MPC auto - Add MPC_YAW_MODE: towards waypoint (yaw first) mode. This mode ensures that

the vehicle yaws towards the next waypoint before accelerating. This is
required for drones with front vision and aerodynamic multicopters such
as standard vtol planes or highspeed multirotors.
This commit is contained in:
bresch 2019-06-27 14:07:48 +02:00 committed by Mathieu Bresciani
parent 2ed00c9cb6
commit 15ec73629b
6 changed files with 74 additions and 45 deletions

View File

@ -118,6 +118,8 @@ void FlightTaskAuto::_limitYawRate()
{ {
const float yawrate_max = math::radians(_param_mpc_yawrauto_max.get()); const float yawrate_max = math::radians(_param_mpc_yawrauto_max.get());
_yaw_sp_aligned = true;
if (PX4_ISFINITE(_yaw_setpoint) && PX4_ISFINITE(_yaw_sp_prev)) { if (PX4_ISFINITE(_yaw_setpoint) && PX4_ISFINITE(_yaw_sp_prev)) {
// Limit the rate of change of the yaw setpoint // Limit the rate of change of the yaw setpoint
const float dyaw_desired = matrix::wrap_pi(_yaw_setpoint - _yaw_sp_prev); const float dyaw_desired = matrix::wrap_pi(_yaw_setpoint - _yaw_sp_prev);
@ -126,10 +128,16 @@ void FlightTaskAuto::_limitYawRate()
_yaw_setpoint = _yaw_sp_prev + dyaw; _yaw_setpoint = _yaw_sp_prev + dyaw;
_yaw_setpoint = matrix::wrap_pi(_yaw_setpoint); _yaw_setpoint = matrix::wrap_pi(_yaw_setpoint);
_yaw_sp_prev = _yaw_setpoint; _yaw_sp_prev = _yaw_setpoint;
// The yaw setpoint is aligned when its rate is not saturated
_yaw_sp_aligned = fabsf(dyaw_desired) < fabsf(dyaw_max);
} }
if (PX4_ISFINITE(_yawspeed_setpoint)) { if (PX4_ISFINITE(_yawspeed_setpoint)) {
_yawspeed_setpoint = math::constrain(_yawspeed_setpoint, -yawrate_max, yawrate_max); _yawspeed_setpoint = math::constrain(_yawspeed_setpoint, -yawrate_max, yawrate_max);
// The yaw setpoint is aligned when its rate is not saturated
_yaw_sp_aligned = fabsf(_yawspeed_setpoint) < yawrate_max;
} }
} }
@ -300,6 +308,7 @@ void FlightTaskAuto::_set_heading_from_mode()
switch (_param_mpc_yaw_mode.get()) { switch (_param_mpc_yaw_mode.get()) {
case 0: // Heading points towards the current waypoint. case 0: // Heading points towards the current waypoint.
case 4: // Same as 0 but yaw fisrt and then go
v = Vector2f(_target) - Vector2f(_position); v = Vector2f(_target) - Vector2f(_position);
break; break;

View File

@ -108,6 +108,7 @@ protected:
int _mission_gear = landing_gear_s::GEAR_KEEP; int _mission_gear = landing_gear_s::GEAR_KEEP;
float _yaw_sp_prev = NAN; float _yaw_sp_prev = NAN;
bool _yaw_sp_aligned{false};
ObstacleAvoidance _obstacle_avoidance; /**< class adjusting setpoints according to external avoidance module's input */ ObstacleAvoidance _obstacle_avoidance; /**< class adjusting setpoints according to external avoidance module's input */

View File

@ -49,8 +49,19 @@ void FlightTaskAutoLine::_generateSetpoints()
_generateHeadingAlongTrack(); _generateHeadingAlongTrack();
} }
_generateAltitudeSetpoints(); if (_param_mpc_yaw_mode.get() == 4 && !_yaw_sp_aligned) {
_generateXYsetpoints(); // Wait for the yaw setpoint to be aligned
if (!_position_locked) {
_velocity_setpoint.setAll(0.f);
_position_setpoint = _position;
_position_locked = true;
}
} else {
_position_locked = false;
_generateAltitudeSetpoints();
_generateXYsetpoints();
}
} }
void FlightTaskAutoLine::_setSpeedAtTarget() void FlightTaskAutoLine::_setSpeedAtTarget()

