px4-firmware/apps/ardrone_interface/ardrone_interface.c

399 lines
12 KiB
C
Raw Normal View History

/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ardrone_interface.c
* Implementation of AR.Drone 1.0 / 2.0 motor control interface.
*/
#include <nuttx/config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <unistd.h>
#include <math.h>
#include <fcntl.h>
#include <errno.h>
#include <debug.h>
#include <termios.h>
#include <time.h>
#include <systemlib/err.h>
#include <sys/prctl.h>
#include <drivers/drv_hrt.h>
#include <uORB/uORB.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/actuator_controls.h>
#include <systemlib/systemlib.h>
#include "ardrone_motor_control.h"
__EXPORT int ardrone_interface_main(int argc, char *argv[]);
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int ardrone_interface_task; /**< Handle of deamon task / thread */
2012-09-03 07:34:18 -03:00
static int ardrone_write; /**< UART to write AR.Drone commands to */
/**
* Mainloop of ardrone_interface.
*/
int ardrone_interface_thread_main(int argc, char *argv[]);
2012-09-03 07:34:18 -03:00
/**
* Open the UART connected to the motor controllers
*/
static int ardrone_open_uart(char *uart_name, struct termios *uart_config_original);
2012-09-03 07:34:18 -03:00
/**
* Print the correct usage.
*/
static void usage(const char *reason);
static void
usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
fprintf(stderr, "usage: ardrone_interface {start|stop|status} [-d <UART>]\n\n");
exit(1);
}
/**
* The deamon app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_create().
*/
int ardrone_interface_main(int argc, char *argv[])
{
if (argc < 1)
usage("missing command");
if (!strcmp(argv[1], "start")) {
if (thread_running) {
printf("ardrone_interface already running\n");
/* this is not an error */
exit(0);
}
thread_should_exit = false;
ardrone_interface_task = task_spawn("ardrone_interface",
SCHED_DEFAULT,
SCHED_PRIORITY_MAX - 15,
2012-10-30 12:44:57 -03:00
2048,
ardrone_interface_thread_main,
(argv) ? (const char **)&argv[2] : (const char **)NULL);
exit(0);
}
if (!strcmp(argv[1], "stop")) {
thread_should_exit = true;
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
printf("\tardrone_interface is running\n");
} else {
printf("\tardrone_interface not started\n");
}
exit(0);
}
usage("unrecognized command");
exit(1);
}
static int ardrone_open_uart(char *uart_name, struct termios *uart_config_original)
2012-09-03 07:34:18 -03:00
{
/* baud rate */
int speed = B115200;
int uart;
2012-09-03 07:34:18 -03:00
/* open uart */
uart = open(uart_name, O_RDWR | O_NOCTTY);
/* Try to set baud rate */
struct termios uart_config;
int termios_state;
/* Back up the original uart configuration to restore it after exit */
if ((termios_state = tcgetattr(uart, uart_config_original)) < 0) {
fprintf(stderr, "[ardrone_interface] ERROR getting baudrate / termios config for %s: %d\n", uart_name, termios_state);
close(uart);
return -1;
}
/* Fill the struct for the new configuration */
tcgetattr(uart, &uart_config);
/* Clear ONLCR flag (which appends a CR for every LF) */
uart_config.c_oflag &= ~ONLCR;
/* Set baud rate */
if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) {
fprintf(stderr, "[ardrone_interface] ERROR setting baudrate / termios config for %s: %d (cfsetispeed, cfsetospeed)\n", uart_name, termios_state);
close(uart);
return -1;
}
if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config)) < 0) {
fprintf(stderr, "[ardrone_interface] ERROR setting baudrate / termios config for %s (tcsetattr)\n", uart_name);
close(uart);
return -1;
}
return uart;
}
int ardrone_interface_thread_main(int argc, char *argv[])
{
2012-09-03 16:34:54 -03:00
thread_running = true;
char *device = "/dev/ttyS1";
/* welcome user */
printf("[ardrone_interface] Control started, taking over motors\n");
2012-09-03 16:34:54 -03:00
/* File descriptors */
int gpios;
2012-09-03 07:34:18 -03:00
char *commandline_usage = "\tusage: ardrone_interface start|status|stop [-t for motor test (10%% thrust)]\n";
bool motor_test_mode = false;
int test_motor = -1;
/* read commandline arguments */
2012-09-03 16:34:54 -03:00
for (int i = 0; i < argc && argv[i]; i++) {
2012-09-03 07:34:18 -03:00
if (strcmp(argv[i], "-t") == 0 || strcmp(argv[i], "--test") == 0) {
motor_test_mode = true;
}
if (strcmp(argv[i], "-m") == 0 || strcmp(argv[i], "--motor") == 0) {
if (i+1 < argc) {
int motor = atoi(argv[i+1]);
if (motor > 0 && motor < 5) {
test_motor = motor;
} else {
thread_running = false;
errx(1, "supply a motor # between 1 and 4. Example: -m 1\n %s", commandline_usage);
}
} else {
thread_running = false;
errx(1, "missing parameter to -m 1..4\n %s", commandline_usage);
}
}
if (strcmp(argv[i], "-d") == 0 || strcmp(argv[i], "--device") == 0) { //device set
if (argc > i + 1) {
device = argv[i + 1];
} else {
thread_running = false;
errx(1, "missing parameter to -m 1..4\n %s", commandline_usage);
}
}
}
2012-09-03 07:34:18 -03:00
struct termios uart_config_original;
