px4-firmware/Tools/process_sensor_caldata.py

205 lines
6.5 KiB
Python
Raw Normal View History

#! /usr/bin/env python
"""
Reads in IMU data from a static thermal calibration test and performs
a curve fit of gyro, accel and baro bias vs temperature
Data can be gathered using the following sequence:
1) Set the TC_A_ENABLE, TC_B_ENABLE and TC_G_ENABLE parameters to 0 to
thermal compensation and reboot
2) Perform a gyro and accel cal
2) Set the SYS_LOGGER parameter to 1 to use the new system logger
3) Set the SDLOG_MODE parameter to 3 to enable logging of sensor data
for calibration and power off
4) Cold soak the board for 30 minutes
5) Move to a warm dry environment.
6) Apply power for 45 minutes, keeping the board still.
7) Remove power and extract the .ulog file
8) Open a terminal window in the script file directory
9) Run the script file 'python process_sensor_caldata.py
<full path name to .ulog file>
Outputs thermal compensation parameters in a file named
<inputfilename>.params which can be loaded onto the
board using QGroundControl
Outputs summary plots in a pdf file named <inputfilename>.pdf
"""
from __future__ import print_function
import argparse
import os
import matplotlib.pyplot as plt
import numpy as np
import pyulog
class Param(dict):
def __init__(self, name, val):
"""
Initialize a param dict
"""
self.name = name
self.val = val
def temp_calibration(data, topic, fields, units, label):
"""
Performe a temperature calibration on a sensor.
"""
# pylint: disable=no-member
params = {}
int_params = ['ID']
float_params = [
'TMIN', 'TMAX', 'TREF',
'X0_0', 'X1_0', 'X2_0', 'X3_0',
'X0_1', 'X1_1', 'X2_1', 'X3_1',
'X0_2', 'X1_2', 'X2_2', 'X3_2',
'SCL_0', 'SCL_1', 'SCL_2'
]
# define data dictionary of thermal correction parameters
for field in int_params:
params[field] = {
'val': 0,
'type': 'INT',
}
for field in float_params: params[field] = {
'val': 0,
'type': 'FLOAT',
}
# curve fit the data for corrections - note corrections have same sign as sensor bias and will need to be subtracted from the raw reading to remove the bias
try:
params['ID']['val'] = int(np.median(data['device_id']))
except:
print('no device id')
pass
# find the min, max and reference temperature
params['TMIN']['val'] = float(np.amin(data['temperature']))
params['TMAX']['val'] = float(np.amax(data['temperature']))
params['TREF']['val'] = float(0.5 * (params['TMIN']['val'] + params['TMAX']['val']))
temp_rel = data['temperature'] - params['TREF']['val']
temp_rel_resample = np.linspace(
float(params['TMIN']['val'] - params['TREF']['val']),
float(params['TMAX']['val'] - params['TREF']['val']), 100)
temp_resample = temp_rel_resample + params['TREF']['val']
for i, field in enumerate(fields):
coef = np.polyfit(temp_rel, data[field], 3)
for j in range(3):
params['X{:d}_{:d}'.format(3-j, i)]['val'] = float(coef[j])
fit_coef = np.poly1d(coef)
resample = fit_coef(temp_rel_resample)
# draw plots
plt.subplot(len(fields), 1, i + 1)
plt.plot(data['temperature'], data[field], 'b')
plt.plot(temp_resample, resample, 'r')
plt.title('{:s} Bias vs Temperature'.format(topic))
plt.ylabel('{:s} bias {:s}'.format(field, units))
plt.xlabel('temperature (degC)')
plt.grid()
return params
def process_file(log_path, out_path, template_path):
"""
Command line interface to temperature calibration.
"""
log = pyulog.ULog(log_path, 'sensor_gyro, sensor_accel, sensor_baro')
data = {}
for d in log.data_list:
data['{:s}_{:d}'.format(d.name, d.multi_id)] = d.data
params = {}
# open file to save plots to PDF
# from matplotlib.backends.backend_pdf import PdfPages
# output_plot_filename = ulog_file_name + ".pdf"
# pp = PdfPages(output_plot_filename)
configs = [
{
'msg': 'sensor_gyro',
'fields': ['x', 'y', 'z'],
'units': 'rad/s',
'label': 'TC_G'
},
{
'msg': 'sensor_accel',
'fields': ['x', 'y', 'z'],
'units': 'm/s^2',
'label': 'TC_A'
},
{
'msg': 'sensor_baro',
'fields': ['pressure'],
'units': 'm',
'label': 'TC_B'
},
]
for config in configs:
for d in log.data_list:
if d.name == config['msg']:
plt.figure(figsize=(20, 13))
topic = '{:s}_{:d}'.format(d.name, d.multi_id)
print('found {:s} data'.format(topic))
label='{:s}{:d}'.format(
config['label'], d.multi_id)
params[topic] = {
'params': temp_calibration(
data=d.data, topic=topic,
fields=config['fields'],
units=config['units'],
label=label),
'label': label
}
plt.savefig('{:s}_cal.pdf'.format(topic))
# JSON file generation
# import json
# print(json.dumps(params, indent=2))
body = ''
for sensor in sorted(params.keys()):
for param in sorted(params[sensor]['params'].keys()):
label = params[sensor]['label']
pdict = params[sensor]['params']
if pdict[param]['type'] == 'INT':
type_id = 6
elif pdict[param]['type'] == 'FLOAT':
type_id = 9
val = pdict[param]['val']
name = '{:s}_{:s}'.format(label, param)
body += "1\t1\t{name:20s}\t{val:15g}\t{type_id:5d}\n".format(**locals())
# simple template file output
text = """# Sensor thermal compensation parameters
#
# Vehicle-Id Component-Id Name Value Type
{body:s}
""".format(body=body)
with open(out_path, 'w') as f:
f.write(text)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Analyse the sensor_gyro message data')
parser.add_argument('filename', metavar='file.ulg', help='ULog input file')
args = parser.parse_args()
ulog_file_name = args.filename
template_path = os.path.join(os.path.dirname(
os.path.realpath(__file__)), 'templates')
process_file(log_path=args.filename, out_path=ulog_file_name.replace('ulg', 'params'),
template_path=template_path)
# vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 :