forked from Archive/PX4-Autopilot
multirotor_pos_control: use separate PID controllers for position and velocity
This commit is contained in:
parent
320a5b7579
commit
04fbed493a
|
@ -38,4 +38,5 @@
|
|||
MODULE_COMMAND = multirotor_pos_control
|
||||
|
||||
SRCS = multirotor_pos_control.c \
|
||||
multirotor_pos_control_params.c
|
||||
multirotor_pos_control_params.c \
|
||||
thrust_pid.c
|
||||
|
|
|
@ -61,9 +61,11 @@
|
|||
#include <uORB/topics/vehicle_local_position.h>
|
||||
#include <uORB/topics/vehicle_local_position_setpoint.h>
|
||||
#include <systemlib/systemlib.h>
|
||||
#include <systemlib/pid/pid.h>
|
||||
#include <mavlink/mavlink_log.h>
|
||||
|
||||
#include "multirotor_pos_control_params.h"
|
||||
#include "thrust_pid.h"
|
||||
|
||||
|
||||
static bool thread_should_exit = false; /**< Deamon exit flag */
|
||||
|
@ -84,8 +86,6 @@ static void usage(const char *reason);
|
|||
|
||||
static float scale_control(float ctl, float end, float dz);
|
||||
|
||||
static float limit_value(float v, float limit);
|
||||
|
||||
static float norm(float x, float y);
|
||||
|
||||
static void usage(const char *reason) {
|
||||
|
@ -110,11 +110,12 @@ int multirotor_pos_control_main(int argc, char *argv[]) {
|
|||
if (!strcmp(argv[1], "start")) {
|
||||
|
||||
if (thread_running) {
|
||||
printf("multirotor_pos_control already running\n");
|
||||
warnx("already running");
|
||||
/* this is not an error */
|
||||
exit(0);
|
||||
}
|
||||
|
||||
warnx("start");
|
||||
thread_should_exit = false;
|
||||
deamon_task = task_spawn_cmd("multirotor_pos_control",
|
||||
SCHED_DEFAULT,
|
||||
|
@ -126,15 +127,16 @@ int multirotor_pos_control_main(int argc, char *argv[]) {
|
|||
}
|
||||
|
||||
if (!strcmp(argv[1], "stop")) {
|
||||
warnx("stop");
|
||||
thread_should_exit = true;
|
||||
exit(0);
|
||||
}
|
||||
|
||||
if (!strcmp(argv[1], "status")) {
|
||||
if (thread_running) {
|
||||
printf("\tmultirotor_pos_control app is running\n");
|
||||
warnx("app is running");
|
||||
} else {
|
||||
printf("\tmultirotor_pos_control app not started\n");
|
||||
warnx("app not started");
|
||||
}
|
||||
exit(0);
|
||||
}
|
||||
|
@ -153,22 +155,13 @@ static float scale_control(float ctl, float end, float dz) {
|
|||
}
|
||||
}
|
||||
|
||||
static float limit_value(float v, float limit) {
|
||||
if (v > limit) {
|
||||
v = limit;
|
||||
} else if (v < -limit) {
|
||||
v = -limit;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
static float norm(float x, float y) {
|
||||
return sqrtf(x * x + y * y);
|
||||
}
|
||||
|
||||
static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
||||
/* welcome user */
|
||||
warnx("started.");
|
||||
warnx("started");
|
||||
static int mavlink_fd;
|
||||
mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);
|
||||
mavlink_log_info(mavlink_fd, "[multirotor_pos_control] started");
|
||||
|
@ -203,15 +196,17 @@ static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
|||
bool reset_sp_alt = true;
|
||||
bool reset_sp_pos = true;
|
||||
hrt_abstime t_prev = 0;
|
||||
float alt_integral = 0.0f;
|
||||
/* integrate in NED frame to estimate wind but not attitude offset */
|
||||
float pos_x_integral = 0.0f;
|
||||
float pos_y_integral = 0.0f;
|
||||
const float alt_ctl_dz = 0.2f;
|
||||
const float pos_ctl_dz = 0.05f;
|
||||
float home_alt = 0.0f;
|
||||
hrt_abstime home_alt_t = 0;
|
||||
|
||||
static PID_t xy_pos_pids[2];
|
||||
static PID_t xy_vel_pids[2];
|
||||
static PID_t z_pos_pid;
|
||||
static thrust_pid_t z_vel_pid;
|
||||
|
||||
