2012-10-23 08:15:36 -03:00
|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
|
|
|
|
* Author: Lorenz Meier <lm@inf.ethz.ch>
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
|
|
* used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file calibration_routines.c
|
|
|
|
* Calibration routines implementations.
|
|
|
|
*
|
|
|
|
* @author Lorenz Meier <lm@inf.ethz.ch>
|
|
|
|
*/
|
|
|
|
|
2012-10-21 10:36:29 -03:00
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#include "calibration_routines.h"
|
|
|
|
|
|
|
|
|
|
|
|
int sphere_fit_least_squares(const float x[], const float y[], const float z[],
|
|
|
|
unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z, float *sphere_radius) {
|
|
|
|
|
|
|
|
float x_sumplain = 0.0f;
|
|
|
|
float x_sumsq = 0.0f;
|
|
|
|
float x_sumcube = 0.0f;
|
|
|
|
|
|
|
|
float y_sumplain = 0.0f;
|
|
|
|
float y_sumsq = 0.0f;
|
|
|
|
float y_sumcube = 0.0f;
|
|
|
|
|
|
|
|
float z_sumplain = 0.0f;
|
|
|
|
float z_sumsq = 0.0f;
|
|
|
|
float z_sumcube = 0.0f;
|
|
|
|
|
|
|
|
float xy_sum = 0.0f;
|
|
|
|
float xz_sum = 0.0f;
|
|
|
|
float yz_sum = 0.0f;
|
|
|
|
|
|
|
|
float x2y_sum = 0.0f;
|
|
|
|
float x2z_sum = 0.0f;
|
|
|
|
float y2x_sum = 0.0f;
|
|
|
|
float y2z_sum = 0.0f;
|
|
|
|
float z2x_sum = 0.0f;
|
|
|
|
float z2y_sum = 0.0f;
|
|
|
|
|
|
|
|
for (unsigned int i = 0; i < size; i++) {
|
|
|
|
|
|
|
|
float x2 = x[i] * x[i];
|
|
|
|
float y2 = y[i] * y[i];
|
|
|
|
float z2 = z[i] * z[i];
|
|
|
|
|
|
|
|
x_sumplain += x[i];
|
|
|
|
x_sumsq += x2;
|
|
|
|
x_sumcube += x2 * x[i];
|
|
|
|
|
|
|
|
y_sumplain += y[i];
|
|
|
|
y_sumsq += y2;
|
|
|
|
y_sumcube += y2 * y[i];
|
|
|
|
|
|
|
|
z_sumplain += z[i];
|
|
|
|
z_sumsq += z2;
|
|
|
|
z_sumcube += z2 * z[i];
|
|
|
|
|
|
|
|
xy_sum += x[i] * y[i];
|
|
|
|
xz_sum += x[i] * z[i];
|
|
|
|
yz_sum += y[i] * z[i];
|
|
|
|
|
|
|
|
x2y_sum += x2 * y[i];
|
|
|
|
x2z_sum += x2 * z[i];
|
|
|
|
|
|
|
|
y2x_sum += y2 * x[i];
|
|
|
|
y2z_sum += y2 * z[i];
|
|
|
|
|
|
|
|
z2x_sum += z2 * x[i];
|
|
|
|
z2y_sum += z2 * y[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
//Least Squares Fit a sphere A,B,C with radius squared Rsq to 3D data
|
|
|
|
//
|
|
|
|
// P is a structure that has been computed with the data earlier.
|
|
|
|
// P.npoints is the number of elements; the length of X,Y,Z are identical.
|
|
|
|
// P's members are logically named.
|
|
|
|
//
|
|
|
|
// X[n] is the x component of point n
|
|
|
|
// Y[n] is the y component of point n
|
|
|
|
// Z[n] is the z component of point n
|
|
|
|
//
|
|
|
|
// A is the x coordiante of the sphere
|
|
|
|
// B is the y coordiante of the sphere
|
|
|
|
// C is the z coordiante of the sphere
|
|
|
|
// Rsq is the radius squared of the sphere.
|
|
|
|
//
|
|
|
|
//This method should converge; maybe 5-100 iterations or more.
