Checkpoint: Working, but non-verified full mag calibration

This commit is contained in:
Lorenz Meier 2012-10-21 15:36:29 +02:00
parent 28171fb596
commit 096bf2dc93
4 changed files with 408 additions and 143 deletions

View File

@ -0,0 +1,175 @@
#include <math.h>
#include "calibration_routines.h"
int sphere_fit_least_squares(const float x[], const float y[], const float z[],
unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z, float *sphere_radius) {
float x_sumplain = 0.0f;
float x_sumsq = 0.0f;
float x_sumcube = 0.0f;
float y_sumplain = 0.0f;
float y_sumsq = 0.0f;
float y_sumcube = 0.0f;
float z_sumplain = 0.0f;
float z_sumsq = 0.0f;
float z_sumcube = 0.0f;
float xy_sum = 0.0f;
float xz_sum = 0.0f;
float yz_sum = 0.0f;
float x2y_sum = 0.0f;
float x2z_sum = 0.0f;
float y2x_sum = 0.0f;
float y2z_sum = 0.0f;
float z2x_sum = 0.0f;
float z2y_sum = 0.0f;
for (unsigned int i = 0; i < size; i++) {
float x2 = x[i] * x[i];
float y2 = y[i] * y[i];
float z2 = z[i] * z[i];
x_sumplain += x[i];
x_sumsq += x2;
x_sumcube += x2 * x[i];
y_sumplain += y[i];
y_sumsq += y2;
y_sumcube += y2 * y[i];
z_sumplain += z[i];
z_sumsq += z2;
z_sumcube += z2 * z[i];
xy_sum += x[i] * y[i];
xz_sum += x[i] * z[i];
yz_sum += y[i] * z[i];
x2y_sum += x2 * y[i];
x2z_sum += x2 * z[i];
y2x_sum += y2 * x[i];
y2z_sum += y2 * z[i];
z2x_sum += z2 * x[i];
z2y_sum += z2 * y[i];
}
//
//Least Squares Fit a sphere A,B,C with radius squared Rsq to 3D data
//
// P is a structure that has been computed with the data earlier.
// P.npoints is the number of elements; the length of X,Y,Z are identical.
// P's members are logically named.
//
// X[n] is the x component of point n
// Y[n] is the y component of point n
// Z[n] is the z component of point n
//
// A is the x coordiante of the sphere
// B is the y coordiante of the sphere
// C is the z coordiante of the sphere
// Rsq is the radius squared of the sphere.
//
//This method should converge; maybe 5-100 iterations or more.
//
float x_sum = x_sumplain / size; //sum( X[n] )
float x_sum2 = x_sumsq / size; //sum( X[n]^2 )
float x_sum3 = x_sumcube / size; //sum( X[n]^3 )
float y_sum = y_sumplain / size; //sum( Y[n] )
float y_sum2 = y_sumsq / size; //sum( Y[n]^2 )
float y_sum3 = y_sumcube / size; //sum( Y[n]^3 )
float z_sum = z_sumplain / size; //sum( Z[n] )
float z_sum2 = z_sumsq / size; //sum( Z[n]^2 )
float z_sum3 = z_sumcube / size; //sum( Z[n]^3 )
float XY = xy_sum / size; //sum( X[n] * Y[n] )
float XZ = xz_sum / size; //sum( X[n] * Z[n] )
float YZ = yz_sum / size; //sum( Y[n] * Z[n] )
float X2Y = x2y_sum / size; //sum( X[n]^2 * Y[n] )
float X2Z = x2z_sum / size; //sum( X[n]^2 * Z[n] )
float Y2X = y2x_sum / size; //sum( Y[n]^2 * X[n] )
float Y2Z = y2z_sum / size; //sum( Y[n]^2 * Z[n] )
float Z2X = z2x_sum / size; //sum( Z[n]^2 * X[n] )
float Z2Y = z2y_sum / size; //sum( Z[n]^2 * Y[n] )
//Reduction of multiplications
float F0 = x_sum2 + y_sum2 + z_sum2;
float F1 = 0.5f * F0;
float F2 = -8.0f * (x_sum3 + Y2X + Z2X);
float F3 = -8.0f * (X2Y + y_sum3 + Z2Y);
float F4 = -8.0f * (X2Z + Y2Z + z_sum3);
//Set initial conditions:
float A = x_sum;
float B = y_sum;
float C = z_sum;
//First iteration computation:
float A2 = A*A;
float B2 = B*B;
float C2 = C*C;
float QS = A2 + B2 + C2;
float QB = -2.0f * (A*x_sum + B*y_sum + C*z_sum);
//Set initial conditions:
float Rsq = F0 + QB + QS;
//First iteration computation:
float Q0 = 0.5f * (QS - Rsq);
float Q1 = F1 + Q0;
float Q2 = 8.0f * ( QS - Rsq + QB + F0 );
float aA,aB,aC,nA,nB,nC,dA,dB,dC;
//Iterate N times, ignore stop condition.
