Ardupilot2/libraries/AP_HAL_AVR_SITL/SITL_State.cpp
2015-01-09 11:50:54 +11:00

703 lines
18 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
#include <AP_HAL_AVR.h>
#include <AP_HAL_AVR_SITL.h>
#include "AP_HAL_AVR_SITL_Namespace.h"
#include "HAL_AVR_SITL_Class.h"
#include "UARTDriver.h"
#include "Scheduler.h"
#include <stdio.h>
#include <signal.h>
#include <getopt.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/select.h>
#include <AP_Param.h>
#ifdef __CYGWIN__
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
void print_trace() {
char pid_buf[30];
sprintf(pid_buf, "%d", getpid());
char name_buf[512];
name_buf[readlink("/proc/self/exe", name_buf, 511)]=0;
int child_pid = fork();
if (!child_pid) {
dup2(2,1); // redirect output to stderr
fprintf(stdout,"stack trace for %s pid=%s\n",name_buf,pid_buf);
execlp("gdb", "gdb", "--batch", "-n", "-ex", "thread", "-ex", "bt", name_buf, pid_buf, NULL);
abort(); /* If gdb failed to start */
} else {
waitpid(child_pid,NULL,0);
}
}
#endif
extern const AP_HAL::HAL& hal;
using namespace AVR_SITL;
enum SITL_State::vehicle_type SITL_State::_vehicle;
uint16_t SITL_State::_framerate;
uint16_t SITL_State::_base_port = 5760;
uint16_t SITL_State::_rcout_port = 5502;
uint16_t SITL_State::_simin_port = 5501;
struct sockaddr_in SITL_State::_rcout_addr;
pid_t SITL_State::_parent_pid;
uint32_t SITL_State::_update_count;
bool SITL_State::_motors_on;
uint16_t SITL_State::sonar_pin_value;
uint16_t SITL_State::airspeed_pin_value;
uint16_t SITL_State::voltage_pin_value;
uint16_t SITL_State::current_pin_value;
float SITL_State::_current;
AP_Baro *SITL_State::_barometer;
AP_InertialSensor *SITL_State::_ins;
SITLScheduler *SITL_State::_scheduler;
AP_Compass_HIL *SITL_State::_compass;
OpticalFlow *SITL_State::_optical_flow;
AP_Terrain *SITL_State::_terrain;
int SITL_State::_sitl_fd;
SITL *SITL_State::_sitl;
uint16_t SITL_State::pwm_output[11];
uint16_t SITL_State::last_pwm_output[11];
uint16_t SITL_State::pwm_input[8];
bool SITL_State::new_rc_input;
// catch floating point exceptions
void SITL_State::_sig_fpe(int signum)
{
fprintf(stderr, "ERROR: Floating point exception - aborting\n");
abort();
}
void SITL_State::_usage(void)
{
fprintf(stdout, "Options:\n");
fprintf(stdout, "\t-w wipe eeprom and dataflash\n");
fprintf(stdout, "\t-r RATE set SITL framerate\n");
fprintf(stdout, "\t-H HEIGHT initial barometric height\n");
fprintf(stdout, "\t-C use console instead of TCP ports\n");
fprintf(stdout, "\t-I set instance of SITL (adds 10*instance to all port numbers)\n");
}
void SITL_State::_parse_command_line(int argc, char * const argv[])
{
int opt;
signal(SIGFPE, _sig_fpe);
// No-op SIGPIPE handler
signal(SIGPIPE, SIG_IGN);
setvbuf(stdout, (char *)0, _IONBF, 0);
setvbuf(stderr, (char *)0, _IONBF, 0);
while ((opt = getopt(argc, argv, "swhr:H:CI:P:")) != -1) {
switch (opt) {
case 'w':
AP_Param::erase_all();
unlink("dataflash.bin");
break;
case 'r':
_framerate = (unsigned)atoi(optarg);
break;
case 'H':
_initial_height = atof(optarg);
break;
case 'C':
AVR_SITL::SITLUARTDriver::_console = true;
break;
case 'I': {
uint8_t instance = atoi(optarg);
_base_port += instance * 10;
