Ardupilot2/libraries/AP_Generator/AP_Generator_RichenPower.cpp

491 lines
16 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Generator_RichenPower.h"
#if GENERATOR_ENABLED
#include <AP_Logger/AP_Logger.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_HAL/utility/sparse-endian.h>
extern const AP_HAL::HAL& hal;
// init method; configure communications with the generator
void AP_Generator_RichenPower::init()
{
const AP_SerialManager &serial_manager = AP::serialmanager();
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Generator, 0);
if (uart != nullptr) {
const uint32_t baud = serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Generator, 0);
uart->begin(baud, 256, 256);
}
// Tell frontend what measurements are available for this generator
_frontend._has_current = true;
_frontend._has_consumed_energy = false;
_frontend._has_fuel_remaining = false;
}
// find a RichenPower message in the buffer, starting at
// initial_offset. If dound, that message (or partial message) will
// be moved to the start of the buffer.
void AP_Generator_RichenPower::move_header_in_buffer(uint8_t initial_offset)
{
uint8_t header_offset;
for (header_offset=initial_offset; header_offset<body_length; header_offset++) {
if (u.parse_buffer[header_offset] == HEADER_MAGIC1) {
break;
}
}
if (header_offset != 0) {
// header was found, but not at index 0; move it back to start of array
memmove(u.parse_buffer, &u.parse_buffer[header_offset], body_length - header_offset);
body_length -= header_offset;
}
}
// read - read serial port, return true if a new reading has been found
bool AP_Generator_RichenPower::get_reading()
{
// Example of a packet from a H2 controller:
//AA 55 00 0A 00 00 00 00 00 04 1E B0 00 10 00 00 23 7A 23
//7A 11 1D 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
//00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
//00 00 00 00 00 00 00 00 00 1E BE 55 AA
//16 bit one data Hight + Low
// fill our buffer some more:
uint32_t nbytes = uart->read(&u.parse_buffer[body_length],
ARRAY_SIZE(u.parse_buffer)-body_length);
if (nbytes == 0) {
return false;
}
body_length += nbytes;
move_header_in_buffer(0);
// header byte 1 is correct.
if (body_length < ARRAY_SIZE(u.parse_buffer)) {
// need a full buffer to have a valid message...
return false;
}
if (u.packet.headermagic2 != HEADER_MAGIC2) {
move_header_in_buffer(1);
return false;
}
// check for the footer signature:
if (u.packet.footermagic1 != FOOTER_MAGIC1) {
move_header_in_buffer(1);
return false;
}
if (u.packet.footermagic2 != FOOTER_MAGIC2) {
move_header_in_buffer(1);
return false;
}
// calculate checksum....
uint16_t checksum = 0;
const uint8_t *checksum_buffer = &u.parse_buffer[2];
for (uint8_t i=0; i<5; i++) {
checksum += be16toh_ptr(&checksum_buffer[2*i]);
}
if (checksum != be16toh(u.packet.checksum)) {
move_header_in_buffer(1);
return false;
}
// check the version:
const uint16_t version = be16toh(u.packet.version);
const uint8_t major = version / 100;
const uint8_t minor = (version % 100) / 10;
const uint8_t point = version % 10;
if (!protocol_information_anounced) {
gcs().send_text(MAV_SEVERITY_INFO, "RichenPower: protocol %u.%u.%u", major, minor, point);
protocol_information_anounced = true;
}
last_reading.runtime = be16toh(u.packet.runtime_hours) * 3600 +
u.packet.runtime_minutes * 60 +
u.packet.runtime_seconds;
last_reading.seconds_until_maintenance = be16toh(u.packet.seconds_until_maintenance_high) * 65536 + be16toh(u.packet.seconds_until_maintenance_low);
last_reading.errors = be16toh(u.packet.errors);
last_reading.rpm = be16toh(u.packet.rpm);
last_reading.output_voltage = be16toh(u.packet.output_voltage) / 100.0f;
last_reading.output_current = be16toh(u.packet.output_current) / 100.0f;
last_reading.mode = (Mode)u.packet.mode;
last_reading_ms = AP_HAL::millis();
body_length = 0;
// update the time we started idling at:
if (last_reading.mode == Mode::IDLE) {
if (idle_state_start_ms == 0) {
idle_state_start_ms = last_reading_ms;
}
} else {
idle_state_start_ms = 0;
}
return true;
}
// update the synthetic heat measurement we are keeping for the
// generator. We keep a synthetic heat measurement as the telemetry
// from the unit does not include the motor temperature, so we
// approximate one by assuming it produces heat in proportion to its
// current RPM.
void AP_Generator_RichenPower::update_heat()
{
// assume heat increase is directly proportional to RPM.