thread_running = true;
|
||||
|
||||
struct multirotor_position_control_params params;
|
||||
|
@ -219,6 +214,13 @@ static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
|||
parameters_init(¶ms_h);
|
||||
parameters_update(¶ms_h, ¶ms);
|
||||
|
||||
for (int i = 0; i < 2; i++) {
|
||||
pid_init(&(xy_pos_pids[i]), params.xy_p, 0.0f, params.xy_d, 1.0f, params.xy_vel_max, PID_MODE_DERIVATIV_CALC_NO_SP, 0.02f);
|
||||
pid_init(&(xy_vel_pids[i]), params.xy_vel_p, params.xy_vel_i, params.xy_vel_d, 1.0f, params.slope_max, PID_MODE_DERIVATIV_CALC_NO_SP, 0.02f);
|
||||
}
|
||||
pid_init(&z_pos_pid, params.z_p, 0.0f, params.z_d, 1.0f, params.z_vel_max, PID_MODE_DERIVATIV_CALC_NO_SP, 0.02f);
|
||||
thrust_pid_init(&z_vel_pid, params.z_vel_p, params.z_vel_i, params.z_vel_d, -params.thr_max, -params.thr_min, PID_MODE_DERIVATIV_CALC_NO_SP, 0.02f);
|
||||
|
||||
int paramcheck_counter = 0;
|
||||
|
||||
while (!thread_should_exit) {
|
||||
|
@ -231,6 +233,12 @@ static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
|||
orb_check(param_sub, ¶m_updated);
|
||||
if (param_updated) {
|
||||
parameters_update(¶ms_h, ¶ms);
|
||||
for (int i = 0; i < 2; i++) {
|
||||
pid_set_parameters(&(xy_pos_pids[i]), params.xy_p, 0.0f, params.xy_d, 1.0f, params.xy_vel_max);
|
||||
pid_set_parameters(&(xy_vel_pids[i]), params.xy_vel_p, params.xy_vel_i, params.xy_vel_d, 1.0f, params.slope_max);
|
||||
}
|
||||
pid_set_parameters(&z_pos_pid, params.z_p, 0.0f, params.z_d, 1.0f, params.z_vel_max);
|
||||
thrust_pid_set_parameters(&z_vel_pid, params.z_vel_p, params.z_vel_i, params.z_vel_d, -params.thr_max, -params.thr_min);
|
||||
}
|
||||
paramcheck_counter = 0;
|
||||
}
|
||||
|
@ -269,7 +277,7 @@ static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
|||
if (reset_sp_alt) {
|
||||
reset_sp_alt = false;
|
||||
local_pos_sp.z = local_pos.z;
|
||||
alt_integral = manual.throttle;
|
||||
z_vel_pid.integral = -manual.throttle; // thrust PID uses Z downside
|
||||
mavlink_log_info(mavlink_fd, "reset alt setpoint: z = %.2f, throttle = %.2f", local_pos_sp.z, manual.throttle);
|
||||
}
|
||||
|
||||
|
@ -277,18 +285,17 @@ static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
|||
reset_sp_pos = false;
|
||||
local_pos_sp.x = local_pos.x;
|
||||
local_pos_sp.y = local_pos.y;
|
||||
pos_x_integral = 0.0f;
|
||||
pos_y_integral = 0.0f;
|
||||
xy_vel_pids[0].integral = 0.0f;
|
||||
xy_vel_pids[1].integral = 0.0f;
|
||||
mavlink_log_info(mavlink_fd, "reset pos setpoint: x = %.2f, y = %.2f", local_pos_sp.x, local_pos_sp.y);
|
||||
}
|
||||
|
||||
float alt_err_linear_limit = params.alt_d / params.alt_p * params.alt_rate_max;
|
||||
float pos_err_linear_limit = params.pos_d / params.pos_p * params.pos_rate_max;
|
||||
float z_sp_offs_max = params.z_vel_max / params.z_p * 2.0f;
|
||||
float xy_sp_offs_max = params.xy_vel_max / params.xy_p * 2.0f;
|
||||
|
||||
float pos_sp_speed_x = 0.0f;
|
||||
float pos_sp_speed_y = 0.0f;
|
||||
float pos_sp_speed_z = 0.0f;
|
||||
float sp_move_rate[3] = { 0.0f, 0.0f, 0.0f };
|
||||
|
||||
/* manual control */
|
||||
if (status.flag_control_manual_enabled) {
|
||||
if (local_pos.home_timestamp != home_alt_t) {
|
||||
if (home_alt_t != 0) {
|
||||
|
@ -299,14 +306,14 @@ static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
|||
home_alt = local_pos.home_alt;
|
||||
}
|
||||
/* move altitude setpoint with manual controls */
|
||||
float alt_sp_ctl = scale_control(manual.throttle - 0.5f, 0.5f, alt_ctl_dz);
|
||||
if (alt_sp_ctl != 0.0f) {
|
||||