_rcout_port += instance * 10;
_simin_port += instance * 10;
}
break;
case 'P':
_set_param_default(optarg);
break;
default:
_usage();
exit(1);
}
}
fprintf(stdout, "Starting sketch '%s'\n", SKETCH);
if (strcmp(SKETCH, "ArduCopter") == 0) {
_vehicle = ArduCopter;
if (_framerate == 0) {
_framerate = 200;
}
} else if (strcmp(SKETCH, "APMrover2") == 0) {
_vehicle = APMrover2;
if (_framerate == 0) {
_framerate = 50;
}
// set right default throttle for rover (allowing for reverse)
pwm_input[2] = 1500;
} else {
_vehicle = ArduPlane;
if (_framerate == 0) {
_framerate = 50;
}
}
_sitl_setup();
}
void SITL_State::_set_param_default(char *parm)
{
char *p = strchr(parm, '=');
if (p == NULL) {
printf("Please specify parameter as NAME=VALUE");
exit(1);
}
float value = atof(p+1);
*p = 0;
enum ap_var_type var_type;
AP_Param *vp = AP_Param::find(parm, &var_type);
if (vp == NULL) {
printf("Unknown parameter %s\n", parm);
exit(1);
}
if (var_type == AP_PARAM_FLOAT) {
((AP_Float *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT32) {
((AP_Int32 *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT16) {
((AP_Int16 *)vp)->set_and_save(value);
} else if (var_type == AP_PARAM_INT8) {
((AP_Int8 *)vp)->set_and_save(value);
} else {
printf("Unable to set parameter %s\n", parm);
exit(1);
}
printf("Set parameter %s to %f\n", parm, value);
}
/*
setup for SITL handling
*/
void SITL_State::_sitl_setup(void)
{
#ifndef __CYGWIN__
_parent_pid = getppid();
#endif
_rcout_addr.sin_family = AF_INET;
_rcout_addr.sin_port = htons(_rcout_port);
inet_pton(AF_INET, "127.0.0.1", &_rcout_addr.sin_addr);
_setup_timer();
#ifndef HIL_MODE
_setup_fdm();
#endif
fprintf(stdout, "Starting SITL input\n");
// find the barometer object if it exists
_sitl = (SITL *)AP_Param::find_object("SIM_");
_barometer = (AP_Baro *)AP_Param::find_object("GND_");
_ins = (AP_InertialSensor *)AP_Param::find_object("INS_");
_compass = (AP_Compass_HIL *)AP_Param::find_object("COMPASS_");
_terrain = (AP_Terrain *)AP_Param::find_object("TERRAIN_");
_optical_flow = (OpticalFlow *)AP_Param::find_object("FLOW");
if (_sitl != NULL) {
// setup some initial values
#ifndef HIL_MODE
_update_barometer(_initial_height);
_update_ins(0, 0, 0, 0, 0, 0, 0, 0, -9.8, 0, _initial_height);
_update_compass(0, 0, 0);
_update_gps(0, 0, 0, 0, 0, 0, false);
#endif
}
}
#ifndef HIL_MODE
/*
setup a SITL FDM listening UDP port
*/
void SITL_State::_setup_fdm(void)
{
int one=1, ret;
struct sockaddr_in sockaddr;
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(_simin_port);
sockaddr.sin_family = AF_INET;
_sitl_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (_sitl_fd == -1) {
fprintf(stderr, "SITL: socket failed - %s\n", strerror(errno));
exit(1);
}
/* we want to be able to re-use ports quickly */
setsockopt(_sitl_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
ret = bind(_sitl_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "SITL: bind failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port), strerror(errno));
exit(1);
}
AVR_SITL::SITLUARTDriver::_set_nonblocking(_sitl_fd);
}
#endif
/*
timer called at 1kHz
*/
void SITL_State::_timer_handler(int signum)
{
static uint32_t last_update_count;