const uint32_t now = AP_HAL::millis();
uint16_t rpm = last_reading.rpm;
if (now - last_reading_ms > 2000) {
// if we're not getting updates, assume we're getting colder
rpm = 0;
// ... and resend the version information when we get something again
protocol_information_anounced = false;
}
const uint32_t time_delta_ms = now - last_heat_update_ms;
last_heat_update_ms = now;
heat += rpm * time_delta_ms * (1/1000.0f);
// cap the heat of the motor:
heat = MIN(heat, 60 * RUN_RPM); // so cap heat at 60 seconds at run-speed
// now lose some heat to the environment
heat -= (heat * heat_environment_loss_factor * (time_delta_ms * (1/1000.0f))); // lose some % of heat per second
}
// returns true if the generator should be allowed to move into
// the "run" (high-RPM) state:
bool AP_Generator_RichenPower::generator_ok_to_run() const
{
return heat > heat_required_for_run();
}
// returns an amount of synthetic heat required for the generator
// to move into the "run" state:
constexpr float AP_Generator_RichenPower::heat_required_for_run()
{
// assume that heat is proportional to RPM. Return a number
// proportial to RPM. Reduce it to account for the cooling some%/s
// cooling
return (45 * IDLE_RPM) * heat_environment_loss_30s;
}
/*
update the state of the sensor
*/
void AP_Generator_RichenPower::update(void)
{
if (uart == nullptr) {
return;
}
if (last_reading_ms != 0) {
update_runstate();
}
(void)get_reading();
update_heat();
update_frontend_readings();
Log_Write();
}
// update_runstate updates the servo output we use to control the
// generator. Which state we request the generator move to depends on
// the RC inputcontrol and the temperature the generator is at.
void AP_Generator_RichenPower::update_runstate()
{
// don't run the generator while the safety is on:
// if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
// _servo_channel->set_output_pwm(SERVO_PWM_STOP);
// return;
// }
static const uint16_t SERVO_PWM_STOP = 1200;
static const uint16_t SERVO_PWM_IDLE = 1500;
static const uint16_t SERVO_PWM_RUN = 1900;
// if the vehicle crashes then we assume the pilot wants to stop
// the motor. This is done as a once-off when the crash is
// detected to allow the operator to rearm the vehicle, or we end
// up in a catch-22 situation where we force the stop state on the
// generator so they can't arm and can't start the generator
// because the vehicle is crashed.
if (AP::vehicle()->is_crashed()) {
if (!vehicle_was_crashed) {
gcs().send_text(MAV_SEVERITY_INFO, "Crash; stopping generator");
pilot_desired_runstate = RunState::STOP;
vehicle_was_crashed = true;
}
} else {
vehicle_was_crashed = false;
}
if (commanded_runstate != pilot_desired_runstate &&
!hal.util->get_soft_armed()) {
// consider changing the commanded runstate to the pilot
// desired runstate:
commanded_runstate = RunState::IDLE;
switch (pilot_desired_runstate) {
case RunState::STOP:
// The H2 will keep the motor running for ~20 seconds for cool-down
// we must go via the idle state or the H2 disallows moving to stop!
if (time_in_idle_state_ms() > 1000) {
commanded_runstate = pilot_desired_runstate;
}
break;
case RunState::IDLE:
// can always switch to idle
commanded_runstate = pilot_desired_runstate;
break;
case RunState::RUN:
// must have idled for a while before moving to run:
if (generator_ok_to_run()) {
commanded_runstate = pilot_desired_runstate;
}
break;
}
}
switch (commanded_runstate) {
case RunState::STOP:
SRV_Channels::set_output_pwm(SRV_Channel::k_generator_control, SERVO_PWM_STOP);
break;
case RunState::IDLE:
SRV_Channels::set_output_pwm(SRV_Channel::k_generator_control, SERVO_PWM_IDLE);
break;
case RunState::RUN:
SRV_Channels::set_output_pwm(SRV_Channel::k_generator_control, SERVO_PWM_RUN);
break;
}
}
// log generator status to the onboard log
void AP_Generator_RichenPower::Log_Write()
{
#define MASK_LOG_ANY 0xFFFF
if (!AP::logger().should_log(MASK_LOG_ANY)) {
return;
}
if (last_logged_reading_ms == last_reading_ms) {
return;
}
last_logged_reading_ms = last_reading_ms;
AP::logger().WriteStreaming(
"GEN",
"TimeUS,runTime,maintTime,errors,rpm,ovolt,ocurr,mode",
"s-------",
"F-------",
"QIIHHffB",
AP_HAL::micros64(),
last_reading.runtime,
last_reading.seconds_until_maintenance,
last_reading.errors,
last_reading.rpm,
last_reading.output_voltage,
last_reading.output_current,
last_reading.mode
);
}
// generator prearm checks; notably, if we never see a generator we do
// not run the checks. Generators are attached/detached at will, and
// reconfiguring is painful.