pos_sp_speed_z = -alt_sp_ctl * params.alt_rate_max;
|
||||
local_pos_sp.z += pos_sp_speed_z * dt;
|
||||
if (local_pos_sp.z > local_pos.z + alt_err_linear_limit) {
|
||||
local_pos_sp.z = local_pos.z + alt_err_linear_limit;
|
||||
} else if (local_pos_sp.z < local_pos.z - alt_err_linear_limit) {
|
||||
local_pos_sp.z = local_pos.z - alt_err_linear_limit;
|
||||
float z_sp_ctl = scale_control(manual.throttle - 0.5f, 0.5f, alt_ctl_dz);
|
||||
if (z_sp_ctl != 0.0f) {
|
||||
sp_move_rate[2] = -z_sp_ctl * params.z_vel_max;
|
||||
local_pos_sp.z += sp_move_rate[2] * dt;
|
||||
if (local_pos_sp.z > local_pos.z + z_sp_offs_max) {
|
||||
local_pos_sp.z = local_pos.z + z_sp_offs_max;
|
||||
} else if (local_pos_sp.z < local_pos.z - z_sp_offs_max) {
|
||||
local_pos_sp.z = local_pos.z - z_sp_offs_max;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -316,76 +323,84 @@ static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
|||
float pos_roll_sp_ctl = scale_control(manual.roll / params.rc_scale_roll, 1.0f, pos_ctl_dz);
|
||||
if (pos_pitch_sp_ctl != 0.0f || pos_roll_sp_ctl != 0.0f) {
|
||||
/* calculate direction and increment of control in NED frame */
|
||||
float pos_sp_ctl_dir = att.yaw + atan2f(pos_roll_sp_ctl, pos_pitch_sp_ctl);
|
||||
float pos_sp_ctl_speed = norm(pos_pitch_sp_ctl, pos_roll_sp_ctl) * params.pos_rate_max;
|
||||
pos_sp_speed_x = cosf(pos_sp_ctl_dir) * pos_sp_ctl_speed;
|
||||
pos_sp_speed_y = sinf(pos_sp_ctl_dir) * pos_sp_ctl_speed;
|
||||
local_pos_sp.x += pos_sp_speed_x * dt;
|
||||
local_pos_sp.y += pos_sp_speed_y * dt;
|
||||
float xy_sp_ctl_dir = att.yaw + atan2f(pos_roll_sp_ctl, pos_pitch_sp_ctl);
|
||||
float xy_sp_ctl_speed = norm(pos_pitch_sp_ctl, pos_roll_sp_ctl) * params.xy_vel_max;
|
||||
sp_move_rate[0] = cosf(xy_sp_ctl_dir) * xy_sp_ctl_speed;
|
||||
sp_move_rate[1] = sinf(xy_sp_ctl_dir) * xy_sp_ctl_speed;
|
||||
local_pos_sp.x += sp_move_rate[0] * dt;
|
||||
local_pos_sp.y += sp_move_rate[1] * dt;
|
||||
/* limit maximum setpoint from position offset and preserve direction */
|
||||
float pos_vec_x = local_pos_sp.x - local_pos.x;
|
||||
float pos_vec_y = local_pos_sp.y - local_pos.y;
|
||||
float pos_vec_norm = norm(pos_vec_x, pos_vec_y) / pos_err_linear_limit;
|
||||
float pos_vec_norm = norm(pos_vec_x, pos_vec_y) / xy_sp_offs_max;
|
||||
if (pos_vec_norm > 1.0f) {
|
||||
local_pos_sp.x = local_pos.x + pos_vec_x / pos_vec_norm;
|
||||
local_pos_sp.y = local_pos.y + pos_vec_y / pos_vec_norm;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (params.hard == 0) {
|
||||
pos_sp_speed_x = 0.0f;
|
||||
pos_sp_speed_y = 0.0f;
|
||||
pos_sp_speed_z = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
/* PID for altitude */
|
||||
/* don't accelerate more than ALT_RATE_MAX, limit error to corresponding value */
|
||||
float alt_err = limit_value(local_pos_sp.z - local_pos.z, alt_err_linear_limit);
|
||||
/* P and D components */
|
||||
float thrust_ctl_pd = -(alt_err * params.alt_p + (pos_sp_speed_z - local_pos.vz) * params.alt_d); // altitude = -z
|
||||
/* integrate */
|
||||
alt_integral += thrust_ctl_pd / params.alt_p * params.alt_i * dt;
|
||||
if (alt_integral < params.thr_min) {
|
||||
alt_integral = params.thr_min;
|
||||
} else if (alt_integral > params.thr_max) {
|
||||
alt_integral = params.thr_max;
|
||||
}
|
||||
/* add I component */
|
||||
float thrust_ctl = thrust_ctl_pd + alt_integral;
|
||||
if (thrust_ctl < params.thr_min) {
|
||||
thrust_ctl = params.thr_min;
|
||||
} else if (thrust_ctl > params.thr_max) {
|
||||