View File

@ -66,4 +66,5 @@ protected:
private: private:
void _setSpeedAtTarget(); /**< Sets desiered speed at target */ void _setSpeedAtTarget(); /**< Sets desiered speed at target */
float _speed_at_target = 0.0f; float _speed_at_target = 0.0f;
bool _position_locked{false};
}; };

View File

@ -145,61 +145,67 @@ void FlightTaskAutoLineSmoothVel::_prepareSetpoints()
_checkEkfResetCounters(); _checkEkfResetCounters();
_want_takeoff = false; _want_takeoff = false;
if (PX4_ISFINITE(_position_setpoint(0)) && if (_param_mpc_yaw_mode.get() == 4 && !_yaw_sp_aligned) {
PX4_ISFINITE(_position_setpoint(1))) { // Wait for the yaw setpoint to be aligned
// Use position setpoints to generate velocity setpoints _velocity_setpoint.setAll(0.f);
// Get various path specific vectors. */ } else {
Vector2f pos_traj; if (PX4_ISFINITE(_position_setpoint(0)) &&
pos_traj(0) = _trajectory[0].getCurrentPosition(); PX4_ISFINITE(_position_setpoint(1))) {
pos_traj(1) = _trajectory[1].getCurrentPosition(); // Use position setpoints to generate velocity setpoints
Vector2f pos_sp_xy(_position_setpoint);
Vector2f pos_traj_to_dest(pos_sp_xy - pos_traj);
Vector2f u_prev_to_dest = Vector2f(pos_sp_xy - Vector2f(_prev_wp)).unit_or_zero();
Vector2f prev_to_pos(pos_traj - Vector2f(_prev_wp));
Vector2f closest_pt = Vector2f(_prev_wp) + u_prev_to_dest * (prev_to_pos * u_prev_to_dest);
Vector2f u_pos_traj_to_dest_xy(Vector2f(pos_traj_to_dest).unit_or_zero());
// Compute the maximum possible velocity on the track given the remaining distance, the maximum acceleration and the maximum jerk. // Get various path specific vectors. */
// We assume a constant acceleration profile with a delay of 2*accel/jerk (time to reach the desired acceleration from opposite max acceleration) Vector2f pos_traj;
// Equation to solve: 0 = vel^2 - 2*acc*(x - vel*2*acc/jerk) pos_traj(0) = _trajectory[0].getCurrentPosition();
// To avoid high gain at low distance due to the sqrt, we take the minimum of this velocity and a slope of "traj_p" m/s per meter pos_traj(1) = _trajectory[1].getCurrentPosition();
float b = 4.f * _param_mpc_acc_hor.get() * _param_mpc_acc_hor.get() / _param_mpc_jerk_auto.get(); Vector2f pos_sp_xy(_position_setpoint);
float c = - 2.f * _param_mpc_acc_hor.get() * pos_traj_to_dest.length(); Vector2f pos_traj_to_dest(pos_sp_xy - pos_traj);
float max_speed = 0.5f * (-b + sqrtf(b * b - 4.f * c)); Vector2f u_prev_to_dest = Vector2f(pos_sp_xy - Vector2f(_prev_wp)).unit_or_zero();
float speed_sp_track = math::min(max_speed, pos_traj_to_dest.length() * _param_mpc_xy_traj_p.get()); Vector2f prev_to_pos(pos_traj - Vector2f(_prev_wp));
speed_sp_track = math::constrain(speed_sp_track, 0.0f, _mc_cruise_speed); Vector2f closest_pt = Vector2f(_prev_wp) + u_prev_to_dest * (prev_to_pos * u_prev_to_dest);
Vector2f u_pos_traj_to_dest_xy(Vector2f(pos_traj_to_dest).unit_or_zero());
Vector2f vel_sp_xy = u_pos_traj_to_dest_xy * speed_sp_track; // Compute the maximum possible velocity on the track given the remaining distance, the maximum acceleration and the maximum jerk.
// We assume a constant acceleration profile with a delay of 2*accel/jerk (time to reach the desired acceleration from opposite max acceleration)