2012-09-03 16:34:54 -03:00
if (motor_test_mode) {
printf("[ardrone_interface] Motor test mode enabled, setting 10 %% thrust.\n");
}
/* Led animation */
int counter = 0;
int led_counter = 0;
/* declare and safely initialize all structs */
struct vehicle_status_s state;
2012-09-27 12:08:29 -03:00
memset(&state, 0, sizeof(state));
struct actuator_controls_s actuator_controls;
2012-09-27 12:08:29 -03:00
memset(&actuator_controls, 0, sizeof(actuator_controls));
struct actuator_armed_s armed;
armed.armed = false;
/* subscribe to attitude, motor setpoints and system state */
int actuator_controls_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
int state_sub = orb_subscribe(ORB_ID(vehicle_status));
int armed_sub = orb_subscribe(ORB_ID(actuator_armed));
2012-09-03 16:34:54 -03:00
printf("[ardrone_interface] Motors initialized - ready.\n");
fflush(stdout);
2012-09-06 15:46:53 -03:00
/* enable UART, writes potentially an empty buffer, but multiplexing is disabled */
ardrone_write = ardrone_open_uart(device, &uart_config_original);
2012-09-06 15:46:53 -03:00
/* initialize multiplexing, deactivate all outputs - must happen after UART open to claim GPIOs on PX4FMU */
gpios = ar_multiplexing_init();
if (ardrone_write < 0) {
fprintf(stderr, "[ardrone_interface] Failed opening AR.Drone UART, exiting.\n");
thread_running = false;
exit(ERROR);
}
/* initialize motors */
if (OK != ar_init_motors(ardrone_write, gpios)) {
close(ardrone_write);
fprintf(stderr, "[ardrone_interface] Failed initializing AR.Drone motors, exiting.\n");
thread_running = false;
exit(ERROR);
}
ardrone_write_motor_commands(ardrone_write, 0, 0, 0, 0);
// XXX Re-done initialization to make sure it is accepted by the motors
// XXX should be removed after more testing, but no harm
/* close uarts */
close(ardrone_write);
/* enable UART, writes potentially an empty buffer, but multiplexing is disabled */
ardrone_write = ardrone_open_uart(device, &uart_config_original);
/* initialize multiplexing, deactivate all outputs - must happen after UART open to claim GPIOs on PX4FMU */
gpios = ar_multiplexing_init();
if (ardrone_write < 0) {
fprintf(stderr, "[ardrone_interface] Failed opening AR.Drone UART, exiting.\n");
thread_running = false;
exit(ERROR);
}
/* initialize motors */
if (OK != ar_init_motors(ardrone_write, gpios)) {
close(ardrone_write);
fprintf(stderr, "[ardrone_interface] Failed initializing AR.Drone motors, exiting.\n");
thread_running = false;
exit(ERROR);
}
while (!thread_should_exit) {
if (motor_test_mode) {
/* set motors to idle speed */
if (test_motor > 0 && test_motor < 5) {
int motors[4] = {0, 0, 0, 0};
motors[test_motor - 1] = 10;
ardrone_write_motor_commands(ardrone_write, motors[0], motors[1], motors[2], motors[3]);
} else {
ardrone_write_motor_commands(ardrone_write, 10, 10, 10, 10);
}
} else {
/* MAIN OPERATION MODE */
/* get a local copy of the vehicle state */
orb_copy(ORB_ID(vehicle_status), state_sub, &state);
/* get a local copy of the actuator controls */
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_controls_sub, &actuator_controls);
orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
/* for now only spin if armed and immediately shut down
* if in failsafe
*/
if (armed.armed && !armed.lockdown) {
ardrone_mixing_and_output(ardrone_write, &actuator_controls);
} else {
/* Silently lock down motor speeds to zero */
ardrone_write_motor_commands(ardrone_write, 0, 0, 0, 0);
}
}
if (counter % 16 == 0) {
if (led_counter == 0) ar_set_leds(ardrone_write, 0, 1, 0, 0, 0, 0, 0 , 0);
if (led_counter == 1) ar_set_leds(ardrone_write, 1, 1, 0, 0, 0, 0, 0 , 0);
if (led_counter == 2) ar_set_leds(ardrone_write, 1, 0, 0, 0, 0, 0, 0 , 0);
if (led_counter == 3) ar_set_leds(ardrone_write, 0, 0, 0, 1, 0, 0, 0 , 0);
if (led_counter == 4) ar_set_leds(ardrone_write, 0, 0, 1, 1, 0, 0, 0 , 0);
if (led_counter == 5) ar_set_leds(ardrone_write, 0, 0, 1, 0, 0, 0, 0 , 0);
if (led_counter == 6) ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 1, 0 , 0);
if (led_counter == 7) ar_set_leds(ardrone_write, 0, 0, 0, 0, 1, 1, 0 , 0);
if (led_counter == 8) ar_set_leds(ardrone_write, 0, 0, 0, 0, 1, 0, 0 , 0);
if (led_counter == 9) ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 0 , 1);
if (led_counter == 10) ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 1 , 1);
if (led_counter == 11) ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 1 , 0);
led_counter++;
if (led_counter == 12) led_counter = 0;
}
/* run at approximately 200 Hz */
usleep(5000);
counter++;
}
2012-09-03 07:34:18 -03:00
/* restore old UART config */
int termios_state;
if ((termios_state = tcsetattr(ardrone_write, TCSANOW, &uart_config_original)) < 0) {
fprintf(stderr, "[ardrone_interface] ERROR setting baudrate / termios config for (tcsetattr)\n");
}
printf("[ardrone_interface] Restored original UART config, exiting..\n");
/* close uarts */
close(ardrone_write);
ar_multiplexing_deinit(gpios);
fflush(stdout);
thread_running = false;
return OK;
}