thrust_ctl = params.thr_max;
|
||||
}
|
||||
/* run position & altitude controllers, calculate velocity setpoint */
|
||||
float vel_sp[3] = { 0.0f, 0.0f, 0.0f };
|
||||
vel_sp[2] = pid_calculate(&z_pos_pid, local_pos_sp.z, local_pos.z, local_pos.vz, dt);
|
||||
if (status.manual_sas_mode == VEHICLE_MANUAL_SAS_MODE_SIMPLE || status.state_machine == SYSTEM_STATE_AUTO) {
|
||||
/* PID for position */
|
||||
/* don't accelerate more than POS_RATE_MAX, limit error to corresponding value */
|
||||
float pos_x_err = limit_value(local_pos.x - local_pos_sp.x, pos_err_linear_limit);
|
||||
float pos_y_err = limit_value(local_pos.y - local_pos_sp.y, pos_err_linear_limit);
|
||||
/* P and D components */
|
||||
float pos_x_ctl_pd = - pos_x_err * params.pos_p + (pos_sp_speed_x - local_pos.vx) * params.pos_d;
|
||||
float pos_y_ctl_pd = - pos_y_err * params.pos_p + (pos_sp_speed_y - local_pos.vy) * params.pos_d;
|
||||
/* integrate */
|
||||
pos_x_integral = limit_value(pos_x_integral + pos_x_ctl_pd / params.pos_p * params.pos_i * dt, params.slope_max);
|
||||
pos_y_integral = limit_value(pos_y_integral + pos_y_ctl_pd / params.pos_p * params.pos_i * dt, params.slope_max);
|
||||
/* add I component */
|
||||
float pos_x_ctl = pos_x_ctl_pd + pos_x_integral;
|
||||
float pos_y_ctl = pos_y_ctl_pd + pos_y_integral;
|
||||
/* calculate direction and slope in NED frame */
|
||||
float dir = atan2f(pos_y_ctl, pos_x_ctl);
|
||||
/* use approximation: slope ~ sin(slope) = force */
|
||||
float slope = limit_value(sqrtf(pos_x_ctl * pos_x_ctl + pos_y_ctl * pos_y_ctl), params.slope_max);
|
||||
/* convert direction to body frame */
|
||||
dir -= att.yaw;
|
||||
/* calculate roll and pitch */
|
||||
att_sp.pitch_body = -cosf(dir) * slope; // reverse pitch
|
||||
att_sp.roll_body = sinf(dir) * slope;
|
||||
/* calculate velocity set point in NED frame */
|
||||
vel_sp[0] = pid_calculate(&xy_pos_pids[0], local_pos_sp.x, local_pos.x, local_pos.vx, dt);
|
||||
vel_sp[1] = pid_calculate(&xy_pos_pids[1], local_pos_sp.y, local_pos.y, local_pos.vy, dt);
|
||||
} else {
|
||||
reset_sp_pos = true;
|
||||
}
|
||||
att_sp.thrust = thrust_ctl;
|
||||
/* calculate direction and norm of thrust in NED frame
|
||||
* limit 3D speed by ellipsoid:
|
||||
* (vx/xy_vel_max)^2 + (vy/xy_vel_max)^2 + (vz/z_vel_max)^2 = 1 */
|
||||
float v;
|
||||
float vel_sp_norm = 0.0f;
|
||||
v = vel_sp[0] / params.xy_vel_max;
|
||||
vel_sp_norm += v * v;
|
||||
v = vel_sp[1] / params.xy_vel_max;
|
||||
vel_sp_norm += v * v;
|
||||
v = vel_sp[2] / params.z_vel_max;
|
||||
vel_sp_norm += v * v;
|
||||
vel_sp_norm = sqrtf(vel_sp_norm);
|
||||
if (vel_sp_norm > 1.0f) {
|
||||
vel_sp[0] /= vel_sp_norm;
|
||||
vel_sp[1] /= vel_sp_norm;
|
||||
vel_sp[2] /= vel_sp_norm;
|
||||
}
|
||||
|
||||
/* run velocity controllers, calculate thrust vector */
|
||||
float thrust_sp[3] = { 0.0f, 0.0f, 0.0f };
|
||||
thrust_sp[2] = thrust_pid_calculate(&z_vel_pid, vel_sp[2], local_pos.vz, dt);
|
||||
if (status.manual_sas_mode == VEHICLE_MANUAL_SAS_MODE_SIMPLE || status.state_machine == SYSTEM_STATE_AUTO) {
|
||||
/* calculate velocity set point in NED frame */
|
||||
thrust_sp[0] = pid_calculate(&xy_vel_pids[0], vel_sp[0], local_pos.vx, 0.0f, dt);
|
||||
thrust_sp[1] = pid_calculate(&xy_vel_pids[1], vel_sp[1], local_pos.vy, 0.0f, dt);
|
||||
}
|
||||
/* thrust_vector now contains desired acceleration (but not in m/s^2) in NED frame */
|
||||
/* limit horizontal part of thrust */
|
||||
float thrust_xy_dir = atan2f(thrust_sp[1], thrust_sp[0]);
|
||||