int n = 0;
while( n < max_iterations ){
n++;
//Compute denominator:
aA = Q2 + 16.0f * (A2 - 2.0f * A*x_sum + x_sum2);
aB = Q2 + 16.0f *(B2 - 2.0f * B*y_sum + y_sum2);
aC = Q2 + 16.0f *(C2 - 2.0f * C*z_sum + z_sum2);
aA = (aA == 0.0f) ? 1.0f : aA;
aB = (aB == 0.0f) ? 1.0f : aB;
aC = (aC == 0.0f) ? 1.0f : aC;
//Compute next iteration
nA = A - ((F2 + 16.0f * ( B*XY + C*XZ + x_sum*(-A2 - Q0) + A*(x_sum2 + Q1 - C*z_sum - B*y_sum) ) )/aA);
nB = B - ((F3 + 16.0f * ( A*XY + C*YZ + y_sum*(-B2 - Q0) + B*(y_sum2 + Q1 - A*x_sum - C*z_sum) ) )/aB);
nC = C - ((F4 + 16.0f * ( A*XZ + B*YZ + z_sum*(-C2 - Q0) + C*(z_sum2 + Q1 - A*x_sum - B*y_sum) ) )/aC);
//Check for stop condition
dA = (nA - A);
dB = (nB - B);
dC = (nC - C);
if( (dA*dA + dB*dB + dC*dC) <= delta ){ break; }
//Compute next iteration's values
A = nA;
B = nB;
C = nC;
A2 = A*A;
B2 = B*B;
C2 = C*C;
QS = A2 + B2 + C2;
QB = -2.0f * (A*x_sum + B*y_sum + C*z_sum);
Rsq = F0 + QB + QS;
Q0 = 0.5f * (QS - Rsq);
Q1 = F1 + Q0;
Q2 = 8.0f * ( QS - Rsq + QB + F0 );
}
*sphere_x = A;
*sphere_y = B;
*sphere_z = C;
*sphere_radius = sqrtf(Rsq);
return 0;
}

View File

@ -0,0 +1,21 @@
/**
* Least-squares fit of a sphere to a set of points.
*
* Fits a sphere to a set of points on the sphere surface.
*
* @param x point coordinates on the X axis
* @param y point coordinates on the Y axis
* @param z point coordinates on the Z axis
* @param size number of points
* @param max_iterations abort if maximum number of iterations have been reached. If unsure, set to 100.
* @param delta abort if error is below delta. If unsure, set to 0 to run max_iterations times.
* @param sphere_x coordinate of the sphere center on the X axis
* @param sphere_y coordinate of the sphere center on the Y axis
* @param sphere_z coordinate of the sphere center on the Z axis
* @param sphere_radius sphere radius
*
* @return 0 on success, 1 on failure
*/
int sphere_fit_least_squares(const float x[], const float y[], const float z[],
unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z, float *sphere_radius);

View File

@ -83,6 +83,8 @@
#include <drivers/drv_mag.h> #include <drivers/drv_mag.h>
#include <drivers/drv_baro.h> #include <drivers/drv_baro.h>
#include "calibration_routines.h"
PARAM_DEFINE_INT32(SYS_FAILSAVE_LL, 0); /**< Go into low-level failsafe after 0 ms */ PARAM_DEFINE_INT32(SYS_FAILSAVE_LL, 0); /**< Go into low-level failsafe after 0 ms */
//PARAM_DEFINE_INT32(SYS_FAILSAVE_HL, 0); /**< Go into high-level failsafe after 0 ms */ //PARAM_DEFINE_INT32(SYS_FAILSAVE_HL, 0); /**< Go into high-level failsafe after 0 ms */
@ -288,8 +290,9 @@ void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
status->flag_preflight_mag_calibration = true; status->flag_preflight_mag_calibration = true;
state_machine_publish(status_pub, status, mavlink_fd); state_machine_publish(status_pub, status, mavlink_fd);
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); int sub_mag = orb_subscribe(ORB_ID(sensor_mag));
struct sensor_combined_s raw; orb_set_interval(sub_mag, 22);
struct mag_report mag;
/* 30 seconds */ /* 30 seconds */
uint64_t calibration_interval = 45 * 1000 * 1000; uint64_t calibration_interval = 45 * 1000 * 1000;
@ -306,8 +309,7 @@ void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
int fd = open(MAG_DEVICE_PATH, 0); int fd = open(MAG_DEVICE_PATH, 0);
/* erase old calibration */
