797 lines
46 KiB
C++
797 lines
46 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
22 state EKF based on https://github.com/priseborough/InertialNav
|
|
|
|
Converted from Matlab to C++ by Paul Riseborough
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef AP_NavEKF
|
|
#define AP_NavEKF
|
|
|
|
#include <AP_Math.h>
|
|
#include <AP_InertialSensor.h>
|
|
#include <AP_Baro.h>
|
|
#include <AP_Airspeed.h>
|
|
#include <AP_Compass.h>
|
|
#include <AP_Param.h>
|
|
#include <AP_Nav_Common.h>
|
|
#include <GCS_MAVLink.h>
|
|
#include <AP_RangeFinder.h>
|
|
|
|
// #define MATH_CHECK_INDEXES 1
|
|
|
|
#include <vectorN.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
#include <systemlib/perf_counter.h>
|
|
#endif
|
|
|
|
|
|
class AP_AHRS;
|
|
|
|
class NavEKF
|
|
{
|
|
public:
|
|
typedef float ftype;
|
|
#if defined(MATH_CHECK_INDEXES) && (MATH_CHECK_INDEXES == 1)
|
|
typedef VectorN<ftype,2> Vector2;
|
|
typedef VectorN<ftype,3> Vector3;
|
|
typedef VectorN<ftype,4> Vector4;
|
|
typedef VectorN<ftype,5> Vector5;
|
|
typedef VectorN<ftype,6> Vector6;
|
|
typedef VectorN<ftype,8> Vector8;
|
|
typedef VectorN<ftype,9> Vector9;
|
|
typedef VectorN<ftype,10> Vector10;
|
|
typedef VectorN<ftype,11> Vector11;
|
|
typedef VectorN<ftype,13> Vector13;
|
|
typedef VectorN<ftype,14> Vector14;
|
|
typedef VectorN<ftype,15> Vector15;
|
|
typedef VectorN<ftype,22> Vector22;
|
|
typedef VectorN<ftype,31> Vector31;
|
|
typedef VectorN<ftype,34> Vector34;
|
|
typedef VectorN<VectorN<ftype,3>,3> Matrix3;
|
|
typedef VectorN<VectorN<ftype,22>,22> Matrix22;
|
|
typedef VectorN<VectorN<ftype,34>,22> Matrix34_50;
|
|
typedef VectorN<uint32_t,50> Vector_u32_50;
|
|
#else
|
|
typedef ftype Vector2[2];
|
|
typedef ftype Vector3[3];
|
|
typedef ftype Vector4[4];
|
|
typedef ftype Vector5[5];
|
|
typedef ftype Vector6[6];
|
|
typedef ftype Vector8[8];
|
|
typedef ftype Vector9[9];
|
|
typedef ftype Vector10[10];
|
|
typedef ftype Vector11[11];
|
|
typedef ftype Vector13[13];
|
|
typedef ftype Vector14[14];
|
|
typedef ftype Vector15[15];
|
|
typedef ftype Vector22[22];
|
|
typedef ftype Vector31[31];
|
|
typedef ftype Vector34[34];
|
|
typedef ftype Matrix3[3][3];
|
|
typedef ftype Matrix22[22][22];
|
|
typedef ftype Matrix34_50[34][50];
|
|
typedef uint32_t Vector_u32_50[50];
|
|
#endif
|
|
|
|
// Constructor
|
|
NavEKF(const AP_AHRS *ahrs, AP_Baro &baro, const RangeFinder &rng);
|
|
|
|
// This function is used to initialise the filter whilst moving, using the AHRS DCM solution
|
|
// It should NOT be used to re-initialise after a timeout as DCM will also be corrupted
|
|
bool InitialiseFilterDynamic(void);
|
|
|
|
// Initialise the states from accelerometer and magnetometer data (if present)
|
|
// This method can only be used when the vehicle is static
|
|
bool InitialiseFilterBootstrap(void);
|
|
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
void UpdateFilter(void);
|
|
|
|
// Check basic filter health metrics and return a consolidated health status
|
|
bool healthy(void) const;
|
|
|
|
// return the last calculated NED position relative to the reference point (m).
|
|
// return false if no position is available
|
|
bool getPosNED(Vector3f &pos) const;
|
|
|
|
// return NED velocity in m/s
|
|
void getVelNED(Vector3f &vel) const;
|
|
|
|
// This returns the specific forces in the NED frame
|
|
void getAccelNED(Vector3f &accelNED) const;
|
|
|
|
// return body axis gyro bias estimates in rad/sec
|
|
void getGyroBias(Vector3f &gyroBias) const;
|
|
|
|
// reset body axis gyro bias estimates
|
|
void resetGyroBias(void);
|
|
|
|
// Commands the EKF to not use GPS.