float thrust_xy_norm = norm(thrust_sp[0], thrust_sp[1]);
|
||||
if (thrust_xy_norm > params.slope_max) {
|
||||
thrust_xy_norm = params.slope_max;
|
||||
}
|
||||
/* use approximation: slope ~ sin(slope) = force */
|
||||
/* convert direction to body frame */
|
||||
thrust_xy_dir -= att.yaw;
|
||||
if (status.manual_sas_mode == VEHICLE_MANUAL_SAS_MODE_SIMPLE || status.state_machine == SYSTEM_STATE_AUTO) {
|
||||
/* calculate roll and pitch */
|
||||
att_sp.roll_body = sinf(thrust_xy_dir) * thrust_xy_norm;
|
||||
att_sp.pitch_body = -cosf(thrust_xy_dir) * thrust_xy_norm / cosf(att_sp.roll_body); // reverse pitch
|
||||
}
|
||||
/* attitude-thrust compensation */
|
||||
float att_comp;
|
||||
if (att.R[2][2] > 0.8f)
|
||||
att_comp = 1.0f / att.R[2][2];
|
||||
else if (att.R[2][2] > 0.0f)
|
||||
att_comp = ((1.0f / 0.8f - 1.0f) / 0.8f) * att.R[2][2] + 1.0f;
|
||||
else
|
||||
att_comp = 1.0f;
|
||||
att_sp.thrust = -thrust_sp[2] * att_comp;
|
||||
att_sp.timestamp = hrt_absolute_time();
|
||||
if (status.flag_control_manual_enabled) {
|
||||
/* publish local position setpoint in manual mode */
|
||||
|
@ -403,8 +418,8 @@ static int multirotor_pos_control_thread_main(int argc, char *argv[]) {
|
|||
|
||||
}
|
||||
|
||||
printf("[multirotor_pos_control] exiting\n");
|
||||
mavlink_log_info(mavlink_fd, "[multirotor_pos_control] exiting");
|
||||
warnx("stopped");
|
||||
mavlink_log_info(mavlink_fd, "[multirotor_pos_control] stopped");
|
||||
|
||||
thread_running = false;
|
||||
|
||||
|
|
|
@ -44,31 +44,37 @@
|
|||
/* controller parameters */
|
||||
PARAM_DEFINE_FLOAT(MPC_THR_MIN, 0.3f);
|
||||
PARAM_DEFINE_FLOAT(MPC_THR_MAX, 0.7f);
|
||||
PARAM_DEFINE_FLOAT(MPC_ALT_P, 0.1f);
|
||||
PARAM_DEFINE_FLOAT(MPC_ALT_I, 0.1f);
|
||||
PARAM_DEFINE_FLOAT(MPC_ALT_D, 0.1f);
|
||||
PARAM_DEFINE_FLOAT(MPC_ALT_RATE_MAX, 3.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_POS_P, 0.1f);
|
||||
PARAM_DEFINE_FLOAT(MPC_POS_I, 0.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_POS_D, 0.2f);
|
||||
PARAM_DEFINE_FLOAT(MPC_POS_RATE_MAX, 10.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_Z_P, 1.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_Z_D, 0.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_Z_VEL_P, 0.1f);
|
||||
PARAM_DEFINE_FLOAT(MPC_Z_VEL_I, 0.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_Z_VEL_D, 0.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_Z_VEL_MAX, 3.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_XY_P, 0.5f);
|
||||
PARAM_DEFINE_FLOAT(MPC_XY_D, 0.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_XY_VEL_P, 0.2f);
|
||||
PARAM_DEFINE_FLOAT(MPC_XY_VEL_I, 0.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_XY_VEL_D, 0.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_XY_VEL_MAX, 10.0f);
|
||||
PARAM_DEFINE_FLOAT(MPC_SLOPE_MAX, 0.5f);
|
||||
PARAM_DEFINE_INT32(MPC_HARD, 0);
|
||||
|
||||
int parameters_init(struct multirotor_position_control_param_handles *h)
|
||||
{
|
||||
h->thr_min = param_find("MPC_THR_MIN");
|
||||
h->thr_max = param_find("MPC_THR_MAX");
|
||||
h->alt_p = param_find("MPC_ALT_P");
|
||||
h->alt_i = param_find("MPC_ALT_I");
|
||||
h->alt_d = param_find("MPC_ALT_D");
|
||||
h->alt_rate_max = param_find("MPC_ALT_RATE_MAX");
|
||||
h->pos_p = param_find("MPC_POS_P");
|
||||
h->pos_i = param_find("MPC_POS_I");
|
||||
h->pos_d = param_find("MPC_POS_D");
|
||||
h->pos_rate_max = param_find("MPC_POS_RATE_MAX");
|
||||
h->z_p = param_find("MPC_Z_P");
|
||||
h->z_d = param_find("MPC_Z_D");
|
||||