static uint32_t last_pwm_input;
static bool in_timer;
if (in_timer || _scheduler->interrupts_are_blocked() || _sitl == NULL){
return;
}
_scheduler->sitl_begin_atomic();
in_timer = true;
#ifndef __CYGWIN__
/* make sure we die if our parent dies */
if (kill(_parent_pid, 0) != 0) {
exit(1);
}
#else
static uint16_t count = 0;
static uint32_t last_report;
count++;
if (hal.scheduler->millis() - last_report > 1000) {
fprintf(stdout, "TH %u cps\n", count);
// print_trace();
count = 0;
last_report = hal.scheduler->millis();
}
#endif
// simulate RC input at 50Hz
if (hal.scheduler->millis() - last_pwm_input >= 20 && _sitl->rc_fail == 0) {
last_pwm_input = hal.scheduler->millis();
new_rc_input = true;
}
#ifndef HIL_MODE
/* check for packet from flight sim */
_fdm_input();
// send RC output to flight sim
_simulator_output();
#endif
if (_update_count == 0 && _sitl != NULL) {
#ifndef HIL_MODE
_update_gps(0, 0, 0, 0, 0, 0, false);
_update_barometer(0);
#endif
_scheduler->timer_event();
_scheduler->sitl_end_atomic();
in_timer = false;
return;
}
if (_update_count == last_update_count) {
_scheduler->timer_event();
_scheduler->sitl_end_atomic();
in_timer = false;
return;
}
last_update_count = _update_count;
if (_sitl != NULL) {
#ifndef HIL_MODE
_update_gps(_sitl->state.latitude, _sitl->state.longitude,
_sitl->state.altitude,
_sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD,
!_sitl->gps_disable);
_update_ins(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg,
_sitl->state.rollRate, _sitl->state.pitchRate, _sitl->state.yawRate,
_sitl->state.xAccel, _sitl->state.yAccel, _sitl->state.zAccel,
_sitl->state.airspeed, _sitl->state.altitude);
_update_barometer(_sitl->state.altitude);
_update_compass(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg);
_update_flow();
#endif
}
// trigger all APM timers. We do this last as it can re-enable
// interrupts, which can lead to recursion
_scheduler->timer_event();
_scheduler->sitl_end_atomic();
in_timer = false;
}
#ifndef HIL_MODE
/*
check for a SITL FDM packet
*/
void SITL_State::_fdm_input(void)
{
ssize_t size;
struct pwm_packet {
uint16_t pwm[8];
};
union {
struct sitl_fdm fg_pkt;
struct pwm_packet pwm_pkt;
} d;
size = recv(_sitl_fd, &d, sizeof(d), MSG_DONTWAIT);
switch (size) {
case 140:
static uint32_t last_report;
static uint32_t count;
if (d.fg_pkt.magic != 0x4c56414f) {
fprintf(stdout, "Bad FDM packet - magic=0x%08x\n", d.fg_pkt.magic);
return;
}
if (d.fg_pkt.latitude == 0 ||
d.fg_pkt.longitude == 0 ||
d.fg_pkt.altitude <= 0) {
// garbage input
return;
}
if (_sitl != NULL) {
_sitl->state = d.fg_pkt;
// prevent bad inputs from SIM from corrupting our state
double *v = &_sitl->state.latitude;
for (uint8_t i=0; i<17; i++) {
if (isinf(v[i]) || isnan(v[i]) || fabsf(v[i]) > 1.0e10) {
v[i] = 0;
}
}
}
_update_count++;
count++;
if (hal.scheduler->millis() - last_report > 1000) {
//fprintf(stdout, "SIM %u FPS\n", count);
count = 0;
last_report = hal.scheduler->millis();
}
break;
case 16: {
// a packet giving the receiver PWM inputs
uint8_t i;
for (i=0; i<8; i++) {
// setup the pwn input for the RC channel inputs
if (d.pwm_pkt.pwm[i] != 0) {
pwm_input[i] = d.pwm_pkt.pwm[i];