|
|
// This command must be sent prior to arming as it will only be actioned when the filter is in static mode
|
|
// This command is forgotten by the EKF each time it goes back into static mode (eg the vehicle disarms)
|
|
// Returns 0 if command rejected
|
|
// Returns 1 if attitude, vertical velocity and vertical position will be provided
|
|
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
|
|
uint8_t setInhibitGPS(void);
|
|
|
|
// return the horizontal speed limit in m/s set by optical flow sensor limits
|
|
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
|
|
void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const;
|
|
|
|
// return weighting of first IMU in blending function
|
|
void getIMU1Weighting(float &ret) const;
|
|
|
|
// return the individual Z-accel bias estimates in m/s^2
|
|
void getAccelZBias(float &zbias1, float &zbias2) const;
|
|
|
|
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
|
|
void getWind(Vector3f &wind) const;
|
|
|
|
// return earth magnetic field estimates in measurement units / 1000
|
|
void getMagNED(Vector3f &magNED) const;
|
|
|
|
// return body magnetic field estimates in measurement units / 1000
|
|
void getMagXYZ(Vector3f &magXYZ) const;
|
|
|
|
// Return estimated magnetometer offsets
|
|
// Return true if magnetometer offsets are valid
|
|
bool getMagOffsets(Vector3f &magOffsets) const;
|
|
|
|
// return the last calculated latitude, longitude and height
|
|
bool getLLH(struct Location &loc) const;
|
|
|
|
// return the latitude and longitude and height used to set the NED origin
|
|
// All NED positions calculated by the filter are relative to this location
|
|
// Returns false if the origin has not been set
|
|
bool getOriginLLH(struct Location &loc) const;
|
|
|
|
// set the latitude and longitude and height used to set the NED origin
|
|
// All NED positions calcualted by the filter will be relative to this location
|
|
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed)
|
|
// Returns false if the filter has rejected the attempt to set the origin
|
|
bool setOriginLLH(struct Location &loc);
|
|
|
|
// return estimated height above ground level
|
|
// return false if ground height is not being estimated.
|
|
bool getHAGL(float &HAGL) const;
|
|
|
|
// return the Euler roll, pitch and yaw angle in radians
|
|
void getEulerAngles(Vector3f &eulers) const;
|
|
|
|
// return the transformation matrix from XYZ (body) to NED axes
|
|
void getRotationBodyToNED(Matrix3f &mat) const;
|
|
|
|
// return the quaternions defining the rotation from NED to XYZ (body) axes
|
|
void getQuaternion(Quaternion &quat) const;
|
|
|
|
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
|
|
void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov) const;
|
|
|
|
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
|
|
void getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const;
|
|
|
|
// should we use the compass? This is public so it can be used for
|
|
// reporting via ahrs.use_compass()
|
|
bool use_compass(void) const;
|
|
|
|
// write the raw optical flow measurements
|
|
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
|
|
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
|
|
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
|
|
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
|
|
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
|
|
void writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas);
|
|
|
|
// return data for debugging optical flow fusion
|
|
void getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const;
|
|
|
|
// Tells the EKF to de-weight the baro sensor to take account of ground effect on baro during takeoff of landing when set to true
|
|
// Should be set to off by sending a false when the ground effect height region is cleared or the landing completed
|
|
// If not reactivated, this condition times out after the number of msec set by the _gndEffectTO_ms parameter
|
|
// The amount of de-weighting is controlled by the gndEffectBaroScaler parameter
|
|
void setGndEffectMode(bool modeOn);
|
|
|
|
/*
|
|
return the filter fault status as a bitmasked integer
|
|
0 = quaternions are NaN
|
|
1 = velocities are NaN
|
|
2 = badly conditioned X magnetometer fusion
|
|
3 = badly conditioned Y magnetometer fusion
|
|
5 = badly conditioned Z magnetometer fusion
|
|
6 = badly conditioned airspeed fusion
|
|
7 = badly conditioned synthetic sideslip fusion
|
|
7 = filter is not initialised
|
|
*/
|
|
void getFilterFaults(uint8_t &faults) const;
|
|
|
|
/*
|
|
return filter timeout status as a bitmasked integer
|
|
0 = position measurement timeout
|
|
1 = velocity measurement timeout
|
|
2 = height measurement timeout
|
|
3 = magnetometer measurement timeout
|
|
5 = unassigned
|
|
6 = unassigned
|
|
7 = unassigned
|
|
7 = unassigned
|
|
*/
|
|
void getFilterTimeouts(uint8_t &timeouts) const;
|
|
|
|
/*
|
|
return filter status flags
|
|
*/
|
|
void getFilterStatus(nav_filter_status &status) const;
|
|
|
|
// send an EKF_STATUS_REPORT message to GCS
|
|
void send_status_report(mavlink_channel_t chan);
|
|
|
|
// provides the height limit to be observed by the control loops
|
|
// returns false if no height limiting is required
|
|
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
|
|
bool getHeightControlLimit(float &height) const;
|
|
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
private:
|
|
const AP_AHRS *_ahrs;
|
|
AP_Baro &_baro;
|
|
const RangeFinder &_rng;
|
|
|
|
// the states are available in two forms, either as a Vector34, or
|
|
// broken down as individual elements. Both are equivalent (same
|
|
// memory)
|
|
Vector34 states;
|
|
struct state_elements {
|
|
Quaternion quat; // 0..3
|
|
Vector3f velocity; // 4..6
|
|
Vector3f position; // 7..9
|
|
Vector3f gyro_bias; // 10..12
|
|
float accel_zbias1; // 13
|
|
Vector2f wind_vel; // 14..15
|
|
Vector3f earth_magfield; // 16..18
|
|
Vector3f body_magfield; // 19..21
|
|
float accel_zbias2; // 22
|
|
Vector3f vel1; // 23 .. 25
|
|
float posD1; // 26
|
|