h->z_vel_p = param_find("MPC_Z_VEL_P");
|
||||
h->z_vel_i = param_find("MPC_Z_VEL_I");
|
||||
h->z_vel_d = param_find("MPC_Z_VEL_D");
|
||||
h->z_vel_max = param_find("MPC_Z_VEL_MAX");
|
||||
h->xy_p = param_find("MPC_XY_P");
|
||||
h->xy_d = param_find("MPC_XY_D");
|
||||
h->xy_vel_p = param_find("MPC_XY_VEL_P");
|
||||
h->xy_vel_i = param_find("MPC_XY_VEL_I");
|
||||
h->xy_vel_d = param_find("MPC_XY_VEL_D");
|
||||
h->xy_vel_max = param_find("MPC_XY_VEL_MAX");
|
||||
h->slope_max = param_find("MPC_SLOPE_MAX");
|
||||
h->hard = param_find("MPC_HARD");
|
||||
|
||||
h->rc_scale_pitch = param_find("RC_SCALE_PITCH");
|
||||
h->rc_scale_roll = param_find("RC_SCALE_ROLL");
|
||||
|
@ -81,16 +87,19 @@ int parameters_update(const struct multirotor_position_control_param_handles *h,
|
|||
{
|
||||
param_get(h->thr_min, &(p->thr_min));
|
||||
param_get(h->thr_max, &(p->thr_max));
|
||||
param_get(h->alt_p, &(p->alt_p));
|
||||
param_get(h->alt_i, &(p->alt_i));
|
||||
param_get(h->alt_d, &(p->alt_d));
|
||||
param_get(h->alt_rate_max, &(p->alt_rate_max));
|
||||
param_get(h->pos_p, &(p->pos_p));
|
||||
param_get(h->pos_i, &(p->pos_i));
|
||||
param_get(h->pos_d, &(p->pos_d));
|
||||
param_get(h->pos_rate_max, &(p->pos_rate_max));
|
||||
param_get(h->z_p, &(p->z_p));
|
||||
param_get(h->z_d, &(p->z_d));
|
||||
param_get(h->z_vel_p, &(p->z_vel_p));
|
||||
param_get(h->z_vel_i, &(p->z_vel_i));
|
||||
param_get(h->z_vel_d, &(p->z_vel_d));
|
||||
param_get(h->z_vel_max, &(p->z_vel_max));
|
||||
param_get(h->xy_p, &(p->xy_p));
|
||||
param_get(h->xy_d, &(p->xy_d));
|
||||
param_get(h->xy_vel_p, &(p->xy_vel_p));
|
||||
param_get(h->xy_vel_i, &(p->xy_vel_i));
|
||||
param_get(h->xy_vel_d, &(p->xy_vel_d));
|
||||
param_get(h->xy_vel_max, &(p->xy_vel_max));
|
||||
param_get(h->slope_max, &(p->slope_max));
|
||||
param_get(h->hard, &(p->hard));
|
||||
|
||||
param_get(h->rc_scale_pitch, &(p->rc_scale_pitch));
|
||||
param_get(h->rc_scale_roll, &(p->rc_scale_roll));
|
||||
|
|
|
@ -44,16 +44,19 @@
|
|||
struct multirotor_position_control_params {
|
||||
float thr_min;
|
||||
float thr_max;
|
||||
float alt_p;
|
||||
float alt_i;
|
||||
float alt_d;
|
||||
float alt_rate_max;
|
||||
float pos_p;
|
||||
float pos_i;
|
||||
float pos_d;
|
||||
float pos_rate_max;
|
||||
float z_p;
|
||||
float z_d;
|
||||
float z_vel_p;
|
||||
float z_vel_i;
|
||||
float z_vel_d;
|
||||
float z_vel_max;
|
||||
float xy_p;
|
||||
float xy_d;
|
||||
float xy_vel_p;
|
||||
float xy_vel_i;
|
||||
float xy_vel_d;
|
||||
float xy_vel_max;
|
||||
float slope_max;
|
||||
int hard;
|
||||
|
||||
float rc_scale_pitch;
|
||||
float rc_scale_roll;
|
||||
|
@ -63,16 +66,19 @@ struct multirotor_position_control_params {
|
|||
struct multirotor_position_control_param_handles {
|
||||
param_t thr_min;
|
||||
param_t thr_max;
|
||||
param_t alt_p;
|
||||
param_t alt_i;
|
||||
param_t alt_d;
|
||||
param_t alt_rate_max;
|
||||
param_t pos_p;
|
||||
param_t pos_i;
|
||||
param_t pos_d;
|
||||
param_t pos_rate_max;
|
||||
param_t z_p;
|
||||
param_t z_d;
|
||||
param_t z_vel_p;
|
||||
param_t z_vel_i;
|
||||
param_t z_vel_d;
|
||||
param_t z_vel_max;
|
||||
param_t xy_p;
|
||||
param_t xy_d;
|
||||
param_t xy_vel_p;
|
||||
param_t xy_vel_i;
|
||||
param_t xy_vel_d;
|
||||
param_t xy_vel_max;
|
||||
param_t slope_max;
|
||||
param_t hard;
|
||||
|
||||
param_t rc_scale_pitch;
|
||||
param_t rc_scale_roll;
|
||||
|
|
|
@ -0,0 +1,179 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (C) 2008-2013 PX4 Development Team. All rights reserved.