// Equation to solve: 0 = vel^2 - 2*acc*(x - vel*2*acc/jerk)
// To avoid high gain at low distance due to the sqrt, we take the minimum of this velocity and a slope of "traj_p" m/s per meter
float b = 4.f * _param_mpc_acc_hor.get() * _param_mpc_acc_hor.get() / _param_mpc_jerk_auto.get();
float c = - 2.f * _param_mpc_acc_hor.get() * pos_traj_to_dest.length();
float max_speed = 0.5f * (-b + sqrtf(b * b - 4.f * c));
float speed_sp_track = math::min(max_speed, pos_traj_to_dest.length() * _param_mpc_xy_traj_p.get());
speed_sp_track = math::constrain(speed_sp_track, 0.0f, _mc_cruise_speed);
for (int i = 0; i < 2; i++) { Vector2f vel_sp_xy = u_pos_traj_to_dest_xy * speed_sp_track;
// If available, constrain the velocity using _velocity_setpoint(.)
if (PX4_ISFINITE(_velocity_setpoint(i))) {
_velocity_setpoint(i) = _constrainOneSide(vel_sp_xy(i), _velocity_setpoint(i));
} else { for (int i = 0; i < 2; i++) {
_velocity_setpoint(i) = vel_sp_xy(i); // If available, constrain the velocity using _velocity_setpoint(.)
if (PX4_ISFINITE(_velocity_setpoint(i))) {
_velocity_setpoint(i) = _constrainOneSide(vel_sp_xy(i), _velocity_setpoint(i));
} else {
_velocity_setpoint(i) = vel_sp_xy(i);
}
_velocity_setpoint(i) += (closest_pt(i) - _trajectory[i].getCurrentPosition()) *
_param_mpc_xy_traj_p.get(); // Along-track setpoint + cross-track P controller
} }
_velocity_setpoint(i) += (closest_pt(i) - _trajectory[i].getCurrentPosition()) *
_param_mpc_xy_traj_p.get(); // Along-track setpoint + cross-track P controller
} }
} if (PX4_ISFINITE(_position_setpoint(2))) {
const float vel_sp_z = (_position_setpoint(2) - _trajectory[2].getCurrentPosition()) *
_param_mpc_z_traj_p.get(); // Generate a velocity target for the trajectory using a simple P loop
if (PX4_ISFINITE(_position_setpoint(2))) { // If available, constrain the velocity using _velocity_setpoint(.)
const float vel_sp_z = (_position_setpoint(2) - _trajectory[2].getCurrentPosition()) * if (PX4_ISFINITE(_velocity_setpoint(2))) {
_param_mpc_z_traj_p.get(); // Generate a velocity target for the trajectory using a simple P loop _velocity_setpoint(2) = _constrainOneSide(vel_sp_z, _velocity_setpoint(2));
// If available, constrain the velocity using _velocity_setpoint(.) } else {
if (PX4_ISFINITE(_velocity_setpoint(2))) { _velocity_setpoint(2) = vel_sp_z;
_velocity_setpoint(2) = _constrainOneSide(vel_sp_z, _velocity_setpoint(2)); }
} else { _want_takeoff = _velocity_setpoint(2) < -0.3f;
_velocity_setpoint(2) = vel_sp_z;
} }
_want_takeoff = _velocity_setpoint(2) < -0.3f;
} }
} }

View File

@ -762,11 +762,12 @@ PARAM_DEFINE_FLOAT(MPC_SPOOLUP_TIME, 1.0f);
* Specifies the heading in Auto. * Specifies the heading in Auto.
* *
* @min 0 * @min 0
* @max 3 * @max 4
* @value 0 towards waypoint * @value 0 towards waypoint
* @value 1 towards home * @value 1 towards home
* @value 2 away from home * @value 2 away from home
* @value 3 along trajectory * @value 3 along trajectory
* @value 4 towards waypoint (yaw first)
* @group Mission * @group Mission
*/ */
PARAM_DEFINE_INT32(MPC_YAW_MODE, 0); PARAM_DEFINE_INT32(MPC_YAW_MODE, 0);