struct mag_scale mscale_null = { struct mag_scale mscale_null = {
0.0f, 0.0f,
1.0f, 1.0f,
@ -321,8 +323,15 @@ void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
mavlink_log_info(mavlink_fd, "[commander] failed to set scale / offsets for mag"); mavlink_log_info(mavlink_fd, "[commander] failed to set scale / offsets for mag");
} }
/* calibrate range */
if (OK != ioctl(fd, MAGIOCCALIBRATE, fd)) {
warnx("failed to calibrate scale");
}
close(fd); close(fd);
/* calibrate offsets */
uint64_t calibration_start = hrt_absolute_time(); uint64_t calibration_start = hrt_absolute_time();
uint64_t axis_deadline = hrt_absolute_time(); uint64_t axis_deadline = hrt_absolute_time();
@ -331,10 +340,16 @@ void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
const char axislabels[3] = { 'Z', 'X', 'Y'}; const char axislabels[3] = { 'Z', 'X', 'Y'};
int axis_index = -1; int axis_index = -1;
while (hrt_absolute_time() < calibration_deadline) { const int calibration_maxcount = 2000;
float *x = malloc(sizeof(float) * calibration_maxcount);
float *y = malloc(sizeof(float) * calibration_maxcount);
float *z = malloc(sizeof(float) * calibration_maxcount);
while (hrt_absolute_time() < calibration_deadline &&
calibration_counter < calibration_maxcount) {
/* wait blocking for new data */ /* wait blocking for new data */
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; struct pollfd fds[1] = { { .fd = sub_mag, .events = POLLIN } };
/* user guidance */ /* user guidance */
if (hrt_absolute_time() >= axis_deadline && if (hrt_absolute_time() >= axis_deadline &&
@ -363,30 +378,34 @@ void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
// } // }
if (poll(fds, 1, 1000)) { if (poll(fds, 1, 1000)) {
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); orb_copy(ORB_ID(sensor_mag), sub_mag, &mag);
x[calibration_counter] = mag.x;
y[calibration_counter] = mag.y;
z[calibration_counter] = mag.z;
/* get min/max values */ /* get min/max values */
/* ignore other axes */ // if (mag.x < mag_min[0]) {
if (raw.magnetometer_ga[0] < mag_min[0]) { // mag_min[0] = mag.x;
mag_min[0] = raw.magnetometer_ga[0]; // }
} // else if (mag.x > mag_max[0]) {
else if (raw.magnetometer_ga[0] > mag_max[0]) { // mag_max[0] = mag.x;
mag_max[0] = raw.magnetometer_ga[0]; // }
}
if (raw.magnetometer_ga[1] < mag_min[1]) { // if (raw.magnetometer_ga[1] < mag_min[1]) {
mag_min[1] = raw.magnetometer_ga[1]; // mag_min[1] = raw.magnetometer_ga[1];
} // }
else if (raw.magnetometer_ga[1] > mag_max[1]) { // else if (raw.magnetometer_ga[1] > mag_max[1]) {
mag_max[1] = raw.magnetometer_ga[1]; // mag_max[1] = raw.magnetometer_ga[1];
} // }
if (raw.magnetometer_ga[2] < mag_min[2]) { // if (raw.magnetometer_ga[2] < mag_min[2]) {
mag_min[2] = raw.magnetometer_ga[2]; // mag_min[2] = raw.magnetometer_ga[2];
} // }
else if (raw.magnetometer_ga[2] > mag_max[2]) { // else if (raw.magnetometer_ga[2] > mag_max[2]) {
mag_max[2] = raw.magnetometer_ga[2]; // mag_max[2] = raw.magnetometer_ga[2];
} // }
calibration_counter++; calibration_counter++;
} else { } else {
@ -396,77 +415,90 @@ void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
} }
} }
/* disable calibration mode */ float sphere_x;
status->flag_preflight_mag_calibration = false; float sphere_y;
state_machine_publish(status_pub, status, mavlink_fd); float sphere_z;
float sphere_radius;