Vector3f vel2; // 27 .. 29
|
|
float posD2; // 30
|
|
Vector3f omega; // 31 .. 33
|
|
} &state;
|
|
|
|
// update the quaternion, velocity and position states using IMU measurements
|
|
void UpdateStrapdownEquationsNED();
|
|
|
|
// calculate the predicted state covariance matrix
|
|
void CovariancePrediction();
|
|
|
|
// force symmetry on the state covariance matrix
|
|
void ForceSymmetry();
|
|
|
|
// copy covariances across from covariance prediction calculation and fix numerical errors
|
|
void CopyAndFixCovariances();
|
|
|
|
// constrain variances (diagonal terms) in the state covariance matrix
|
|
void ConstrainVariances();
|
|
|
|
// constrain states
|
|
void ConstrainStates();
|
|
|
|
// fuse selected position, velocity and height measurements
|
|
void FuseVelPosNED();
|
|
|
|
// fuse magnetometer measurements
|
|
void FuseMagnetometer();
|
|
|
|
// fuse true airspeed measurements
|
|
void FuseAirspeed();
|
|
|
|
// fuse sythetic sideslip measurement of zero
|
|
void FuseSideslip();
|
|
|
|
// zero specified range of rows in the state covariance matrix
|
|
void zeroRows(Matrix22 &covMat, uint8_t first, uint8_t last);
|
|
|
|
// zero specified range of columns in the state covariance matrix
|
|
void zeroCols(Matrix22 &covMat, uint8_t first, uint8_t last);
|
|
|
|
// store states along with system time stamp in msces
|
|
void StoreStates(void);
|
|
|
|
// Reset the stored state history and store the current state
|
|
void StoreStatesReset(void);
|
|
|
|
// recall state vector stored at closest time to the one specified by msec
|
|
void RecallStates(state_elements &statesForFusion, uint32_t msec);
|
|
|
|
// calculate nav to body quaternions from body to nav rotation matrix
|
|
void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const;
|
|
|
|
// calculate the NED earth spin vector in rad/sec
|
|
void calcEarthRateNED(Vector3f &omega, int32_t latitude) const;
|
|
|
|
// calculate whether the flight vehicle is on the ground or flying from height, airspeed and GPS speed
|
|
void SetFlightAndFusionModes();
|
|
|
|
// initialise the covariance matrix
|
|
void CovarianceInit();
|
|
|
|
// update IMU delta angle and delta velocity measurements
|
|
void readIMUData();
|
|
|
|
// check for new valid GPS data and update stored measurement if available
|
|
void readGpsData();
|
|
|
|
// check for new altitude measurement data and update stored measurement if available
|
|
void readHgtData();
|
|
|
|
// check for new magnetometer data and update store measurements if available
|
|
void readMagData();
|
|
|
|
// check for new airspeed data and update stored measurements if available
|
|
void readAirSpdData();
|
|
|
|
// determine when to perform fusion of GPS position and velocity measurements
|
|
void SelectVelPosFusion();
|
|
|
|
// determine when to perform fusion of true airspeed measurements
|
|
void SelectTasFusion();
|
|
|
|
// determine when to perform fusion of synthetic sideslp measurements
|
|
void SelectBetaFusion();
|
|
|
|
// determine when to perform fusion of magnetometer measurements
|
|
void SelectMagFusion();
|
|
|
|
// force alignment of the yaw angle using GPS velocity data
|
|
void alignYawGPS();
|
|
|
|
// Forced alignment of the wind velocity states so that they are set to the reciprocal of
|
|
// the ground speed and scaled to 6 m/s. This is used when launching a fly-forward vehicle without an airspeed sensor
|
|
// on the assumption that launch will be into wind and 6 is representative global average at height
|
|
// http://maps.google.com/gallery/details?id=zJuaSgXp_WLc.kTBytKPmNODY&hl=en
|
|
void setWindVelStates();
|
|
|
|
// initialise the earth magnetic field states using declination and current attitude and magnetometer meaasurements
|
|
// and return attitude quaternion
|
|
Quaternion calcQuatAndFieldStates(float roll, float pitch);
|
|
|
|
// zero stored variables
|
|
void InitialiseVariables();
|
|
|
|
// reset the horizontal position states uing the last GPS measurement
|
|
void ResetPosition(void);
|
|
|
|
// reset velocity states using the last GPS measurement
|
|
void ResetVelocity(void);
|
|
|
|
// reset the vertical position state using the last height measurement
|
|
void ResetHeight(void);
|
|
|
|
// return true if we should use the airspeed sensor
|
|
bool useAirspeed(void) const;
|
|
|
|
// return true if the vehicle code has requested the filter to be ready for flight
|
|
bool getVehicleArmStatus(void) const;
|
|
|
|
// decay GPS horizontal position offset to close to zero at a rate of 1 m/s
|
|
// this allows large GPS position jumps to be accomodated gradually
|
|
void decayGpsOffset(void);
|
|
|
|
// Check for filter divergence
|
|
void checkDivergence(void);
|
|
|
|
// Calculate weighting that is applied to IMU1 accel data to blend data from IMU's 1 and 2
|
|
void calcIMU_Weighting(float K1, float K2);
|
|
|
|
// return true if optical flow data is available
|
|
bool optFlowDataPresent(void) const;
|
|
|
|
// return true if we should use the range finder sensor
|
|
bool useRngFinder(void) const;
|
|
|
|
// determine when to perform fusion of optical flow measurements
|
|
void SelectFlowFusion();
|
|
|
|
// recall omega (angular rate vector) average from time specified by msec to current time
|
|
// this is useful for motion compensation of optical flow measurements
|
|
void RecallOmega(Vector3f &omegaAvg, uint32_t msecStart, uint32_t msecEnd);
|
|
|
|
// Estimate terrain offset using a single state EKF
|
|
void EstimateTerrainOffset();
|
|
|
|
// fuse optical flow measurements into the main filter
|
|
void FuseOptFlow();
|
|
|
|
// Check arm status and perform required checks and mode changes
|
|
void performArmingChecks();
|
|
|
|
// Set the NED origin to be used until the next filter reset
|
|
void setOrigin();
|
|
|
|
// get status of baro ground effect compensation mode
|
|
// returns true when baro ground effect compensation is required
|
|
bool getGndEffectMode(void);
|
|
|
|
// Assess GPS data quality and return true if good enough to align the EKF
|
|
bool calcGpsGoodToAlign(void);