}
}
break;
}
}
}
#endif
/*
apply servo rate filtering
This allows simulation of servo lag
*/
void SITL_State::_apply_servo_filter(float deltat)
{
if (_sitl->servo_rate < 1.0f) {
// no limit
return;
}
// 1000 usec == 90 degrees
uint16_t max_change = deltat * _sitl->servo_rate * 1000 / 90;
if (max_change == 0) {
max_change = 1;
}
for (uint8_t i=0; i<11; i++) {
int16_t change = (int16_t)pwm_output[i] - (int16_t)last_pwm_output[i];
if (change > max_change) {
pwm_output[i] = last_pwm_output[i] + max_change;
} else if (change < -max_change) {
pwm_output[i] = last_pwm_output[i] - max_change;
}
}
}
/*
send RC outputs to simulator
*/
void SITL_State::_simulator_output(void)
{
static uint32_t last_update_usec;
struct {
uint16_t pwm[11];
uint16_t speed, direction, turbulance;
} control;
/* this maps the registers used for PWM outputs. The RC
* driver updates these whenever it wants the channel output
* to change */
uint8_t i;
if (last_update_usec == 0) {
for (i=0; i<11; i++) {
pwm_output[i] = 1000;
}
if (_vehicle == ArduPlane) {
pwm_output[0] = pwm_output[1] = pwm_output[3] = 1500;
pwm_output[7] = 1800;
}
if (_vehicle == APMrover2) {
pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] = 1500;
pwm_output[7] = 1800;
}
for (i=0; i<11; i++) {
last_pwm_output[i] = pwm_output[i];
}
}
if (_sitl == NULL) {
return;
}
// output at chosen framerate
uint32_t now = hal.scheduler->micros();
if (last_update_usec != 0 && now - last_update_usec < 1000000/_framerate) {
return;
}
float deltat = (now - last_update_usec) * 1.0e-6f;
last_update_usec = now;
_apply_servo_filter(deltat);
for (i=0; i<11; i++) {
if (pwm_output[i] == 0xFFFF) {
control.pwm[i] = 0;
} else {
control.pwm[i] = pwm_output[i];
}
last_pwm_output[i] = pwm_output[i];
}
if (_vehicle == ArduPlane) {
// add in engine multiplier
if (control.pwm[2] > 1000) {
control.pwm[2] = ((control.pwm[2]-1000) * _sitl->engine_mul) + 1000;
if (control.pwm[2] > 2000) control.pwm[2] = 2000;
}
_motors_on = ((control.pwm[2]-1000)/1000.0) > 0;
} else if (_vehicle == APMrover2) {
// add in engine multiplier
if (control.pwm[2] != 1500) {
control.pwm[2] = ((control.pwm[2]-1500) * _sitl->engine_mul) + 1500;
if (control.pwm[2] > 2000) control.pwm[2] = 2000;
if (control.pwm[2] < 1000) control.pwm[2] = 1000;
}
_motors_on = ((control.pwm[2]-1500)/500.0) != 0;
} else {
_motors_on = false;
// apply engine multiplier to first motor
control.pwm[0] = ((control.pwm[0]-1000) * _sitl->engine_mul) + 1000;
// run checks on each motor
for (i=0; i<4; i++) {
// check motors do not exceed their limits
if (control.pwm[i] > 2000) control.pwm[i] = 2000;
if (control.pwm[i] < 1000) control.pwm[i] = 1000;
// update motor_on flag
if ((control.pwm[i]-1000)/1000.0 > 0) {
_motors_on = true;
}
}
}
float throttle = _motors_on?(control.pwm[2]-1000) / 1000.0f:0;
// lose 0.7V at full throttle
float voltage = _sitl->batt_voltage - 0.7f*throttle;
// assume 50A at full throttle
_current = 50.0 * throttle;
// assume 3DR power brick
voltage_pin_value = ((voltage / 10.1) / 5.0) * 1024;
current_pin_value = ((_current / 17.0) / 5.0) * 1024;
// setup wind control
float wind_speed = _sitl->wind_speed * 100;