float mag_offset[3]; sphere_fit_least_squares(x, y, z, calibration_counter, 100, 0.0f, &sphere_x, &sphere_y, &sphere_z, &sphere_radius);
/** free(x);
* The offset is subtracted from the sensor values, so the result is the free(y);
* POSITIVE number that has to be subtracted from the sensor data free(z);
* to shift the center to zero
*
* offset = max - ((max - min) / 2.0f)
* max - max/2 + min/2
* max/2 + min/2
*
* which reduces to
*
* offset = (max + min) / 2.0f
*/
mag_offset[0] = (mag_max[0] + mag_min[0]) / 2.0f; float mag_offset[3] = {sphere_x, sphere_y, sphere_z};
mag_offset[1] = (mag_max[1] + mag_min[1]) / 2.0f;
mag_offset[2] = (mag_max[2] + mag_min[2]) / 2.0f; // *
// * The offset is subtracted from the sensor values, so the result is the
// * POSITIVE number that has to be subtracted from the sensor data
// * to shift the center to zero
// *
// * offset = max - ((max - min) / 2.0f)
// * max - max/2 + min/2
// * max/2 + min/2
// *
// * which reduces to
// *
// * offset = (max + min) / 2.0f
// mag_offset[0] = (mag_max[0] + mag_min[0]) / 2.0f;
// mag_offset[1] = (mag_max[1] + mag_min[1]) / 2.0f;
// mag_offset[2] = (mag_max[2] + mag_min[2]) / 2.0f;
if (isfinite(mag_offset[0]) && isfinite(mag_offset[1]) && isfinite(mag_offset[2])) { if (isfinite(mag_offset[0]) && isfinite(mag_offset[1]) && isfinite(mag_offset[2])) {
/* announce and set new offset */
if (param_set(param_find("SENS_MAG_XOFF"), &(mag_offset[0]))) {
fprintf(stderr, "[commander] Setting X mag offset failed!\n");
}
if (param_set(param_find("SENS_MAG_YOFF"), &(mag_offset[1]))) {
fprintf(stderr, "[commander] Setting Y mag offset failed!\n");
}
if (param_set(param_find("SENS_MAG_ZOFF"), &(mag_offset[2]))) {
fprintf(stderr, "[commander] Setting Z mag offset failed!\n");
}
if (param_set(param_find("SENS_MAG_XSCALE"), &(mag_offset[0]))) {
fprintf(stderr, "[commander] Setting X mag offset failed!\n");
}
if (param_set(param_find("SENS_MAG_YSCALE"), &(mag_offset[1]))) {
fprintf(stderr, "[commander] Setting Y mag offset failed!\n");
}
if (param_set(param_find("SENS_MAG_ZSCALE"), &(mag_offset[2]))) {
fprintf(stderr, "[commander] Setting Z mag offset failed!\n");
}
fd = open(MAG_DEVICE_PATH, 0); fd = open(MAG_DEVICE_PATH, 0);
struct mag_scale mscale = {
mag_offset[0], struct mag_scale mscale;
1.0f,
mag_offset[1], if (OK != ioctl(fd, MAGIOCGSCALE, (long unsigned int)&mscale))
1.0f, warn("WARNING: failed to get scale / offsets for mag");
mag_offset[2],
1.0f, mscale.x_offset = mag_offset[0];
}; mscale.y_offset = mag_offset[1];
mscale.z_offset = mag_offset[2];
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale)) if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale))
warn("WARNING: failed to set scale / offsets for mag"); warn("WARNING: failed to set scale / offsets for mag");
close(fd); close(fd);
/* announce and set new offset */
if (param_set(param_find("SENS_MAG_XOFF"), &(mscale.x_offset))) {
fprintf(stderr, "[commander] Setting X mag offset failed!\n");
}
if (param_set(param_find("SENS_MAG_YOFF"), &(mscale.y_offset))) {
fprintf(stderr, "[commander] Setting Y mag offset failed!\n");
}
if (param_set(param_find("SENS_MAG_ZOFF"), &(mscale.z_offset))) {
fprintf(stderr, "[commander] Setting Z mag offset failed!\n");
}
if (param_set(param_find("SENS_MAG_XSCALE"), &(mscale.x_scale))) {
fprintf(stderr, "[commander] Setting X mag scale failed!\n");
}
if (param_set(param_find("SENS_MAG_YSCALE"), &(mscale.y_scale))) {