|
|
|
|
// Read the range finder and take new measurements if available
|
|
// Apply a median filter to range finder data
|
|
void readRangeFinder();
|
|
|
|
// check if the vehicle has taken off during optical flow navigation by looking at inertial and range finder data
|
|
void detectOptFlowTakeoff(void);
|
|
|
|
// EKF Mavlink Tuneable Parameters
|
|
AP_Float _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s
|
|
AP_Float _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s
|
|
AP_Float _gpsHorizPosNoise; // GPS horizontal position measurement noise m
|
|
AP_Float _baroAltNoise; // Baro height measurement noise : m^2
|
|
AP_Float _magNoise; // magnetometer measurement noise : gauss
|
|
AP_Float _easNoise; // equivalent airspeed measurement noise : m/s
|
|
AP_Float _windVelProcessNoise; // wind velocity state process noise : m/s^2
|
|
AP_Float _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate
|
|
AP_Float _magEarthProcessNoise; // earth magnetic field process noise : gauss/sec
|
|
AP_Float _magBodyProcessNoise; // earth magnetic field process noise : gauss/sec
|
|
AP_Float _gyrNoise; // gyro process noise : rad/s
|
|
AP_Float _accNoise; // accelerometer process noise : m/s^2
|
|
AP_Float _gyroBiasProcessNoise; // gyro bias state process noise : rad/s
|
|
AP_Float _accelBiasProcessNoise;// accel bias state process noise : m/s^2
|
|
AP_Int16 _msecVelDelay; // effective average delay of GPS velocity measurements rel to IMU (msec)
|
|
AP_Int16 _msecPosDelay; // effective average delay of GPS position measurements rel to (msec)
|
|
AP_Int8 _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity
|
|
AP_Int8 _gpsVelInnovGate; // Number of standard deviations applied to GPS velocity innovation consistency check
|
|
AP_Int8 _gpsPosInnovGate; // Number of standard deviations applied to GPS position innovation consistency check
|
|
AP_Int8 _hgtInnovGate; // Number of standard deviations applied to height innovation consistency check
|
|
AP_Int8 _magInnovGate; // Number of standard deviations applied to magnetometer innovation consistency check
|
|
AP_Int8 _tasInnovGate; // Number of standard deviations applied to true airspeed innovation consistency check
|
|
AP_Int8 _magCal; // Sets activation condition for in-flight magnetometer calibration
|
|
AP_Int16 _gpsGlitchAccelMax; // Maximum allowed discrepancy between inertial and GPS Horizontal acceleration before GPS data is ignored : cm/s^2
|
|
AP_Int8 _gpsGlitchRadiusMax; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m
|
|
AP_Int8 _gndGradientSigma; // RMS terrain gradient percentage assumed by the terrain height estimation.
|
|
AP_Float _flowNoise; // optical flow rate measurement noise
|
|
AP_Int8 _flowInnovGate; // Number of standard deviations applied to optical flow innovation consistency check
|
|
AP_Int8 _msecFLowDelay; // effective average delay of optical flow measurements rel to IMU (msec)
|
|
AP_Int8 _rngInnovGate; // Number of standard deviations applied to range finder innovation consistency check
|
|
AP_Float _maxFlowRate; // Maximum flow rate magnitude that will be accepted by the filter
|
|
AP_Int8 _fallback; // EKF-to-DCM fallback strictness. 0 = trust EKF more, 1 = fallback more conservatively.
|
|
AP_Int8 _altSource; // Primary alt source during optical flow navigation. 0 = use Baro, 1 = use range finder.
|
|
|
|
// Tuning parameters
|
|
const float gpsNEVelVarAccScale; // Scale factor applied to NE velocity measurement variance due to manoeuvre acceleration
|
|
const float gpsDVelVarAccScale; // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration
|
|
const uint16_t gndEffectTO_ms; // time in msec that ground effect mode is active after being activated
|
|
const float gndEffectBaroScaler; // scaler applied to the barometer observation variance when ground effect mode is active
|
|
const float gndEffectBaroTO_ms; // time in msec that the baro measurement will be rejected if the gndEffectBaroVarLim has failed it
|
|
const float gpsPosVarAccScale; // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration
|
|
const float msecHgtDelay; // Height measurement delay (msec)
|
|
const uint16_t msecMagDelay; // Magnetometer measurement delay (msec)
|
|
const uint16_t msecTasDelay; // Airspeed measurement delay (msec)
|
|
const uint16_t gpsRetryTimeUseTAS; // GPS retry time with airspeed measurements (msec)
|
|
const uint16_t gpsRetryTimeNoTAS; // GPS retry time without airspeed measurements (msec)
|
|
const uint16_t gpsFailTimeWithFlow; // If we have no GPs for longer than this and we have optical flow, then we will switch across to using optical flow (msec)
|
|
const uint16_t hgtRetryTimeMode0; // Height retry time with vertical velocity measurement (msec)
|
|
const uint16_t hgtRetryTimeMode12; // Height retry time without vertical velocity measurement (msec)
|
|
const uint16_t tasRetryTime; // True airspeed timeout and retry interval (msec)
|
|
const uint32_t magFailTimeLimit_ms; // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec)
|
|
const float magVarRateScale; // scale factor applied to magnetometer variance due to angular rate
|
|
const float gyroBiasNoiseScaler; // scale factor applied to gyro bias state process noise when on ground
|
|
const float accelBiasNoiseScaler; // scale factor applied to accel bias state process noise when on ground
|
|
const uint16_t msecGpsAvg; // average number of msec between GPS measurements
|
|
const uint16_t msecHgtAvg; // average number of msec between height measurements
|
|
const uint16_t msecMagAvg; // average number of msec between magnetometer measurements
|
|
const uint16_t msecBetaAvg; // average number of msec between synthetic sideslip measurements
|
|
const uint16_t msecBetaMax; // maximum number of msec between synthetic sideslip measurements
|
|
const uint16_t msecFlowAvg; // average number of msec between optical flow measurements
|
|
const float dtVelPos; // number of seconds between position and velocity corrections. This should be a multiple of the imu update interval.
