Merge remote-tracking branch 'juchlid/bottledrop' into bottle_drop_navigator

This commit is contained in:
Julian Oes 2013-11-29 12:39:29 +01:00
commit 07a3f5694c
6 changed files with 594 additions and 1 deletions

View File

@ -0,0 +1,75 @@
#!nsh
echo "[init] bottle drop test
#
# Load default params for this platform
#
if param compare SYS_AUTOCONFIG 1
then
# Set all params here, then disable autoconfig
param set SYS_AUTOCONFIG 0
param save
fi
#
# Force some key parameters to sane values
# MAV_TYPE 2 = quadrotor
#
param set MAV_TYPE 2
set EXIT_ON_END no
#
# Start and configure PX4IO and FMU interface
#
# Start MAVLink (depends on orb)
mavlink start
usleep 5000
#
# Start the sensors and test them.
#
sh /etc/init.d/rc.sensors
#
# Start logging (depends on sensors)
#
#sh /etc/init.d/rc.logging
sdlog2 start -r 200 -e -b 16
#
# Start GPS interface (depends on orb)
#
gps start
#
# Start the attitude estimator
#
attitude_estimator_ekf start
#
# Start position estimator
#
position_estimator_inav start
sh /etc/init.d/rc.io
fmu mode_pwm
mixer load /dev/px4fmu /etc/mixers/FMU_pass.mix
pwm min -d /dev/px4fmu -c 123 -p 900
pwm max -d /dev/px4fmu -c 123 -p 2100
pwm arm -d /dev/px4fmu
bottle_drop start
if [ $EXIT_ON_END == yes ]
then
exit
fi

View File

@ -319,6 +319,12 @@ then
set MODE custom
fi
if param compare SYS_AUTOSTART 900
then
sh /etc/init.d/900_bottle_drop_test
set MODE custom
fi
# Start any custom extensions that might be missing
if [ -f /fs/microsd/etc/rc.local ]
then

View File

@ -115,6 +115,11 @@ MODULES += lib/external_lgpl
MODULES += lib/geo
MODULES += lib/conversion
#
# OBC challenge
#
MODULES += modules/bottle_drop
#
# Demo apps
#

View File

@ -542,7 +542,8 @@ PX4FMU::task_main()
if (fds[0].revents & POLLIN) {
/* get controls - must always do this to avoid spinning */
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, _t_actuators, &_controls);
orb_copy(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS :
ORB_ID(actuator_controls_1), _t_actuators, &_controls);
/* can we mix? */
if (_mixers != nullptr) {
@ -586,6 +587,9 @@ PX4FMU::task_main()
uint16_t pwm_limited[num_outputs];
// XXX: hack: always armed
_armed = true;
pwm_limit_calc(_armed, num_outputs, _disarmed_pwm, _min_pwm, _max_pwm, outputs.output, pwm_limited, &_pwm_limit);
/* output actual limited values */