fprintf(stderr, "[commander] Setting Y mag scale failed!\n");
}
if (param_set(param_find("SENS_MAG_ZSCALE"), &(mscale.z_scale))) {
fprintf(stderr, "[commander] Setting Z mag scale failed!\n");
}
/* auto-save to EEPROM */ /* auto-save to EEPROM */
int save_ret = pm_save_eeprom(false); int save_ret = pm_save_eeprom(false);
if(save_ret != 0) { if(save_ret != 0) {
warn("WARNING: auto-save of params to EEPROM failed"); warn("WARNING: auto-save of params to EEPROM failed");
} }
printf("[mag cal] scale: %.6f %.6f %.6f\n\t\toffset: %.6f %.6f %.6f\nradius: %.6f GA\n",
mscale.x_scale, mscale.y_scale, mscale.z_scale,
mscale.x_offset, mscale.y_offset, mscale.z_offset, sphere_radius);
// char buf[50]; // char buf[50];
// sprintf(buf, "[commander] mag cal: x:%d y:%d z:%d mGa", (int)(mag_offset[0]*1000), (int)(mag_offset[1]*1000), (int)(mag_offset[2]*1000)); // sprintf(buf, "[commander] mag cal: x:%d y:%d z:%d mGa", (int)(mag_offset[0]*1000), (int)(mag_offset[1]*1000), (int)(mag_offset[2]*1000));
// mavlink_log_info(mavlink_fd, buf); // mavlink_log_info(mavlink_fd, buf);
@ -475,7 +507,11 @@ void do_mag_calibration(int status_pub, struct vehicle_status_s *status)
mavlink_log_info(mavlink_fd, "[commander] mag calibration FAILED (NaN)"); mavlink_log_info(mavlink_fd, "[commander] mag calibration FAILED (NaN)");
} }
close(sub_sensor_combined); /* disable calibration mode */
status->flag_preflight_mag_calibration = false;
state_machine_publish(status_pub, status, mavlink_fd);
close(sub_mag);
} }
void do_gyro_calibration(int status_pub, struct vehicle_status_s *status) void do_gyro_calibration(int status_pub, struct vehicle_status_s *status)

View File

@ -184,7 +184,7 @@ private:
* *
* @param enable set to 1 to enable self-test strap, 0 to disable * @param enable set to 1 to enable self-test strap, 0 to disable
*/ */
int calibrate(unsigned enable); int calibrate(struct file *filp, unsigned enable);
/** /**
* Perform the on-sensor scale calibration routine. * Perform the on-sensor scale calibration routine.
@ -603,7 +603,7 @@ HMC5883::ioctl(struct file *filp, int cmd, unsigned long arg)
return 0; return 0;
case MAGIOCCALIBRATE: case MAGIOCCALIBRATE:
return calibrate(arg); return calibrate(filp, arg);
case MAGIOCEXSTRAP: case MAGIOCEXSTRAP:
return set_excitement(arg); return set_excitement(arg);
@ -813,41 +813,15 @@ out:
return ret; return ret;
} }
int HMC5883::calibrate(unsigned enable) int HMC5883::calibrate(struct file *filp, unsigned enable)
{ {
struct mag_report report; struct mag_report report;
ssize_t sz; ssize_t sz;
int ret; int ret = 1;
// XXX do something smarter here
int fd = (int)enable; int fd = (int)enable;
/* do a simple demand read */
sz = read(fd, &report, sizeof(report));
if (sz != sizeof(report))
err(1, "immediate read failed");
warnx("starting mag scale calibration");
warnx("measurement: %.6f %.6f %.6f", (double)report.x, (double)report.y, (double)report.z);
warnx("time: %lld", report.timestamp);
warnx("sampling 500 samples for scaling offset");
/* set the queue depth to 10 */
if (OK != ioctl(fd, SENSORIOCSQUEUEDEPTH, 10))
errx(1, "failed to set queue depth");
/* start the sensor polling at 50 Hz */
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 50))
errx(1, "failed to set 2Hz poll rate");
/* Set to 2.5 Gauss */
if (OK != ioctl(fd, MAGIOCSRANGE, 2)) {
warnx("failed to set 2.5 Ga range");
}
