAME_SIZE) {
if (system_load.tasks[i].tcb->name[namelen] == '\0') break;
namelen++;
}
int s = 0;
for (s = 0; s < CONFIG_TASK_NAME_SIZE + 2 - namelen; s++) {
spaces[s] = ' ';
}
spaces[s] = '\0';
char *runtime_spaces = " ";
if ((system_load.tasks[i].total_runtime / 1000) < 99) {
runtime_spaces = "";
}
unsigned stack_size = (uintptr_t)system_load.tasks[i].tcb->adj_stack_ptr -
(uintptr_t)system_load.tasks[i].tcb->stack_alloc_ptr;
unsigned stack_free = 0;
uint8_t *stack_sweeper = (uint8_t *)system_load.tasks[i].tcb->stack_alloc_ptr;
while (stack_free < stack_size) {
if (*stack_sweeper++ != 0xff)
break;
stack_free++;
}
printf("\033[K % 2d\t%s%s % 8lld ms%s \t % 2d.%03d \t % 4u / % 4u",
(int)system_load.tasks[i].tcb->pid,
system_load.tasks[i].tcb->name,
spaces,
(system_load.tasks[i].total_runtime / 1000),
runtime_spaces,
(int)(curr_loads[i] * 100),
(int)(curr_loads[i] * 100000.0f - (int)(curr_loads[i] * 1000.0f) * 100),
stack_size - stack_free,
stack_size);
/* Print scheduling info with RR time slice */
#if CONFIG_RR_INTERVAL > 0
printf("\t%d\t(%d)\t\t%d\n", (int)system_load.tasks[i].tcb->sched_priority, (int)system_load.tasks[i].tcb->base_priority, (int)system_load.tasks[i].tcb->timeslice);
#else
/* Print scheduling info without time slice*/
printf("\t%d (%d)\n", (int)system_load.tasks[i].tcb->sched_priority, (int)system_load.tasks[i].tcb->base_priority);
"STATE"
#endif
);
}
unsigned stack_size = (uintptr_t)system_load.tasks[i].tcb->adj_stack_ptr -
(uintptr_t)system_load.tasks[i].tcb->stack_alloc_ptr;
unsigned stack_free = 0;
uint8_t *stack_sweeper = (uint8_t *)system_load.tasks[i].tcb->stack_alloc_ptr;
while (stack_free < stack_size) {
if (*stack_sweeper++ != 0xff)
break;
stack_free++;
}
printf(CL "%4d %*-s %8lld %2d.%03d %5u/%5u %3u (%3u) ",
system_load.tasks[i].tcb->pid,
CONFIG_TASK_NAME_SIZE, system_load.tasks[i].tcb->name,
(system_load.tasks[i].total_runtime / 1000),
(int)(curr_loads[i] * 100),
(int)(curr_loads[i] * 100000.0f - (int)(curr_loads[i] * 1000.0f) * 100),
stack_size - stack_free,
stack_size,
system_load.tasks[i].tcb->sched_priority,
system_load.tasks[i].tcb->base_priority);
#if CONFIG_RR_INTERVAL > 0
/* print scheduling info with RR time slice */
printf(" %6d\n", system_load.tasks[i].tcb->timeslice);
#else
// print task state instead
printf(" %-6s\n", tstate_name(system_load.tasks[i].tcb->task_state));
#endif
}
}
printf("\033[K[ Hit Ctrl-C to quit. ]\n\033[J");
fflush(stdout);
interval_start_time = new_time;
char c;
/* Sleep 200 ms waiting for user input four times */
/* Sleep 200 ms waiting for user input five times ~ 1s */
/* XXX use poll ... */
for (int k = 0; k < 4; k++) {
for (int k = 0; k < 5; k++) {
char c;
if (read(console, &c, 1) == 1) {
if (c == 0x03 || c == 0x63) {
printf("Abort\n");
switch (c) {
case 0x03: // ctrl-c
case 0x1b: // esc
case 'c':
case 'q':
close(console);
return OK;
/* not reached */
}
}