|
|
|
|
//
|
|
|
|
float x_sum = x_sumplain / size; //sum( X[n] )
|
|
|
|
float x_sum2 = x_sumsq / size; //sum( X[n]^2 )
|
|
|
|
float x_sum3 = x_sumcube / size; //sum( X[n]^3 )
|
|
|
|
float y_sum = y_sumplain / size; //sum( Y[n] )
|
|
|
|
float y_sum2 = y_sumsq / size; //sum( Y[n]^2 )
|
|
|
|
float y_sum3 = y_sumcube / size; //sum( Y[n]^3 )
|
|
|
|
float z_sum = z_sumplain / size; //sum( Z[n] )
|
|
|
|
float z_sum2 = z_sumsq / size; //sum( Z[n]^2 )
|
|
|
|
float z_sum3 = z_sumcube / size; //sum( Z[n]^3 )
|
|
|
|
|
|
|
|
float XY = xy_sum / size; //sum( X[n] * Y[n] )
|
|
|
|
float XZ = xz_sum / size; //sum( X[n] * Z[n] )
|
|
|
|
float YZ = yz_sum / size; //sum( Y[n] * Z[n] )
|
|
|
|
float X2Y = x2y_sum / size; //sum( X[n]^2 * Y[n] )
|
|
|
|
float X2Z = x2z_sum / size; //sum( X[n]^2 * Z[n] )
|
|
|
|
float Y2X = y2x_sum / size; //sum( Y[n]^2 * X[n] )
|
|
|
|
float Y2Z = y2z_sum / size; //sum( Y[n]^2 * Z[n] )
|
|
|
|
float Z2X = z2x_sum / size; //sum( Z[n]^2 * X[n] )
|
|
|
|
float Z2Y = z2y_sum / size; //sum( Z[n]^2 * Y[n] )
|
|
|
|
|
|
|
|
//Reduction of multiplications
|
|
|
|
float F0 = x_sum2 + y_sum2 + z_sum2;
|
|
|
|
float F1 = 0.5f * F0;
|
|
|
|
float F2 = -8.0f * (x_sum3 + Y2X + Z2X);
|
|
|
|
float F3 = -8.0f * (X2Y + y_sum3 + Z2Y);
|
|
|
|
float F4 = -8.0f * (X2Z + Y2Z + z_sum3);
|
|
|
|
|
|
|
|
//Set initial conditions:
|
|
|
|
float A = x_sum;
|
|
|
|
float B = y_sum;
|
|
|
|
float C = z_sum;
|
|
|
|
|
|
|
|
//First iteration computation:
|
|
|
|
float A2 = A*A;
|
|
|
|
float B2 = B*B;
|
|
|
|
float C2 = C*C;
|
|
|
|
float QS = A2 + B2 + C2;
|
|
|
|
float QB = -2.0f * (A*x_sum + B*y_sum + C*z_sum);
|
|
|
|
|
|
|
|
//Set initial conditions:
|
|
|
|
float Rsq = F0 + QB + QS;
|
|
|
|
|
|
|
|
//First iteration computation:
|
|
|
|
float Q0 = 0.5f * (QS - Rsq);
|
|
|
|
float Q1 = F1 + Q0;
|
|
|
|
float Q2 = 8.0f * ( QS - Rsq + QB + F0 );
|
|
|
|
float aA,aB,aC,nA,nB,nC,dA,dB,dC;
|
|
|
|
|
|
|
|
//Iterate N times, ignore stop condition.
|
|
|
|
int n = 0;
|
|
|
|
while( n < max_iterations ){
|
|
|
|
n++;
|
|
|
|
|
|
|
|
//Compute denominator:
|
|
|
|
aA = Q2 + 16.0f * (A2 - 2.0f * A*x_sum + x_sum2);
|
|
|
|
aB = Q2 + 16.0f *(B2 - 2.0f * B*y_sum + y_sum2);
|
|
|
|
aC = Q2 + 16.0f *(C2 - 2.0f * C*z_sum + z_sum2);
|
|
|
|
aA = (aA == 0.0f) ? 1.0f : aA;
|
|
|
|
aB = (aB == 0.0f) ? 1.0f : aB;
|
|
|
|
aC = (aC == 0.0f) ? 1.0f : aC;
|
|
|
|
|
|
|
|
//Compute next iteration
|
|
|
|
nA = A - ((F2 + 16.0f * ( B*XY + C*XZ + x_sum*(-A2 - Q0) + A*(x_sum2 + Q1 - C*z_sum - B*y_sum) ) )/aA);
|
|
|
|
nB = B - ((F3 + 16.0f * ( A*XY + C*YZ + y_sum*(-B2 - Q0) + B*(y_sum2 + Q1 - A*x_sum - C*z_sum) ) )/aB);
|
|
|
|
nC = C - ((F4 + 16.0f * ( A*XZ + B*YZ + z_sum*(-C2 - Q0) + C*(z_sum2 + Q1 - A*x_sum - B*y_sum) ) )/aC);
|
|
|
|
|
|
|
|
//Check for stop condition
|
|
|
|
dA = (nA - A);
|
|
|
|
dB = (nB - B);
|
|
|
|
dC = (nC - C);
|
|
|
|
if( (dA*dA + dB*dB + dC*dC) <= delta ){ break; }
|
|
|
|
|
|
|
|
//Compute next iteration's values
|
|
|
|
A = nA;
|
|
|
|
B = nB;
|
|
|
|
C = nC;
|
|
|
|
A2 = A*A;
|
|
|
|
B2 = B*B;
|
|
|
|
C2 = C*C;
|
|
|
|
QS = A2 + B2 + C2;
|
|
|
|
QB = -2.0f * (A*x_sum + B*y_sum + C*z_sum);
|
|
|
|
Rsq = F0 + QB + QS;
|
|
|
|
Q0 = 0.5f * (QS - Rsq);
|
|
|
|
Q1 = F1 + Q0;
|
|
|
|
Q2 = 8.0f * ( QS - Rsq + QB + F0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
*sphere_x = A;
|
|
|
|
*sphere_y = B;
|
|
|
|
*sphere_z = C;
|
|
|
|
*sphere_radius = sqrtf(Rsq);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|