px4-firmware/EKF/terrain_estimator.cpp

191 lines
6.4 KiB
C++
Raw Normal View History

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file terrain_estimator.cpp
* Function for fusing rangefinder measurements to estimate terrain vertical position/
*
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "ekf.h"
#include "mathlib.h"
bool Ekf::initHagl()
{
// get most recent range measurement from buffer
rangeSample latest_measurement = _range_buffer.get_newest();
if ((_time_last_imu - latest_measurement.time_us) < 2e5 && _R_rng_to_earth_2_2 > 0.7071f) {
// if we have a fresh measurement, use it to initialise the terrain estimator
_terrain_vpos = _state.pos(2) + latest_measurement.rng * _R_rng_to_earth_2_2;
// initialise state variance to variance of measurement
_terrain_var = sq(_params.range_noise);
// success
return true;
} else if (!_control_status.flags.in_air) {
// if on ground we assume a ground clearance
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance;
// Use the ground clearance value as our uncertainty
_terrain_var = sq(_params.rng_gnd_clearance);
// ths is a guess
return false;
} else {
// no information - cannot initialise
return false;
}
}
void Ekf::runTerrainEstimator()
{
// Perform a continuity check on range finder data
checkRangeDataContinuity();
// Perform initialisation check
if (!_terrain_initialised) {
_terrain_initialised = initHagl();
} else {
// predict the state variance growth where the state is the vertical position of the terrain underneath the vehicle
// process noise due to errors in vehicle height estimate
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise);
// process noise due to terrain gradient
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient) * (sq(_state.vel(0)) + sq(_state.vel(
1)));
// limit the variance to prevent it becoming badly conditioned
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f);
// Fuse range finder data if available
if (_range_data_ready) {
fuseHagl();
}
}
}
void Ekf::fuseHagl()
{
// If the vehicle is excessively tilted, do not try to fuse range finder observations
if (_R_rng_to_earth_2_2 > 0.7071f) {
// get a height above ground measurement from the range finder assuming a flat earth
float meas_hagl = _range_sample_delayed.rng * _R_rng_to_earth_2_2;
// predict the hagl from the vehicle position and terrain height
float pred_hagl = _terrain_vpos - _state.pos(2);
// calculate the innovation
_hagl_innov = pred_hagl - meas_hagl;
// calculate the observation variance adding the variance of the vehicles own height uncertainty
float obs_variance = fmaxf(P[9][9], 0.0f) + sq(_params.range_noise) + sq(_params.range_noise_scaler * _range_sample_delayed.rng);
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance);
// perform an innovation consistency check and only fuse data if it passes
float gate_size = fmaxf(_params.range_innov_gate, 1.0f);
2016-10-05 02:52:21 -03:00
_terr_test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var);
2016-10-05 02:52:21 -03:00
if (_terr_test_ratio <= 1.0f) {
// calculate the Kalman gain
float gain = _terrain_var / _hagl_innov_var;
// correct the state
_terrain_vpos -= gain * _hagl_innov;
// correct the variance
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f);
// record last successful fusion event
_time_last_hagl_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_hagl = false;
} else {
_innov_check_fail_status.flags.reject_hagl = true;
}
} else {
return;
}
}
// return true if the estimate is fresh
// return the estimated vertical position of the terrain relative to the NED origin
bool Ekf::get_terrain_vert_pos(float *ret)
{
memcpy(ret, &_terrain_vpos, sizeof(float));
if (_terrain_initialised && _range_data_continuous) {
return true;
} else {
return false;
}
}
void Ekf::get_hagl_innov(float *hagl_innov)
{
memcpy(hagl_innov, &_hagl_innov, sizeof(_hagl_innov));
}
void Ekf::get_hagl_innov_var(float *hagl_innov_var)
{
memcpy(hagl_innov_var, &_hagl_innov_var, sizeof(_hagl_innov_var));
}
// check that the range finder data is continuous
void Ekf::checkRangeDataContinuity()
{
// update range data continuous flag (2Hz ie 500 ms)
/* Timing in micro seconds */
/* Apply a 1.0 sec low pass filter to the time delta from the last range finder updates */
_dt_last_range_update_filt_us = _dt_last_range_update_filt_us * (1.0f - _dt_update) + _dt_update *
(_time_last_imu - _time_last_range);
_dt_last_range_update_filt_us = fminf(_dt_last_range_update_filt_us, 1e6f);
if (_dt_last_range_update_filt_us < 5e5f) {
_range_data_continuous = true;
} else {
_range_data_continuous = false;
}
}