|
||||
* Author: Laurens Mackay <mackayl@student.ethz.ch>
|
||||
* Tobias Naegeli <naegelit@student.ethz.ch>
|
||||
* Martin Rutschmann <rutmarti@student.ethz.ch>
|
||||
* Anton Babushkin <anton.babushkin@me.com>
|
||||
* Julian Oes <joes@student.ethz.ch>
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* 3. Neither the name PX4 nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
/**
|
||||
* @file thrust_pid.c
|
||||
*
|
||||
* Implementation of generic PID control interface.
|
||||
*
|
||||
* @author Laurens Mackay <mackayl@student.ethz.ch>
|
||||
* @author Tobias Naegeli <naegelit@student.ethz.ch>
|
||||
* @author Martin Rutschmann <rutmarti@student.ethz.ch>
|
||||
* @author Anton Babushkin <anton.babushkin@me.com>
|
||||
* @author Julian Oes <joes@student.ethz.ch>
|
||||
*/
|
||||
|
||||
#include "thrust_pid.h"
|
||||
#include <math.h>
|
||||
|
||||
__EXPORT void thrust_pid_init(thrust_pid_t *pid, float kp, float ki, float kd, float limit_min, float limit_max, uint8_t mode, float dt_min)
|
||||
{
|
||||
pid->kp = kp;
|
||||
pid->ki = ki;
|
||||
pid->kd = kd;
|
||||
pid->limit_min = limit_min;
|
||||
pid->limit_max = limit_max;
|
||||
pid->mode = mode;
|
||||
pid->dt_min = dt_min;
|
||||
pid->last_output = 0.0f;
|
||||
pid->sp = 0.0f;
|
||||
pid->error_previous = 0.0f;
|
||||
pid->integral = 0.0f;
|
||||
}
|
||||
|
||||
__EXPORT int thrust_pid_set_parameters(thrust_pid_t *pid, float kp, float ki, float kd, float limit_min, float limit_max)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
if (isfinite(kp)) {
|
||||
pid->kp = kp;
|
||||
|
||||
} else {
|
||||
ret = 1;
|
||||
}
|
||||
|
||||
if (isfinite(ki)) {
|
||||
pid->ki = ki;
|
||||
|
||||
} else {
|
||||
ret = 1;
|
||||
}
|
||||
|
||||
if (isfinite(kd)) {
|
||||
pid->kd = kd;
|
||||
|
||||
} else {
|
||||
ret = 1;
|
||||
}
|
||||
|
||||
if (isfinite(limit_min)) {
|
||||
pid->limit_min = limit_min;
|
||||
|
||||
} else {
|
||||
ret = 1;
|
||||
}
|
||||
|
||||
if (isfinite(limit_max)) {
|
||||
pid->limit_max = limit_max;
|
||||
|
||||
} else {
|
||||
ret = 1;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
__EXPORT float thrust_pid_calculate(thrust_pid_t *pid, float sp, float val, float dt)
|
||||
{
|
||||
/* Alternative integral component calculation
|
||||
error = setpoint - actual_position
|
||||
integral = integral + (Ki*error*dt)
|
||||
derivative = (error - previous_error)/dt
|
||||
output = (Kp*error) + integral + (Kd*derivative)
|
||||
previous_error = error
|
||||
wait(dt)
|
||||
goto start
|
||||
*/
|
||||
|
||||
if (!isfinite(sp) || !isfinite(val) || !isfinite(dt)) {
|
||||
return pid->last_output;
|
||||
}
|
||||
|
||||
float i, d;
|
||||
pid->sp = sp;
|
||||
|
||||
// Calculated current error value
|
||||
float error = pid->sp - val;
|
||||
|
||||
// Calculate or measured current error derivative
|
||||
if (pid->mode == THRUST_PID_MODE_DERIVATIV_CALC) {
|
||||
d = (error - pid->error_previous) / fmaxf(dt, pid->dt_min);
|
||||
pid->error_previous = error;
|
||||
|
||||
} else if (pid->mode == THRUST_PID_MODE_DERIVATIV_CALC_NO_SP) {
|
||||
d = (-val - pid->error_previous) / fmaxf(dt, pid->dt_min);
|
||||