bool AP_Generator_RichenPower::pre_arm_check(char *failmsg, uint8_t failmsg_len) const
{
if (uart == nullptr) {
// not configured in serial manager
return true;
}
if (last_reading_ms == 0) {
// allow optional use of generator
return true;
}
const uint32_t now = AP_HAL::millis();
if (now - last_reading_ms > 2000) { // we expect @1Hz
hal.util->snprintf(failmsg, failmsg_len, "no messages in %ums", unsigned(now - last_reading_ms));
return false;
}
if (last_reading.seconds_until_maintenance == 0) {
hal.util->snprintf(failmsg, failmsg_len, "requires maintenance");
}
if (SRV_Channels::get_channel_for(SRV_Channel::k_generator_control) == nullptr) {
hal.util->snprintf(failmsg, failmsg_len, "need a servo output channel");
return false;
}
if (last_reading.errors) {
for (uint16_t i=0; i<16; i++) {
if (last_reading.errors & (1U << (uint16_t)i)) {
if (i < (uint16_t)Errors::LAST) {
hal.util->snprintf(failmsg, failmsg_len, "error: %s", error_strings[i]);
} else {
hal.util->snprintf(failmsg, failmsg_len, "unknown error: 1U<<%u", i);
}
}
}
return false;
}
if (pilot_desired_runstate != RunState::RUN) {
hal.util->snprintf(failmsg, failmsg_len, "requested state is not RUN");
return false;
}
if (commanded_runstate != RunState::RUN) {
hal.util->snprintf(failmsg, failmsg_len, "Generator warming up (%.0f%%)", (heat *100 / heat_required_for_run()));
return false;
}
if (last_reading.mode != Mode::RUN &&
last_reading.mode != Mode::CHARGE &&
last_reading.mode != Mode::BALANCE) {
hal.util->snprintf(failmsg, failmsg_len, "not running");
return false;
}
return true;
}
// Update front end with voltage, current, and rpm values
void AP_Generator_RichenPower::update_frontend_readings(void)
{
_voltage = last_reading.output_voltage;
_current = last_reading.output_current;
_rpm = last_reading.rpm;
update_frontend();
}
// healthy returns true if the generator is not present, or it is
// present, providing telemetry and not indicating an errors.
bool AP_Generator_RichenPower::healthy() const
{
const uint32_t now = AP_HAL::millis();
if (last_reading_ms == 0 || now - last_reading_ms > 2000) {
return false;
}
if (last_reading.errors) {
return false;
}
return true;
}
//send mavlink generator status
void AP_Generator_RichenPower::send_generator_status(const GCS_MAVLINK &channel)
{
if (last_reading_ms == 0) {
// nothing to report
return;
}
uint64_t status = 0;
if (last_reading.rpm == 0) {
status |= MAV_GENERATOR_STATUS_FLAG_OFF;
} else {
switch (last_reading.mode) {
case Mode::OFF:
status |= MAV_GENERATOR_STATUS_FLAG_OFF;
break;
case Mode::IDLE:
if (pilot_desired_runstate == RunState::RUN) {
status |= MAV_GENERATOR_STATUS_FLAG_WARMING_UP;
} else {
status |= MAV_GENERATOR_STATUS_FLAG_IDLE;
}
break;
case Mode::RUN:
status |= MAV_GENERATOR_STATUS_FLAG_GENERATING;
break;
case Mode::CHARGE:
status |= MAV_GENERATOR_STATUS_FLAG_GENERATING;
status |= MAV_GENERATOR_STATUS_FLAG_CHARGING;
break;
case Mode::BALANCE:
status |= MAV_GENERATOR_STATUS_FLAG_GENERATING;
status |= MAV_GENERATOR_STATUS_FLAG_CHARGING;
break;
}
}
if (last_reading.errors & (uint8_t)Errors::Overload) {
status |= MAV_GENERATOR_STATUS_FLAG_OVERCURRENT_FAULT;
}
if (last_reading.errors & (uint8_t)Errors::LowVoltageOutput) {
status |= MAV_GENERATOR_STATUS_FLAG_REDUCED_POWER;
}
if (last_reading.errors & (uint8_t)Errors::MaintenanceRequired) {
status |= MAV_GENERATOR_STATUS_FLAG_MAINTENANCE_REQUIRED;
}
if (last_reading.errors & (uint8_t)Errors::StartDisabled) {
status |= MAV_GENERATOR_STATUS_FLAG_START_INHIBITED;
}
if (last_reading.errors & (uint8_t)Errors::LowBatteryVoltage) {
status |= MAV_GENERATOR_STATUS_FLAG_BATTERY_UNDERVOLT_FAULT;
}
mavlink_msg_generator_status_send(
channel.get_chan(),
status,
last_reading.rpm, // generator_speed
std::numeric_limits<double>::quiet_NaN(), // battery_current; current into/out of battery
last_reading.output_current, // load_current; Current going to UAV
std::numeric_limits<double>::quiet_NaN(), // power_generated; the power being generated
last_reading.output_voltage, // bus_voltage; Voltage of the bus seen at the generator
INT16_MAX, // rectifier_temperature
std::numeric_limits<double>::quiet_NaN(), // bat_current_setpoint; The target battery current
INT16_MAX, // generator temperature
last_reading.runtime,
(int32_t)last_reading.seconds_until_maintenance
);
}
// methods to control the generator state:
bool AP_Generator_RichenPower::stop()
{
set_pilot_desired_runstate(RunState::STOP);
return true;
}
bool AP_Generator_RichenPower::idle()
{
set_pilot_desired_runstate(RunState::IDLE);
return true;
}
bool AP_Generator_RichenPower::run()
{
set_pilot_desired_runstate(RunState::RUN);
return true;
}
#endif