View File

@ -0,0 +1,463 @@
/****************************************************************************
*
* Copyright (c) 2012, 2013 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file bottle_drop.c
* bottle_drop application
*
* @author Dominik Juchli <juchlid@ethz.ch>
*/
#include <nuttx/config.h>
#include <nuttx/sched.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <poll.h>
#include <stdbool.h>
#include <fcntl.h>
#include <string.h>
#include <math.h>
#include <systemlib/systemlib.h>
#include <systemlib/err.h>
#include <systemlib/param/param.h>
#include <geo/geo.h>
#include <uORB/uORB.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/parameter_update.h>
#include <drivers/drv_hrt.h>
PARAM_DEFINE_FLOAT(BD_HEIGHT, 60.0f);
PARAM_DEFINE_FLOAT(BD_GPROPERTIES, 0.03f);
PARAM_DEFINE_FLOAT(BD_TURNRADIUS, 70.0f);
PARAM_DEFINE_FLOAT(BD_PRECISION, 1.0f);
PARAM_DEFINE_INT32(BD_APPROVAL, 0);
static bool thread_should_exit = false; /**< daemon exit flag */
static bool thread_running = false; /**< daemon status flag */
static int daemon_task; /**< Handle of daemon task / thread */
static bool drop = false;
/**
* daemon management function.
*/
__EXPORT int bottle_drop_main(int argc, char *argv[]);
/**
* Mainloop of daemon.
*/
int bottle_drop_thread_main(int argc, char *argv[]);
/**
* Print the correct usage.
*/
static void usage(const char *reason);
static void
usage(const char *reason)
{
if (reason)
warnx("%s\n", reason);
errx(1, "usage: daemon {start|stop|status} [-p <additional params>]\n\n");
}
/**
* The daemon app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_create().
*/
int bottle_drop_main(int argc, char *argv[])
{
if (argc < 1)
usage("missing command");
if (!strcmp(argv[1], "start")) {
if (thread_running) {
warnx("daemon already running\n");
/* this is not an error */
exit(0);
}
thread_should_exit = false;
daemon_task = task_spawn_cmd("bottle_drop",
SCHED_DEFAULT,
SCHED_PRIORITY_DEFAULT,
4096,
bottle_drop_thread_main,
(argv) ? (const char **)&argv[2] : (const char **)NULL);
exit(0);
}
if (!strcmp(argv[1], "drop")) {
drop = true;
exit(0);
}
if (!strcmp(argv[1], "stop")) {
thread_should_exit = true;
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
warnx("\trunning\n");
} else {
warnx("\tnot started\n");
}
exit(0);
}
usage("unrecognized command");
exit(1);
}
int bottle_drop_thread_main(int argc, char *argv[]) {
warnx("starting\n");
bool updated = false;
float height; // height at which the normal should be dropped NED
float z_0; // ground properties
float turn_radius; // turn radius of the UAV
float precision; // Expected precision of the UAV
bool drop_approval; // if approval is given = true, otherwise = false
thread_running = true;
/* XXX TODO: create, publish and read in wind speed topic */
struct wind_speed_s {
float vx; // m/s
float vy; // m/s
float altitude; // m
} wind_speed;
wind_speed.vx = 4.2f;
wind_speed.vy = 0.0f;
wind_speed.altitude = 62.0f;
/* XXX TODO: create, publish and read in target position in NED*/
struct position_s {
double lat; //degrees 1E7
double lon; //degrees 1E7
float alt; //m
} target_position, drop_position, flight_vector_s, flight_vector_e;
target_position.lat = 47.385806;
target_position.lon = 8.589093;
target_position.alt = 0.0f;
// constant
float g = 9.81f; // constant of gravity [m/s^2]
float m = 0.5f; // mass of bottle [kg]
float rho = 1.2f; // air density [kg/m^3]
float A = (powf(0.063f, 2.0f)/4.0f*M_PI_F); // Bottle cross section [m^2]
float dt = 0.01f; // step size [s]
float dt2 = 0.05f; // step size 2 [s]
// Has to be estimated by experiment
float cd = 0.86f; // Drag coefficient for a cylinder with a d/l ratio of 1/3 []
float t_signal = 0.084f; // Time span between sending the signal and the bottle top reaching level height with the bottom of the plane [s]
float t_door = 0.7f; // The time the system needs to open the door + safety, is also the time the palyload needs to safely escape the shaft [s]
// Definition
float h_0; // height over target
float az; // acceleration in z direction[m/s^2]
float vz; // velocity in z direction [m/s]
float z; // fallen distance [m]
float h; // height over target [m]
float ax; // acceleration in x direction [m/s^2]
float vx; // ground speed in x direction [m/s]
float x; // traveled distance in x direction [m]