float altitude = _barometer?_barometer->get_altitude():0;
if (altitude < 0) {
altitude = 0;
}
if (altitude < 60) {
wind_speed *= altitude / 60.0f;
}
control.speed = wind_speed;
float direction = _sitl->wind_direction;
if (direction < 0) {
direction += 360;
}
control.direction = direction * 100;
control.turbulance = _sitl->wind_turbulance * 100;
// zero the wind for the first 15s to allow pitot calibration
if (hal.scheduler->millis() < 15000) {
control.speed = 0;
}
sendto(_sitl_fd, (void*)&control, sizeof(control), MSG_DONTWAIT, (const sockaddr *)&_rcout_addr, sizeof(_rcout_addr));
}
/*
setup a timer used to prod the ISRs
*/
void SITL_State::_setup_timer(void)
{
struct itimerval it;
struct sigaction act;
act.sa_handler = _timer_handler;
act.sa_flags = SA_RESTART|SA_NODEFER;
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, SIGALRM);
sigaction(SIGALRM, &act, NULL);
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000; // 1KHz
it.it_value = it.it_interval;
setitimer(ITIMER_REAL, &it, NULL);
}
// generate a random float between -1 and 1
float SITL_State::_rand_float(void)
{
return ((((unsigned)random()) % 2000000) - 1.0e6) / 1.0e6;
}
// generate a random Vector3f of size 1
Vector3f SITL_State::_rand_vec3f(void)
{
Vector3f v = Vector3f(_rand_float(),
_rand_float(),
_rand_float());
if (v.length() != 0.0) {
v.normalize();
}
return v;
}
void SITL_State::init(int argc, char * const argv[])
{
pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500;
pwm_input[4] = pwm_input[7] = 1800;
pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000;
_scheduler = (SITLScheduler *)hal.scheduler;
_parse_command_line(argc, argv);
}
// wait for serial input, or 100usec
void SITL_State::loop_hook(void)
{
struct timeval tv;
fd_set fds;
int fd, max_fd = 0;
FD_ZERO(&fds);
fd = ((AVR_SITL::SITLUARTDriver*)hal.uartA)->_fd;
if (fd != -1) {
FD_SET(fd, &fds);
max_fd = max(fd, max_fd);
}
fd = ((AVR_SITL::SITLUARTDriver*)hal.uartB)->_fd;
if (fd != -1) {
FD_SET(fd, &fds);
max_fd = max(fd, max_fd);
}
fd = ((AVR_SITL::SITLUARTDriver*)hal.uartC)->_fd;
if (fd != -1) {
FD_SET(fd, &fds);
max_fd = max(fd, max_fd);
}
fd = ((AVR_SITL::SITLUARTDriver*)hal.uartD)->_fd;
if (fd != -1) {
FD_SET(fd, &fds);
max_fd = max(fd, max_fd);
}
fd = ((AVR_SITL::SITLUARTDriver*)hal.uartE)->_fd;
if (fd != -1) {
FD_SET(fd, &fds);
max_fd = max(fd, max_fd);
}
tv.tv_sec = 0;
tv.tv_usec = 100;
fflush(stdout);
fflush(stderr);
select(max_fd+1, &fds, NULL, NULL, &tv);
}
/*
return height above the ground in meters
*/
float SITL_State::height_agl(void)
{
static float home_alt = -1;
if (home_alt == -1 && _sitl->state.altitude > 0) {
// remember home altitude as first non-zero altitude
home_alt = _sitl->state.altitude;
}
if (_terrain &&
_sitl->terrain_enable) {
// get height above terrain from AP_Terrain. This assumes
// AP_Terrain is working
float terrain_height_amsl;
struct Location location;
location.lat = _sitl->state.latitude*1.0e7;
location.lng = _sitl->state.longitude*1.0e7;
if (_terrain->height_amsl(location, terrain_height_amsl)) {
return _sitl->state.altitude - terrain_height_amsl;
}
}
// fall back to flat earth model
return _sitl->state.altitude - home_alt;
}
#endif