if (OK != ioctl(fd, MAGIOCPOSEX, 1)) {
warnx("failed to enable sensor calibration mode");
}
struct mag_scale mscale_previous = { struct mag_scale mscale_previous = {
0.0f, 0.0f,
1.0f, 1.0f,
@ -857,10 +831,6 @@ int HMC5883::calibrate(unsigned enable)
1.0f, 1.0f,
}; };
if (OK != ioctl(fd, MAGIOCGSCALE, (long unsigned int)&mscale_previous)) {
warn("WARNING: failed to get scale / offsets for mag");
}
struct mag_scale mscale_null = { struct mag_scale mscale_null = {
0.0f, 0.0f,
1.0f, 1.0f,
@ -870,12 +840,61 @@ int HMC5883::calibrate(unsigned enable)
1.0f, 1.0f,
}; };
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale_null)) { float avg_excited[3] = {0.0f, 0.0f, 0.0f};
warn("WARNING: failed to set null scale / offsets for mag"); unsigned i;
warnx("starting mag scale calibration");
/* do a simple demand read */
sz = read(filp, (char*)&report, sizeof(report));
if (sz != sizeof(report)) {
warn("immediate read failed");
ret = 1;
goto out;
} }
float avg_excited[3]; warnx("current measurement: %.6f %.6f %.6f", (double)report.x, (double)report.y, (double)report.z);
unsigned i; warnx("time: %lld", report.timestamp);
warnx("sampling 500 samples for scaling offset");
/* set the queue depth to 10 */
if (OK != ioctl(filp, SENSORIOCSQUEUEDEPTH, 10)) {
warn("failed to set queue depth");
ret = 1;
goto out;
}
/* start the sensor polling at 50 Hz */
if (OK != ioctl(filp, SENSORIOCSPOLLRATE, 50)) {
warn("failed to set 2Hz poll rate");
ret = 1;
goto out;
}
/* Set to 2.5 Gauss */
if (OK != ioctl(filp, MAGIOCSRANGE, 2)) {
warnx("failed to set 2.5 Ga range");
ret = 1;
goto out;
}
if (OK != ioctl(filp, MAGIOCEXSTRAP, 1)) {
warnx("failed to enable sensor calibration mode");
ret = 1;
goto out;
}
if (OK != ioctl(filp, MAGIOCGSCALE, (long unsigned int)&mscale_previous)) {
warn("WARNING: failed to get scale / offsets for mag");
ret = 1;
goto out;
}
if (OK != ioctl(filp, MAGIOCSSCALE, (long unsigned int)&mscale_null)) {
warn("WARNING: failed to set null scale / offsets for mag");
ret = 1;
goto out;
}
/* read the sensor 10x and report each value */ /* read the sensor 10x and report each value */
for (i = 0; i < 500; i++) { for (i = 0; i < 500; i++) {
@ -884,56 +903,56 @@ int HMC5883::calibrate(unsigned enable)
/* wait for data to be ready */ /* wait for data to be ready */
fds.fd = fd; fds.fd = fd;
fds.events = POLLIN; fds.events = POLLIN;
ret = poll(&fds, 1, 2000); ret = ::poll(&fds, 1, 2000);
if (ret != 1) if (ret != 1) {
errx(1, "timed out waiting for sensor data"); warn("timed out waiting for sensor data");
goto out;
}
/* now go get it */ /* now go get it */
sz = read(fd, &report, sizeof(report)); sz = ::read(fd, &report, sizeof(report));
if (sz != sizeof(report)) { if (sz != sizeof(report)) {
err(1, "periodic read failed"); warn("periodic read failed");
goto out;
} else { } else {
avg_excited[0] += report.x; avg_excited[0] += report.x;
avg_excited[1] += report.y; avg_excited[1] += report.y;
avg_excited[2] += report.z; avg_excited[2] += report.z;
} }
// warnx("periodic read %u", i); //warnx("periodic read %u", i);
// warnx("measurement: %.6f %.6f %.6f", (double)report.x, (double)report.y, (double)report.z); //warnx("measurement: %.6f %.6f %.6f", (double)report.x, (double)report.y, (double)report.z);
// warnx("time: %lld", report.timestamp);
} }
avg_excited[0] /= i; avg_excited[0] /= i;
avg_excited[1] /= i; avg_excited[1] /= i;
avg_excited[2] /= i; avg_excited[2] /= i;
