oscillation_ctrl/src/ref_signalGen.py

426 lines
15 KiB
Python
Raw Normal View History

2022-03-01 14:09:26 -04:00
#!/usr/bin/env python2.7
### Cesar Rodriguez July 2021
### Based off of Klausen 2017 - Smooth trajectory generation based on desired waypoints
import rospy, tf
import numpy as np
import time
import math
from scipy import signal
from scipy.integrate import odeint
2022-03-04 12:23:52 -04:00
from oscillation_ctrl.msg import tethered_status, RefSignal
2022-03-01 14:09:26 -04:00
from controller_msgs.msg import FlatTarget
from geometry_msgs.msg import Pose, Vector3, PoseStamped
from geometry_msgs.msg import TwistStamped
from sensor_msgs.msg import Imu
from mavros_msgs.msg import State
from pymavlink import mavutil
class Main:
def __init__(self):
# rate(s)
rate = 30 # rate for the publisher method, specified in Hz -- 10 Hz
# initialize variables
self.tstart = rospy.get_time() # Keep track of the start time
while self.tstart == 0.0: # Need to make sure get_rostime works
self.tstart = rospy.get_time()
self.dt = 1.0/rate
# self.dt = 0.5
# self.tmax = 100
self.tmax = self.dt
self.n = self.tmax/self.dt + 1
self.t = np.linspace(0, self.tmax, self.n) # Time array
# Message generation/ collection
self.state = State()
self.mode = ''
self.vel_data = TwistStamped() # This is needed to get drone vel from gps
self.imu_data = Imu() # Needed for to get drone acc from IMU
self.ref_sig = FlatTarget() # Smooth Signal
self.ref_sig.position.z = 5.0 # This does not need to be determined
self.phi = 0.0 # Payload angle of deflection from x-axis
self.phidot = 0.0
self.theta = 0.0 # Payload angle of deflection from y-axis
self.thetadot = 0.0
self.has_run = 0 # Bool to keep track of first run instance
self.drone_id = ''
self.pload_id = ''
self.pl_pos = Pose()
self.dr_pos = Pose()
self.dr_vel = self.vel_data.twist.linear
self.dr_acc = self.imu_data.linear_acceleration
self.dr_acc_p = self.imu_data.linear_acceleration
# Get tether length
self.param_exists = False
while self.param_exists == False:
if rospy.has_param('sim/tether_length'):
self.tetherL = rospy.get_param('sim/tether_length') # Tether length
self.param_exists = True
# Smooth path variables
self.EPS_F = np.zeros(9) # Final Epsilon/ signal
self.EPS_I = np.zeros(9) # Epsilon shapefilter
# Constants for smooth path generation
self.w_tune = 3.0 # 3.13 works well? #########################################################################
self.epsilon = 0.7 # Damping ratio
self.wn = math.sqrt(9.81/self.tetherL)
self.wd = self.wn*math.sqrt(1 - self.epsilon**2)
self.k4 = 4*self.epsilon*self.w_tune
self.k3 = ((2 + 4*self.epsilon**2)*self.w_tune**2)/self.k4
self.k2 = (4*self.epsilon*self.w_tune**3)/(self.k4*self.k3)
self.k1 = (self.w_tune**4)/(self.k2*self.k3*self.k4)
# For saturation:
self.jmax = [3, 3, 1]
self.amax = [1.5, 1.5, 1]
self.vmax = [3, 3, 1]
self.max = [0, 3, 1.5, 3] #[0, 3, 1.5, 3]
# create the array: [vmax; amax; jmax]
self.max_array = np.array([[self.vmax],[self.amax],[self.jmax]]).T
# Desired position array
self.xd = np.array([[0],[0],[5.0]])
self.des_waypoints = True # True = changing waypoints
# Initial conditions: [pos, vel, acc, jerk]
self.x0 = [0, 0, 0, 0]
self.y0 = [0, 0, 0, 0]
self.z0 = [0, 0, 0, 0]
# --------------------------------------------------------------------------------#
# FEEDBACK AND INPUT SHAPING
# --------------------------------------------------------------------------------#
# Constants for feedback
self.Gd = 0.325
self.td = 2*self.Gd*math.pi/self.wd
# Constants for shape filter/ Input shaping
self.t1 = 0
self.t2 = math.pi/self.wd