pid->error_previous = -val;
|
||||
|
||||
} else {
|
||||
d = 0.0f;
|
||||
}
|
||||
|
||||
if (!isfinite(d)) {
|
||||
d = 0.0f;
|
||||
}
|
||||
|
||||
// Calculate the error integral and check for saturation
|
||||
i = pid->integral + (pid->ki * error * dt);
|
||||
|
||||
float output = (error * pid->kp) + i + (d * pid->kd);
|
||||
if (output < pid->limit_min || output > pid->limit_max) {
|
||||
i = pid->integral; // If saturated then do not update integral value
|
||||
// recalculate output with old integral
|
||||
output = (error * pid->kp) + i + (d * pid->kd);
|
||||
|
||||
} else {
|
||||
if (!isfinite(i)) {
|
||||
i = 0.0f;
|
||||
}
|
||||
|
||||
pid->integral = i;
|
||||
}
|
||||
|
||||
if (isfinite(output)) {
|
||||
if (output > pid->limit_max) {
|
||||
output = pid->limit_max;
|
||||
|
||||
} else if (output < pid->limit_min) {
|
||||
output = pid->limit_min;
|
||||
}
|
||||
|
||||
pid->last_output = output;
|
||||
}
|
||||
|
||||
return pid->last_output;
|
||||
}
|
|
@ -0,0 +1,75 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (C) 2013 PX4 Development Team. All rights reserved.
|
||||
* Author: Anton Babushkin <anton.babushkin@me.com>
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* 3. Neither the name PX4 nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
/**
|
||||
* @file thrust_pid.h
|
||||
*
|
||||
* Definition of thrust control PID interface.
|
||||
*
|
||||
* @author Anton Babushkin <anton.babushkin@me.com>
|
||||
*/
|
||||
|
||||
#ifndef THRUST_PID_H_
|
||||
#define THRUST_PID_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
__BEGIN_DECLS
|
||||
|
||||
/* PID_MODE_DERIVATIV_CALC calculates discrete derivative from previous error */
|
||||
#define THRUST_PID_MODE_DERIVATIV_CALC 0
|
||||
/* PID_MODE_DERIVATIV_CALC_NO_SP calculates discrete derivative from previous value, setpoint derivative is ignored */
|
||||
#define THRUST_PID_MODE_DERIVATIV_CALC_NO_SP 1
|
||||
|
||||
typedef struct {
|
||||
float kp;
|
||||
float ki;
|
||||
float kd;
|
||||
float sp;
|
||||
float integral;
|
||||
float error_previous;
|
||||
float last_output;
|
||||
float limit_min;
|
||||
float limit_max;
|
||||
float dt_min;
|
||||
uint8_t mode;
|
||||
} thrust_pid_t;
|
||||
|
||||
__EXPORT void thrust_pid_init(thrust_pid_t *pid, float kp, float ki, float kd, float limit_min, float limit_max, uint8_t mode, float dt_min);
|
||||
__EXPORT int thrust_pid_set_parameters(thrust_pid_t *pid, float kp, float ki, float kd, float limit_min, float limit_max);
|
||||
__EXPORT float thrust_pid_calculate(thrust_pid_t *pid, float sp, float val, float dt);
|
||||
|
||||
__END_DECLS
|
||||
|
||||
#endif /* THRUST_PID_H_ */
|
|
@ -120,7 +120,7 @@ int position_estimator_inav_main(int argc, char *argv[])
|
|||
verbose_mode = true;
|
||||
|
||||
thread_should_exit = false;
|
||||
position_estimator_inav_task = task_spawn("position_estimator_inav",
|
||||
position_estimator_inav_task = task_spawn_cmd("position_estimator_inav",
|
||||
SCHED_RR, SCHED_PRIORITY_MAX - 5, 4096,
|
||||
position_estimator_inav_thread_main,
|
||||
(argv) ? (const char **) &argv[2] : (const char **) NULL);
|
||||
|
|
Loading…
Reference in New Issue