warnx("periodic excited reads %u", i); warnx("done. Performed %u reads", i);
warnx("measurement avg: %.6f %.6f %.6f", (double)avg_excited[0], (double)avg_excited[1], (double)avg_excited[2]); warnx("measurement avg: %.6f %.6f %.6f", (double)avg_excited[0], (double)avg_excited[1], (double)avg_excited[2]);
/* Set to 1.1 Gauss and end calibration */
ret = ioctl(fd, MAGIOCNONEX, 0);
ret = ioctl(fd, MAGIOCSRANGE, 1);
float scaling[3]; float scaling[3];
/* calculate axis scaling */ /* calculate axis scaling */
scaling[0] = 1.16f / avg_excited[0]; scaling[0] = fabsf(1.16f / avg_excited[0]);
/* second axis inverted */ /* second axis inverted */
scaling[1] = 1.16f / -avg_excited[1]; scaling[1] = fabsf(1.16f / -avg_excited[1]);
scaling[2] = 1.08f / avg_excited[2]; scaling[2] = fabsf(1.08f / avg_excited[2]);
warnx("axes scaling: %.6f %.6f %.6f", (double)scaling[0], (double)scaling[1], (double)scaling[2]); warnx("axes scaling: %.6f %.6f %.6f", (double)scaling[0], (double)scaling[1], (double)scaling[2]);
/* set back to normal mode */ /* set back to normal mode */
/* Set to 1.1 Gauss */ /* Set to 1.1 Gauss */
if (OK != ioctl(fd, MAGIOCSRANGE, 1)) { if (OK != ::ioctl(fd, MAGIOCSRANGE, 1)) {
warnx("failed to set 1.1 Ga range"); warnx("failed to set 1.1 Ga range");
goto out;
} }
if (OK != ioctl(fd, MAGIOCCALIBRATE, 0)) { if (OK != ioctl(filp, MAGIOCEXSTRAP, 0)) {
warnx("failed to disable sensor calibration mode"); warnx("failed to disable sensor calibration mode");
goto out;
} }
/* set scaling in device */ /* set scaling in device */
@ -941,9 +960,20 @@ int HMC5883::calibrate(unsigned enable)
mscale_previous.y_scale = scaling[1]; mscale_previous.y_scale = scaling[1];
mscale_previous.z_scale = scaling[2]; mscale_previous.z_scale = scaling[2];
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale_previous)) { if (OK != ioctl(filp, MAGIOCSSCALE, (long unsigned int)&mscale_previous)) {
warn("WARNING: failed to set new scale / offsets for mag"); warn("WARNING: failed to set new scale / offsets for mag");
goto out;
} }
ret = OK;
out:
if (ret == OK) {
warnx("calibration successfully finished.");
} else {
warnx("calibration failed.");
}
return ret;
} }
int HMC5883::set_excitement(unsigned enable) int HMC5883::set_excitement(unsigned enable)
@ -954,7 +984,7 @@ int HMC5883::set_excitement(unsigned enable)
ret = read_reg(ADDR_CONF_A, conf_reg); ret = read_reg(ADDR_CONF_A, conf_reg);
if (OK != ret) if (OK != ret)
perf_count(_comms_errors); perf_count(_comms_errors);
if (enable < 0) { if (((int)enable) < 0) {
conf_reg |= 0x01; conf_reg |= 0x01;
} else if (enable > 0) { } else if (enable > 0) {
conf_reg |= 0x02; conf_reg |= 0x02;
@ -1170,7 +1200,6 @@ test()
*/ */
int calibrate() int calibrate()
{ {
struct mag_report report;
ssize_t sz; ssize_t sz;
int ret; int ret;
@ -1178,13 +1207,17 @@ int calibrate()
if (fd < 0) if (fd < 0)
err(1, "%s open failed (try 'hmc5883 start' if the driver is not running", MAG_DEVICE_PATH); err(1, "%s open failed (try 'hmc5883 start' if the driver is not running", MAG_DEVICE_PATH);
if (OK != ioctl(fd, MAGIOCCALIBRATE, fd)) { if (OK != (ret = ioctl(fd, MAGIOCCALIBRATE, fd))) {
warnx("failed to enable sensor calibration mode"); warnx("failed to enable sensor calibration mode");
} }
close(fd); close(fd);
errx(0, "PASS"); if (ret == OK) {
errx(0, "PASS");
} else {
errx(1, "FAIL");
}
} }
/** /**