|
|
const float covTimeStepMax; // maximum time (sec) between covariance prediction updates
|
|
const float covDelAngMax; // maximum delta angle between covariance prediction updates
|
|
const uint32_t TASmsecMax; // maximum allowed interval between airspeed measurement updates
|
|
const float DCM33FlowMin; // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high.
|
|
const float fScaleFactorPnoise; // Process noise added to focal length scale factor state variance at each time step
|
|
const uint8_t flowTimeDeltaAvg_ms; // average interval between optical flow measurements (msec)
|
|
const uint32_t flowIntervalMax_ms; // maximum allowable time between flow fusion events
|
|
|
|
// Variables
|
|
bool statesInitialised; // boolean true when filter states have been initialised
|
|
bool velHealth; // boolean true if velocity measurements have passed innovation consistency check
|
|
bool posHealth; // boolean true if position measurements have passed innovation consistency check
|
|
bool hgtHealth; // boolean true if height measurements have passed innovation consistency check
|
|
bool magHealth; // boolean true if magnetometer has passed innovation consistency check
|
|
bool tasHealth; // boolean true if true airspeed has passed innovation consistency check
|
|
bool velTimeout; // boolean true if velocity measurements have failed innovation consistency check and timed out
|
|
bool posTimeout; // boolean true if position measurements have failed innovation consistency check and timed out
|
|
bool hgtTimeout; // boolean true if height measurements have failed innovation consistency check and timed out
|
|
bool magTimeout; // boolean true if magnetometer measurements have failed for too long and have timed out
|
|
bool tasTimeout; // boolean true if true airspeed measurements have failed for too long and have timed out
|
|
bool badMag; // boolean true if the magnetometer is declared to be producing bad data
|
|
bool badIMUdata; // boolean true if the bad IMU data is detected
|
|
|
|
float gpsNoiseScaler; // Used to scale the GPS measurement noise and consistency gates to compensate for operation with small satellite counts
|
|
Vector31 Kfusion; // Kalman gain vector
|
|
Matrix22 KH; // intermediate result used for covariance updates
|
|
Matrix22 KHP; // intermediate result used for covariance updates
|
|
Matrix22 P; // covariance matrix
|
|
VectorN<state_elements,50> storedStates; // state vectors stored for the last 50 time steps
|
|
Vector_u32_50 statetimeStamp; // time stamp for each state vector stored
|
|
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
|
|
Vector3f correctedDelVel12; // delta velocities along the XYZ body axes for weighted average of IMU1 and IMU2 corrected for errors (m/s)
|
|
Vector3f correctedDelVel1; // delta velocities along the XYZ body axes for IMU1 corrected for errors (m/s)
|
|
Vector3f correctedDelVel2; // delta velocities along the XYZ body axes for IMU2 corrected for errors (m/s)
|
|
Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad)
|
|
Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s)
|
|
Vector3f prevDelAng; // previous delta angle use for INS coning error compensation
|
|
Vector3f lastGyroBias; // previous gyro bias vector used by filter divergence check
|
|
Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation
|
|
ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
|
|
ftype accNavMagHoriz; // magnitude of navigation accel in horizontal plane (m/s^2)
|
|
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
|
|
Vector3f dVelIMU1; // delta velocity vector in XYZ body axes measured by IMU1 (m/s)
|
|
Vector3f dVelIMU2; // delta velocity vector in XYZ body axes measured by IMU2 (m/s)
|
|
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
|
|
ftype dtIMUavg; // expected time between IMU measurements (sec)
|
|
ftype dtIMUactual; // time lapsed since the last IMU measurement (sec)
|
|
ftype dt; // time lapsed since the last covariance prediction (sec)
|
|
ftype hgtRate; // state for rate of change of height filter
|
|
bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
|
|
bool prevOnGround; // value of onGround from previous update
|
|
bool manoeuvring; // boolean true when the flight vehicle is performing horizontal changes in velocity
|
|
uint32_t airborneDetectTime_ms; // last time flight movement was detected
|
|
Vector6 innovVelPos; // innovation output for a group of measurements
|
|
Vector6 varInnovVelPos; // innovation variance output for a group of measurements
|
|
bool fuseVelData; // this boolean causes the velNED measurements to be fused
|
|
bool fusePosData; // this boolean causes the posNE measurements to be fused
|
|
bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused
|
|
Vector3f velNED; // North, East, Down velocity measurements (m/s)
|
|