float vw; // wind speed [m/s]
float vrx; // relative velocity in x direction [m/s]
float v; // relative speed vector [m/s]
float Fd; // Drag force [N]
float Fdx; // Drag force in x direction [N]
float Fdz; // Drag force in z direction [N]
float vr; // absolute wind speed [m/s]
float x_drop, y_drop; // coordinates of the drop point in reference to the target (projection of NED)
float x_t,y_t; // coordinates of the target in reference to the target x_t = 0, y_t = 0 (projection of NED)
float x_l,y_l; // local position in projected coordinates
float x_f,y_f; // to-be position of the UAV after dt2 seconds in projected coordinates
double x_f_NED, y_f_NED; // to-be position of the UAV after dt2 seconds in NED
float distance_open_door; // The distance the UAV travels during its doors open [m]
float distance_real = 0; // The distance between the UAVs position and the drop point [m]
float future_distance = 0; // The distance between the UAVs to-be position and the drop point [m]
// states
bool state_door = false; // Doors are closed = false, open = true
bool state_drop = false; // Drop occurred = true, Drop din't occur = false
bool state_run = false; // A drop was attempted = true, the drop is still in progress = false
param_t param_height = param_find("BD_HEIGHT");
param_t param_gproperties = param_find("BD_GPROPERTIES");
param_t param_turn_radius = param_find("BD_TURNRADIUS");
param_t param_precision = param_find("BD_PRECISION");
param_t param_approval = param_find("BD_APPROVAL");
param_get(param_approval, &drop_approval);
param_get(param_precision, &precision);
param_get(param_turn_radius, &turn_radius);
param_get(param_height, &height);
param_get(param_gproperties, &z_0);
struct vehicle_attitude_s att;
memset(&att, 0, sizeof(att));
int vehicle_attitude_sub = orb_subscribe(ORB_ID(vehicle_attitude));
orb_set_interval(vehicle_attitude_sub, 100);
struct vehicle_global_position_s globalpos;
memset(&globalpos, 0, sizeof(globalpos));
int vehicle_global_position_sub = orb_subscribe(ORB_ID(vehicle_global_position));
struct parameter_update_s update;
memset(&update, 0, sizeof(update));
int parameter_update_sub = orb_subscribe(ORB_ID(parameter_update));
struct actuator_controls_s actuators;
memset(&actuators, 0, sizeof(actuators));
orb_advert_t actuator_pub = orb_advertise(ORB_ID(actuator_controls_1), &actuators);
struct pollfd fds[] = {
{ .fd = vehicle_attitude_sub, .events = POLLIN }
};
while (!thread_should_exit) {
// warnx("in while!\n");
// values from -1 to 1
int ret = poll(fds, 1, 500);
if (ret < 0) {
/* poll error, count it in perf */
warnx("poll error");
} else if (ret > 0) {
orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att);
orb_check(vehicle_global_position_sub, &updated);
if (updated){
/* copy global position */
orb_copy(ORB_ID(vehicle_global_position), vehicle_global_position_sub, &globalpos);
}
//////////////////////////////////////////////////////////////////// DEBUGGING
globalpos.lat = 47.384486;
globalpos.lon = 8.588239;
globalpos.vx = 18.0f;
globalpos.vy = 0.0f;
globalpos.alt = 60.0f;
globalpos.yaw = M_PI_F/2.0f;
orb_check(parameter_update_sub, &updated);
if (updated){
/* copy global position */
orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update);
/* update all parameters */
param_get(param_height, &height);
param_get(param_gproperties, &z_0);
param_get(param_turn_radius, &turn_radius);
param_get(param_approval, &drop_approval);
param_get(param_precision, &precision);
}
// Initialization
az = g; // acceleration in z direction[m/s^2]
vz = 0; // velocity in z direction [m/s]
z = 0; // fallen distance [m]
h_0 = globalpos.alt - target_position.alt; // height over target at start[m]
h = h_0; // height over target [m]
ax = 0; // acceleration in x direction [m/s^2]
vx = globalpos.vx; // ground speed in x direction [m/s]
x = 0; // traveled distance in x direction [m]
vw = 0; // wind speed [m/s]
vrx = 0; // relative velocity in x direction [m/s]
v = globalpos.vx; // relative speed vector [m/s]
Fd = 0; // Drag force [N]
Fdx = 0; // Drag force in x direction [N]
Fdz = 0; // Drag force in z direction [N]
vr = sqrt(pow(wind_speed.vx,2) + pow(wind_speed.vy,2)); // absolute wind speed [m/s]
distance_open_door = t_door * globalpos.vx;