self.K = math.exp(-self.epsilon*math.pi/math.sqrt(1 - self.epsilon**2))
self.A1 = 1/(1 + self.K)
self.A2 = self.A1*self.K
# Need to determine how large of any array needs to be stored to use delayed functions
self.SF_delay_x = np.zeros([4,int(round(self.t2/self.dt))]) # Shapefilter delay; 4 - p,v,a,j
self.SF_delay_y = np.zeros([4,int(round(self.t2/self.dt))])
self.phi_fb = np.zeros(int(round(self.td/self.dt))) # Feedback delay
self.phi_vel_fb = np.zeros(int(round(self.td/self.dt)))
self.phi_acc_fb = np.zeros(int(round(self.td/self.dt)))
self.theta_fb = np.zeros(int(round(self.td/self.dt)))
self.theta_vel_fb = np.zeros(int(round(self.td/self.dt)))
self.theta_acc_fb = np.zeros(int(round(self.td/self.dt)))
# Need index to keep track of path array of ^^^^ length
self.SF_idx = 0
self.FB_idx = 0
# Constants for sigmoid
self.at = 3 # acceleration theshold
self.pc = 0.7 # From Klausen 2017
self.sk = len(self.SF_delay_x[0]) # from Klausen 2017
self.ak = np.zeros(len(self.SF_delay_x[0]))
self.s_gain = 0.0 # Gain found from sigmoid
# --------------------------------------------------------------------------------#
# SUBSCRIBERS #
# --------------------------------------------------------------------------------#
# Topic, msg type, and class callback method
rospy.Subscriber('/status/twoBody_status', tethered_status, self.linkState_cb)
rospy.Subscriber('/mavros/local_position/velocity_body', TwistStamped, self.droneVel_cb)
rospy.Subscriber('/mavros/imu/data', Imu, self.droneAcc_cb)
rospy.Subscriber('/mavros/state', State, self.state_cb)
rospy.Subscriber('/reference/waypoints',PoseStamped, self.waypoints_cb)
# --------------------------------------------------------------------------------#
# PUBLISHERS
# --------------------------------------------------------------------------------#
# Publish desired path to compute attitudes
self.pub_path = rospy.Publisher('/reference/path',FlatTarget,queue_size = 10)
# Needed for geometric controller to compute thrust
self.pub_ref = rospy.Publisher('/reference/flatsetpoint',FlatTarget,queue_size = 10)
# timer(s), used to control method loop freq(s) as defined by the rate(s)
self.pub_tim = rospy.Timer(rospy.Duration(1.0/rate), self.publisher)
# ------------------------------------ _init_ ends ------------------------------ #
# --------------------------------------------------------------------------------#
# CALLBACK FUNCTIONS
# --------------------------------------------------------------------------------#
def state_cb(self, data):
if self.state.armed != data.armed:
rospy.loginfo("armed state changed from {0} to {1}".format(
self.state.armed, data.armed))
if self.state.connected != data.connected:
rospy.loginfo("connected changed from {0} to {1}".format(
self.state.connected, data.connected))
if self.state.mode != data.mode:
rospy.loginfo("mode changed from {0} to {1}".format(
self.state.mode, data.mode))
if self.state.system_status != data.system_status:
rospy.loginfo("system_status changed from {0} to {1}".format(
mavutil.mavlink.enums['MAV_STATE'][
self.state.system_status].name, mavutil.mavlink.enums[
'MAV_STATE'][data.system_status].name))
self.state = data
# mavros publishes a disconnected state message on init
# Callback to get link names, states, and pload deflection angles
def linkState_cb(self,msg):
try:
self.drone_id = msg.drone_id
self.pload_id = msg.pload_id
self.dr_pos = msg.drone_pos
self.pl_pos = msg.pload_pos
self.phi = -msg.phi
self.phidot = -msg.phidot
self.theta = msg.theta
self.thetadot = msg.thetadot
# self.tetherL = msg.length
except ValueError:
pass
# Callback for drone velocity
def droneVel_cb(self,msg):
try:
self.dr_vel = msg.twist.linear
except ValueError or TypeError:
pass
# Callback for drone accel from IMU data
def droneAcc_cb(self,msg):
try:
self.dr_acc = msg.linear_acceleration
except ValueError:
pass
def waypoints_cb(self,msg):
try:
if self.des_waypoints == True:
self.xd[0] = msg.pose.position.x
self.xd[1] = msg.pose.position.y
#self.xd[2] = msg.pose.position.z
except ValueError:
pass
# --------------------------------------------------------------------------------#
# ALGORITHM
# --------------------------------------------------------------------------------#
# --------------------------------------------------------------------------------#
# TRAJECTORY GENERATION BASED ON WAYPONTS xd
# --------------------------------------------------------------------------------#
def statespace(self,y,t,xd):
# Update initial conditions #
# Need the statespace array:
pos,vel,acc,jer = y
# Derivative of statesape array:
dydt = [vel, acc, jer,
self.k4*(self.k3*(self.k2*(self.k1*(xd - pos) - vel) - acc) - jer)]
return dydt
# Sigmoid
def sigmoid(self):
for i in range(self.sk):
if math.sqrt(self.SF_delay_x[2,i]**2 + self.SF_delay_y[2,i]**2) < self.at:
self.ak[i] = 1
else:
self.ak[i] = 0
pk = sum(self.ak)/self.sk
self.s_gain = 1/(1 + math.exp(-self.sk*(pk-self.pc)))
def delay(self,j,cmd):
'''
Function to keep track of values in past. Needed for
Shape filtering as well as feedback
j -> tells if we are doing pos, vel, or acc
cmd -> determines SF or FB
'''
if cmd == 1: # Shape filter
if self.SF_idx < len(self.SF_delay_x[0]):
# First, fill up the delay array
self.SF_delay_x[j,self.SF_idx] = self.x[1,j]
self.SF_delay_y[j,self.SF_idx] = self.y[1,j]
else:
# once array is filled, we start using the first value every time
# x
self.SF_delay_x[j,:] = np.roll(self.SF_delay_x[j,:],-1) # makes the first value last
self.SF_delay_x[j,len(self.SF_delay_x[0])-1] = self.x[1,j] # updates last value to current x
# y
self.SF_delay_y[j,:] = np.roll(self.SF_delay_y[j,:],-1)
self.SF_delay_y[j,len(self.SF_delay_y[0])-1] = self.y[1,j]
elif cmd == 2: # Feedback
if self.FB_idx < len(self.theta_fb):
# First, fill up the delay array
self.theta_fb[self.FB_idx] = self.theta
self.theta_vel_fb[self.FB_idx] = self.thetadot
self.theta_acc_fb[self.FB_idx] = self.thetadot - self.theta_vel_fb[self.FB_idx-1]
self.phi_fb[self.FB_idx] = self.phi
self.phi_vel_fb[self.FB_idx] = self.phidot
self.phi_acc_fb[self.FB_idx] = self.phidot - self.phi_vel_fb[self.FB_idx-1]
else:
# once array is filled, need to shift values w/ latest value at end
self.theta_fb[:] = np.roll(self.theta_fb[:],-1)
self.theta_vel_fb[:] = np.roll(self.theta_vel_fb[:],-1)
self.theta_acc_fb[:] = np.roll(self.theta_acc_fb[:],-1)
self.phi_fb[:] = np.roll(self.phi_fb[:],-1)
self.phi_vel_fb[:] = np.roll(self.phi_vel_fb[:],-1)
self.phi_acc_fb[:] = np.roll(self.phi_acc_fb[:],-1)
self.theta_fb[len(self.theta_fb)-1] = self.theta # change final value
self.theta_vel_fb[len(self.theta_fb)-1] = self.thetadot
self.theta_acc_fb[len(self.theta_fb)-1] = self.thetadot - self.theta_vel_fb[len(self.theta_fb)-1]
self.phi_fb[len(self.phi_fb)-1] = self.phi
self.phi_vel_fb[len(self.theta_fb)-1] = self.phidot
self.phi_acc_fb[len(self.theta_fb)-1] = self.phidot - self.phi_vel_fb[len(self.theta_fb)-1]
else:
print('No delay')
# Convolution and input shape filter, and feedback
def convo(self):
# needed for delay function
# 1 = determine shapefilter array
# 2 = determine theta/phi_fb
shapeFil = 1
feedBack = 2