Vector2f gpsPosNE; // North, East position measurements (m)
|
|
ftype hgtMea; // height measurement relative to reference point (m)
|
|
state_elements statesAtVelTime; // States at the effective time of velNED measurements
|
|
state_elements statesAtPosTime; // States at the effective time of posNE measurements
|
|
state_elements statesAtHgtTime; // States at the effective time of hgtMea measurement
|
|
Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements
|
|
Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements
|
|
Vector3f magData; // magnetometer flux readings in X,Y,Z body axes
|
|
state_elements statesAtMagMeasTime; // filter states at the effective time of compass measurements
|
|
ftype innovVtas; // innovation output from fusion of airspeed measurements
|
|
ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements
|
|
bool fuseVtasData; // boolean true when airspeed data is to be fused
|
|
float VtasMeas; // true airspeed measurement (m/s)
|
|
state_elements statesAtVtasMeasTime; // filter states at the effective measurement time
|
|
bool covPredStep; // boolean set to true when a covariance prediction step has been performed
|
|
bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step
|
|
bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step
|
|
bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
|
|
bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
|
|
uint32_t TASmsecPrev; // time stamp of last TAS fusion step
|
|
uint32_t BETAmsecPrev; // time stamp of last synthetic sideslip fusion step
|
|
uint32_t MAGmsecPrev; // time stamp of last compass fusion step
|
|
uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
|
|
bool constPosMode; // true when fusing a constant position to maintain attitude reference for planned operation without GPS or optical flow data
|
|
uint32_t lastMagUpdate; // last time compass was updated
|
|
Vector3f velDotNED; // rate of change of velocity in NED frame
|
|
Vector3f velDotNEDfilt; // low pass filtered velDotNED
|
|
uint32_t lastAirspeedUpdate; // last time airspeed was updated
|
|
uint32_t imuSampleTime_ms; // time that the last IMU value was taken
|
|
bool newDataGps; // true when new GPS data has arrived
|
|
bool newDataMag; // true when new magnetometer data has arrived
|
|
bool newDataTas; // true when new airspeed data has arrived
|
|
bool tasDataWaiting; // true when new airspeed data is waiting to be fused
|
|
bool newDataHgt; // true when new height data has arrived
|
|
uint32_t lastHgtMeasTime; // time of last height measurement used to determine if new data has arrived
|
|
uint16_t hgtRetryTime; // time allowed without use of height measurements before a height timeout is declared
|
|
uint32_t lastVelPassTime; // time stamp when GPS velocity measurement last passed innovation consistency check (msec)
|
|
uint32_t lastPosPassTime; // time stamp when GPS position measurement last passed innovation consistency check (msec)
|
|
uint32_t lastPosFailTime; // time stamp when GPS position measurement last failed innovation consistency check (msec)
|
|
uint32_t lastHgtPassTime; // time stamp when height measurement last passed innovation consistency check (msec)
|
|
uint32_t lastTasPassTime; // time stamp when airspeed measurement last passed innovation consistency check (msec)
|
|
uint8_t storeIndex; // State vector storage index
|
|
uint32_t lastStateStoreTime_ms; // time of last state vector storage
|
|
uint32_t lastFixTime_ms; // time of last GPS fix used to determine if new data has arrived
|
|
uint32_t timeAtLastAuxEKF_ms; // last time the auxilliary filter was run to fuse range or optical flow measurements
|
|
uint32_t secondLastFixTime_ms; // time of second last GPS fix used to determine how long since last update
|
|
uint32_t lastHealthyMagTime_ms; // time the magnetometer was last declared healthy
|
|
uint32_t ekfStartTime_ms; // time the EKF was started (msec)
|
|
Vector3f lastAngRate; // angular rate from previous IMU sample used for trapezoidal integrator
|
|
Vector3f lastAccel1; // acceleration from previous IMU1 sample used for trapezoidal integrator
|
|
Vector3f lastAccel2; // acceleration from previous IMU2 sample used for trapezoidal integrator
|
|
Matrix22 nextP; // Predicted covariance matrix before addition of process noise to diagonals
|
|
Vector22 processNoise; // process noise added to diagonals of predicted covariance matrix
|
|
Vector15 SF; // intermediate variables used to calculate predicted covariance matrix
|
|
Vector8 SG; // intermediate variables used to calculate predicted covariance matrix
|
|
Vector11 SQ; // intermediate variables used to calculate predicted covariance matrix
|
|
Vector8 SPP; // intermediate variables used to calculate predicted covariance matrix
|
|
float IMU1_weighting; // Weighting applied to use of IMU1. Varies between 0 and 1.