//warnx("absolut wind speed = %.4f", vr); //////////////////////////////////////////////////////////////////// DEBUGGING
//warnx("Initialization complete\n"); //////////////////////////////////////////////////////////////////// DEBUGGING
if (drop_approval && !state_drop)
{
//warnx("approval given\n"); //////////////////////////////////////////////////////////////////// DEBUGGING
// drop here
//open_now = true;
//drop = false;
//drop_start = hrt_absolute_time();
unsigned counter = 0;
// Compute the distance the bottle will travel after it is dropped in body frame coordinates --> x
while( h > 0.05f)
{
// z-direction
vz = vz + az*dt;
z = z + vz*dt;
h = h_0 - z;
// x-direction
vw = vr*logf(h/z_0)/logf(wind_speed.altitude/z_0);
vx = vx + ax*dt;
x = x + vx*dt;
vrx = vx + vw;
//Drag force
v = sqrtf(powf(vz,2.0f) + powf(vrx,2.0f));
Fd = 0.5f*rho*A*cd*powf(v,2.0f);
Fdx = Fd*vrx/v;
Fdz = Fd*vz/v;
//acceleration
az = g - Fdz/m;
ax = -Fdx/m;
}
// Compute Drop point
x = globalpos.vx*t_signal + x;
map_projection_init(target_position.lat, target_position.lon);
//warnx("x = %.4f", x); //////////////////////////////////////////////////////////////////// DEBUGGING
map_projection_project(target_position.lat, target_position.lon, &x_t, &y_t);
if( vr < 0.001f) // if there is no wind, an arbitrarily direction is chosen
{
vr = 1;
wind_speed.vx = 1;
wind_speed.vy = 0;
}
x_drop = x_t + x*wind_speed.vx/vr;
y_drop = y_t + x*wind_speed.vy/vr;
map_projection_reproject(x_drop, y_drop, &drop_position.lat, &drop_position.lon);
drop_position.alt = height;
//warnx("drop point: lat = %.7f , lon = %.7f", drop_position.lat, drop_position.lon); //////////////////////////////////////////////////////////////////// DEBUGGING
// Compute flight vector
map_projection_reproject(x_drop + 2*turn_radius*wind_speed.vx/vr, y_drop + 2*turn_radius*wind_speed.vy/vr, &flight_vector_s.lat, &flight_vector_s.lon);
flight_vector_s.alt = height;
map_projection_reproject(x_drop - turn_radius*wind_speed.vx/vr, y_drop - turn_radius*wind_speed.vy/vr, &flight_vector_e.lat, &flight_vector_e.lon);
flight_vector_e.alt = height;
//warnx("Flight vector: starting point = %.7f %.7f , end point = %.7f %.7f", flight_vector_s.lat,flight_vector_s.lon,flight_vector_e.lat,flight_vector_e.lon); //////////////////////////////////////////////////////////////////// DEBUGGING
// Drop Cancellation if terms are not met
distance_real = get_distance_to_next_waypoint(globalpos.lat, globalpos.lon, drop_position.lat, drop_position.lon);
map_projection_project(globalpos.lat, globalpos.lon, &x_l, &y_l);
x_f = x_l + globalpos.vx*cosf(globalpos.yaw)*dt2 - globalpos.vy*sinf(globalpos.yaw)*dt2; // Attention to sign, has to be checked
y_f = y_l + globalpos.vy*cosf(globalpos.yaw)*dt2 - globalpos.vx*sinf(globalpos.yaw)*dt2;
map_projection_reproject(x_f, y_f, &x_f_NED, &y_f_NED);
future_distance = get_distance_to_next_waypoint(x_f_NED, y_f_NED, drop_position.lat, drop_position.lon);
//warnx("position to-be: = %.7f %.7f" ,x_f_NED, y_f_NED ); //////////////////////////////////////////////////////////////////// DEBUGGING
}
if(distance_real < distance_open_door && drop_approval)
{
actuators.control[0] = -1.0f; // open door
actuators.control[1] = 1.0f;
state_door = true;
}
else
{ // closed door and locked survival kit
actuators.control[0] = 0.5f;
actuators.control[1] = -0.5f;
actuators.control[2] = -0.5f;
state_door = false;
}
if(distance_real < precision && distance_real < future_distance && state_door) // Drop only if the distance between drop point and actual position is getting larger again
{
if(fabsf(acosf(cosf(globalpos.yaw))+acosf(wind_speed.vx)) < 10.0f/180.0f*M_PI_F) // if flight trajectory deviates more than 10 degrees from calculated path, it will no drop
{
actuators.control[2] = 0.5f;
state_drop = true;
state_run = true;
}
else
{
state_run = true;
}
}
actuators.timestamp = hrt_absolute_time();
orb_publish(ORB_ID(actuator_controls_1), actuator_pub, &actuators);
}
}
warnx("exiting.\n");
thread_running = false;
return 0;
}

View File

@ -0,0 +1,40 @@
############################################################################
#
# Copyright (c) 2012, 2013 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# Daemon application
#
MODULE_COMMAND = bottle_drop
SRCS = bottle_drop.c