# SOLVE ODE (get ref pos, vel, accel)
self.x = odeint(self.statespace,self.x0,self.t,args=(self.xd[0],))
self.y = odeint(self.statespace,self.y0,self.t,args=(self.xd[1],))
self.z = odeint(self.statespace,self.z0,self.t,args=(self.xd[2],))
for i in range(1,len(self.y0)):
self.x[:,i] = np.clip(self.x[:,i], a_min = -self.max[i], a_max = self.max[i])
self.y[:,i] = np.clip(self.y[:,i], a_min = -self.max[i], a_max = self.max[i])
self.z[:,i] = np.clip(self.z[:,i], a_min = -self.max[i], a_max = self.max[i])
for j in range(3): # 3 is due to pos, vel, acc. NOT due x, y, z
self.delay(j,shapeFil) # Determine the delay array
if self.SF_idx < len(self.SF_delay_x[0]):
self.EPS_I[3*j] = self.x[1,j]
self.EPS_I[3*j+1] = self.y[1,j]
self.EPS_I[3*j+2] = self.z[1,j]
else:
self.EPS_I[3*j] = self.A1*self.x[1,j] + self.A2*self.SF_delay_x[j,0] # Determine convolution (x)
self.EPS_I[3*j+1] = self.A1*self.y[1,j] + self.A2*self.SF_delay_y[j,0] # Determine convolution (y)
self.EPS_I[3*j+2] = self.z[1,j] # No need to convolute z-dim
self.delay(1,feedBack) # Detemine feedback array
self.sigmoid() # Determine sigmoid gain
EPS_D = self.fback() # Feedback Epsilon
for i in range(9):
# Populate EPS_F buffer with desired change based on feedback
self.EPS_F[i] = self.EPS_I[i] + EPS_D[i] #+ EPS_D[i]
# self.x0 = [self.dr_pos.position.x, self.dr_vel.x, self.dr_acc.x, self.x[1,3]]
# self.y0 = [self.dr_pos.position.y, self.dr_vel.y, self.dr_acc.y, self.y[1,3]]
# self.z0 = [self.dr_pos.position.z, self.dr_vel.z, self.dr_acc.z, self.z[1,3]]
self.x0 = [self.dr_pos.position.x, self.x[1,1], self.x[1,2], self.x[1,3]]
self.y0 = [self.dr_pos.position.y, self.y[1,1], self.y[1,2], self.y[1,3]]
self.z0 = [self.dr_pos.position.z, self.z[1,1], self.z[1,2], self.z[1,3]]
self.SF_idx += 1
self.FB_idx += 1
def fback(self):
xr = self.Gd*self.tetherL*math.sin(self.theta_fb[0])
xdotr = self.Gd*self.tetherL*math.cos(self.theta_fb[0])*self.theta_vel_fb[0]
xddotr = -self.Gd*self.tetherL*math.sin(self.theta_fb[0])*(self.theta_vel_fb[0]**2) + math.cos(self.theta_fb[0])*self.theta_acc_fb[0]
yr = -self.Gd*self.tetherL*math.sin(self.phi_fb[0])
ydotr = -self.Gd*self.tetherL*math.cos(self.phi_fb[0])*self.phi_vel_fb[0]
yddotr = self.Gd*self.tetherL*math.sin(self.phi_fb[0])*self.phi_vel_fb[0]**2 + math.cos(self.phi_fb[0])*self.phi_acc_fb[0]
EPS_D = np.array([xr,yr,0,xdotr,ydotr,0,xddotr,yddotr,0])
return EPS_D
def publisher(self,pub_tim):
# Determine final ref signal
self.convo()
# Populate msg with epsilon_final
self.ref_sig.position.x = self.EPS_F[0]
self.ref_sig.position.y = self.EPS_F[1]
self.ref_sig.velocity.x = self.EPS_F[3]
self.ref_sig.velocity.y = self.EPS_F[4]
self.ref_sig.velocity.z = self.EPS_F[5]
self.ref_sig.acceleration.x = self.EPS_F[6]
self.ref_sig.acceleration.y = self.EPS_F[7]
self.ref_sig.acceleration.z = self.EPS_F[8]
# Need typemask = 2 to use correct attitude controller - Jaeyoung Lin
self.ref_sig.type_mask = 2
# Publish command
self.ref_sig.header.stamp = rospy.Time.now()
self.pub_path.publish(self.ref_sig)
self.pub_ref.publish(self.ref_sig)
# Feedback to user
rospy.loginfo(' Var | x | y | z ')
rospy.loginfo('Pos: %.2f %.2f %.2f',self.EPS_F[0],self.EPS_F[1],self.EPS_F[2])
rospy.loginfo('Vel: %.2f %.2f %.2f',self.EPS_F[3],self.EPS_F[4],self.EPS_F[5])
rospy.loginfo('Acc: %.2f %.2f %.2f',self.EPS_F[6],self.EPS_F[7],self.EPS_F[8])
rospy.loginfo('_______________________')
if __name__=="__main__":
# Initiate ROS node
rospy.init_node('desPath_node',anonymous=True)
try:
Main() # create class object
rospy.spin() # loop until shutdown signal
except rospy.ROSInterruptException:
pass