|
|
bool yawAligned; // true when the yaw angle has been aligned
|
|
Vector2f gpsPosGlitchOffsetNE; // offset applied to GPS data in the NE direction to compensate for rapid changes in GPS solution
|
|
Vector2f lastKnownPositionNE; // last known position
|
|
uint32_t lastDecayTime_ms; // time of last decay of GPS position offset
|
|
float velTestRatio; // sum of squares of GPS velocity innovation divided by fail threshold
|
|
float posTestRatio; // sum of squares of GPS position innovation divided by fail threshold
|
|
float hgtTestRatio; // sum of squares of baro height innovation divided by fail threshold
|
|
Vector3f magTestRatio; // sum of squares of magnetometer innovations divided by fail threshold
|
|
float tasTestRatio; // sum of squares of true airspeed innovation divided by fail threshold
|
|
bool inhibitWindStates; // true when wind states and covariances are to remain constant
|
|
bool inhibitMagStates; // true when magnetic field states and covariances are to remain constant
|
|
bool firstArmComplete; // true when first transition out of static mode has been performed after start up
|
|
bool firstMagYawInit; // true when the first post takeoff initialisation of earth field and yaw angle has been performed
|
|
bool secondMagYawInit; // true when the second post takeoff initialisation of earth field and yaw angle has been performed
|
|
bool flowTimeout; // true when optical flow measurements have time out
|
|
Vector2f gpsVelGlitchOffset; // Offset applied to the GPS velocity when the gltch radius is being decayed back to zero
|
|
bool gpsNotAvailable; // bool true when valid GPS data is not available
|
|
bool vehicleArmed; // true when the vehicle is disarmed
|
|
bool prevVehicleArmed; // vehicleArmed from previous frame
|
|
struct Location EKF_origin; // LLH origin of the NED axis system - do not change unless filter is reset
|
|
bool validOrigin; // true when the EKF origin is valid
|
|
bool gndEffectMode; // modifiy baro processing to compensate for ground effect
|
|
uint32_t startTimeTO_ms; // time in msec that the takeoff condition started - used to compensate for ground effect on baro height
|
|
uint32_t startTimeLAND_ms; // time in msec that the landing condition started - used to compensate for ground effect on baro height
|
|
float gpsSpdAccuracy; // estimated speed accuracy in m/s returned by the UBlox GPS receiver
|
|
uint32_t lastGpsVelFail_ms; // time of last GPS vertical velocity consistency check fail
|
|
Vector3f lastMagOffsets; // magnetometer offsets returned by compass object from previous update
|
|
bool gpsAidingBad; // true when GPS position measurements have been consistently rejected by the filter
|
|
uint32_t lastGpsAidBadTime_ms; // time in msec gps aiding was last detected to be bad
|
|
float posDownAtArming; // flight vehicle vertical position at arming used as a reference point
|
|
|
|
// Used by smoothing of state corrections
|
|
Vector10 gpsIncrStateDelta; // vector of corrections to attitude, velocity and position to be applied over the period between the current and next GPS measurement
|
|
Vector10 hgtIncrStateDelta; // vector of corrections to attitude, velocity and position to be applied over the period between the current and next height measurement
|
|
Vector10 magIncrStateDelta; // vector of corrections to attitude, velocity and position to be applied over the period between the current and next magnetometer measurement
|
|
uint8_t gpsUpdateCount; // count of the number of minor state corrections using GPS data
|
|
uint8_t gpsUpdateCountMax; // limit on the number of minor state corrections using GPS data
|
|
float gpsUpdateCountMaxInv; // floating point inverse of gpsFilterCountMax
|
|
uint8_t hgtUpdateCount; // count of the number of minor state corrections using Baro data
|
|
uint8_t hgtUpdateCountMax; // limit on the number of minor state corrections using Baro data
|
|
float hgtUpdateCountMaxInv; // floating point inverse of hgtFilterCountMax
|
|
uint8_t magUpdateCount; // count of the number of minor state corrections using Magnetometer data
|
|
uint8_t magUpdateCountMax; // limit on the number of minor state corrections using Magnetometer data
|
|
float magUpdateCountMaxInv; // floating point inverse of magFilterCountMax
|
|
|
|
// variables added for optical flow fusion
|
|
bool newDataFlow; // true when new optical flow data has arrived
|
|
bool flowFusePerformed; // true when optical flow fusion has been performed in that time step
|
|
bool flowDataValid; // true while optical flow data is still fresh
|
|
state_elements statesAtFlowTime;// States at the middle of the optical flow sample period
|
|
bool fuseOptFlowData; // this boolean causes the last optical flow measurement to be fused
|
|
float auxFlowObsInnov; // optical flow rate innovation from 1-state terrain offset estimator
|
|
float auxFlowObsInnovVar; // innovation variance for optical flow observations from 1-state terrain offset estimator
|
|
Vector2 flowRadXYcomp; // motion compensated optical flow angular rates(rad/sec)
|
|
Vector2 flowRadXY; // raw (non motion compensated) optical flow angular rates (rad/sec)
|
|
uint32_t flowValidMeaTime_ms; // time stamp from latest valid flow measurement (msec)
|
|
uint32_t rngValidMeaTime_ms; // time stamp from latest valid range measurement (msec)
|
|
uint32_t flowMeaTime_ms; // time stamp from latest flow measurement (msec)
|
|
uint8_t flowQuality; // unsigned integer representing quality of optical flow data. 255 is maximum quality.
