forked from Archive/PX4-Autopilot
62 lines
1.6 KiB
Mathematica
62 lines
1.6 KiB
Mathematica
|
function [xapo1,Papo1] = position_estimator(u,z,xapo,Papo,gps_covariance,predict_only) %if predit_onli == 1: no update step: use this when no new gps data is available
|
||
|
%#codegen
|
||
|
%%initialization
|
||
|
%use model F=m*a x''=F/m
|
||
|
% 250Hz---> dT = 0.004s
|
||
|
%u=[phi;theta]
|
||
|
%x=[px;vx;py;vy];
|
||
|
%%------------------------------------------
|
||
|
dT=0.004;
|
||
|
%%------------------------------------------------
|
||
|
|
||
|
%R_t=[1,-r*dT,q*dT;r*dT,1,-p*dT;-q*dT,p*dT,1];
|
||
|
|
||
|
|
||
|
F=[ 1, 0.004, 0, 0, 0, 0;
|
||
|
0, 1, 0, 0, 0, 0;
|
||
|
0, 0, 1, 0.004, 0, 0;
|
||
|
0, 0, 0, 1, 0, 0;
|
||
|
0, 0, 0, 0, 1, 0.004;
|
||
|
0, 0, 0, 0, 0, 1];
|
||
|
|
||
|
B=[ 0, -0.1744;
|
||
|
0, -87.2;
|
||
|
0.1744, 0;
|
||
|
87.2, 0;
|
||
|
0, 0;
|
||
|
0, 0];
|
||
|
|
||
|
H=[1,0,0,0,0,0;
|
||
|
0,0,1,0,0,0;
|
||
|
0,0,0,0,1,0];
|
||
|
|
||
|
|
||
|
|
||
|
Q=[1e-007 ,0 ,0 ,0 ,0 ,0;
|
||
|
0 ,1 ,0 ,0 ,0 ,0;
|
||
|
0 ,0 ,1e-007 ,0 ,0 ,0;
|
||
|
0 ,0 ,0 ,1 ,0 ,0
|
||
|
0 ,0 ,0 ,0 ,1e-007 ,0;
|
||
|
0 ,0 ,0 ,0 ,0 ,1]; %process Covariance Matrix
|
||
|
|
||
|
|
||
|
R=[gps_covariance(1), 0, 0;
|
||
|
0, gps_covariance(2), 0;
|
||
|
0, 0, gps_covariance(3)]; %measurement Covariance Matrix
|
||
|
|
||
|
%%prediction
|
||
|
|
||
|
xapri=F*xapo+B*u;
|
||
|
Papri=F*Papo*F'+Q;
|
||
|
|
||
|
if 1 ~= predict_only
|
||
|
%update
|
||
|
yr=z-H*xapri;
|
||
|
S=H*Papri*H'+R;
|
||
|
K=(Papri*H')/S;
|
||
|
xapo1=xapri+K*yr;
|
||
|
Papo1=(eye(6)-K*H)*Papri;
|
||
|
else
|
||
|
Papo1=Papri;
|
||
|
xapo1=xapri;
|
||
|
end
|