|
|
uint32_t gndHgtValidTime_ms; // time stamp from last terrain offset state update (msec)
|
|
Vector3f omegaAcrossFlowTime; // body angular rates averaged across the optical flow sample period
|
|
Matrix3f Tnb_flow; // transformation matrix from nav to body axes at the middle of the optical flow sample period
|
|
Matrix3f Tbn_flow; // transformation matrix from body to nav axes at the middle of the optical flow sample period
|
|
Vector2 varInnovOptFlow; // optical flow innovations variances (rad/sec)^2
|
|
Vector2 innovOptFlow; // optical flow LOS innovations (rad/sec)
|
|
float Popt; // Optical flow terrain height state covariance (m^2)
|
|
float terrainState; // terrain position state (m)
|
|
float prevPosN; // north position at last measurement
|
|
float prevPosE; // east position at last measurement
|
|
state_elements statesAtRngTime; // States at the range finder measurement time
|
|
bool fuseRngData; // true when fusion of range data is demanded
|
|
float varInnovRng; // range finder observation innovation variance (m^2)
|
|
float innovRng; // range finder observation innovation (m)
|
|
float rngMea; // range finder measurement (m)
|
|
bool inhibitGndState; // true when the terrain position state is to remain constant
|
|
uint32_t prevFlowFuseTime_ms; // time both flow measurement components passed their innovation consistency checks
|
|
Vector2 flowTestRatio; // square of optical flow innovations divided by fail threshold used by main filter where >1.0 is a fail
|
|
float auxFlowTestRatio; // sum of squares of optical flow innovation divided by fail threshold used by 1-state terrain offset estimator
|
|
float R_LOS; // variance of optical flow rate measurements (rad/sec)^2
|
|
float auxRngTestRatio; // square of range finder innovations divided by fail threshold used by main filter where >1.0 is a fail
|
|
Vector2f flowGyroBias; // bias error of optical flow sensor gyro output
|
|
uint8_t flowUpdateCount; // count of the number of minor state corrections using optical flow data
|
|
uint8_t flowUpdateCountMax; // limit on the number of minor state corrections using optical flow data
|
|
float flowUpdateCountMaxInv; // floating point inverse of flowUpdateCountMax
|
|
Vector10 flowIncrStateDelta; // vector of corrections to attitude, velocity and position to be applied over the period between the current and next magnetometer measurement
|
|
bool newDataRng; // true when new valid range finder data has arrived.
|
|
bool constVelMode; // true when fusing a constant velocity to maintain attitude reference when either optical flow or GPS measurements are lost after arming
|
|
bool lastConstVelMode; // last value of holdVelocity
|
|
Vector2f heldVelNE; // velocity held when no aiding is available
|
|
enum AidingMode {AID_ABSOLUTE=0, // GPS aiding is being used (optical flow may also be used) so position estimates are absolute.
|
|
AID_NONE=1, // no aiding is being used so only attitude and height estimates are available. Either constVelMode or constPosMode must be used to constrain tilt drift.
|
|
AID_RELATIVE=2 // only optical flow aiding is being used so position estimates will be relative
|
|
};
|
|
AidingMode PV_AidingMode; // Defines the preferred mode for aiding of velocity and position estimates from the INS
|
|
bool gndOffsetValid; // true when the ground offset state can still be considered valid
|
|
bool flowXfailed; // true when the X optical flow measurement has failed the innovation consistency check
|
|
|
|
// Range finder
|
|
float baroHgtOffset; // offset applied when baro height used as a backup height reference if range-finder fails
|
|
float rngOnGnd; // Expected range finder reading in metres when vehicle is on ground
|
|
|
|
// Movement detector
|
|
bool takeOffDetected; // true when takeoff for optical flow navigation has been detected
|
|
float rangeAtArming; // range finder measurement when armed
|
|
uint32_t timeAtArming_ms; // time in msec that the vehicle armed
|
|
|
|
bool haveDeltaAngles;
|
|
|
|
// states held by optical flow fusion across time steps
|
|
// optical flow X,Y motion compensated rate measurements are fused across two time steps
|
|
// to level computational load as this can be an expensive operation
|
|
struct {
|
|
uint8_t obsIndex;
|
|
Vector4 SH_LOS;
|
|
Vector10 SK_LOS;
|
|
ftype q0;
|
|
ftype q1;
|
|
ftype q2;
|
|
ftype q3;
|
|
ftype vn;
|
|
ftype ve;
|
|
ftype vd;
|
|
ftype pd;
|
|
Vector2 losPred;
|
|
} flow_state;
|
|
|
|
struct {
|
|
bool bad_xmag:1;
|
|
bool bad_ymag:1;
|
|
bool bad_zmag:1;
|
|
bool bad_airspeed:1;
|
|
bool bad_sideslip:1;
|
|
} faultStatus;
|
|
|
|
// states held by magnetomter fusion across time steps
|
|
// magnetometer X,Y,Z measurements are fused across three time steps
|
|
// to level computational load as this is an expensive operation
|
|
struct {
|
|
ftype q0;
|
|
ftype q1;
|
|
ftype q2;
|
|
ftype q3;
|
|
ftype magN;
|
|
ftype magE;
|
|
ftype magD;
|
|
ftype magXbias;
|
|
ftype magYbias;
|
|
ftype magZbias;
|
|
uint8_t obsIndex;
|
|
Matrix3f DCM;
|
|
Vector3f MagPred;
|
|
ftype R_MAG;
|
|
Vector9 SH_MAG;
|
|
} mag_state;
|
|
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
// performance counters
|
|
perf_counter_t _perf_UpdateFilter;
|
|
perf_counter_t _perf_CovariancePrediction;
|
|
perf_counter_t _perf_FuseVelPosNED;
|
|
perf_counter_t _perf_FuseMagnetometer;
|
|
perf_counter_t _perf_FuseAirspeed;
|
|
perf_counter_t _perf_FuseSideslip;
|
|
perf_counter_t _perf_OpticalFlowEKF;
|
|
perf_counter_t _perf_FuseOptFlow;
|
|
#endif
|
|
|
|
// should we assume zero sideslip?
|
|
bool assume_zero_sideslip(void) const;
|
|
};
|
|
|
|
#if CONFIG_HAL_BOARD != HAL_BOARD_PX4 && CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
|
|
#define perf_begin(x)
|
|
#define perf_end(x)
|
|
#endif
|
|
|
|
#endif // AP_NavEKF
|