328 lines
12 KiB
C++
328 lines
12 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Copter.h"
|
|
|
|
// get_smoothing_gain - returns smoothing gain to be passed into attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth
|
|
// result is a number from 2 to 12 with 2 being very sluggish and 12 being very crisp
|
|
float Copter::get_smoothing_gain()
|
|
{
|
|
return (2.0f + (float)g.rc_feel_rp/10.0f);
|
|
}
|
|
|
|
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle
|
|
// returns desired angle in centi-degrees
|
|
void Copter::get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max)
|
|
{
|
|
// sanity check angle max parameter
|
|
aparm.angle_max = constrain_int16(aparm.angle_max,1000,8000);
|
|
|
|
// limit max lean angle
|
|
angle_max = constrain_float(angle_max, 1000, aparm.angle_max);
|
|
|
|
// scale roll_in, pitch_in to ANGLE_MAX parameter range
|
|
float scaler = aparm.angle_max/(float)ROLL_PITCH_INPUT_MAX;
|
|
roll_in *= scaler;
|
|
pitch_in *= scaler;
|
|
|
|
// do circular limit
|
|
float total_in = pythagorous2((float)pitch_in, (float)roll_in);
|
|
if (total_in > angle_max) {
|
|
float ratio = angle_max / total_in;
|
|
roll_in *= ratio;
|
|
pitch_in *= ratio;
|
|
}
|
|
|
|
// do lateral tilt to euler roll conversion
|
|
roll_in = (18000/M_PI) * atanf(cosf(pitch_in*(M_PI/18000))*tanf(roll_in*(M_PI/18000)));
|
|
|
|
// return
|
|
roll_out = roll_in;
|
|
pitch_out = pitch_in;
|
|
}
|
|
|
|
// get_pilot_desired_heading - transform pilot's yaw input into a
|
|
// desired yaw rate
|
|
// returns desired yaw rate in centi-degrees per second
|
|
float Copter::get_pilot_desired_yaw_rate(int16_t stick_angle)
|
|
{
|
|
// convert pilot input to the desired yaw rate
|
|
return stick_angle * g.acro_yaw_p;
|
|
}
|
|
|
|
// check for ekf yaw reset and adjust target heading
|
|
void Copter::check_ekf_yaw_reset()
|
|
{
|
|
float yaw_angle_change_rad = 0.0f;
|
|
uint32_t new_ekfYawReset_ms = ahrs.getLastYawResetAngle(yaw_angle_change_rad);
|
|
if (new_ekfYawReset_ms != ekfYawReset_ms) {
|
|
attitude_control.shift_ef_yaw_target(ToDeg(yaw_angle_change_rad) * 100.0f);
|
|
ekfYawReset_ms = new_ekfYawReset_ms;
|
|
}
|
|
}
|
|
|
|
/*************************************************************
|
|
* yaw controllers
|
|
*************************************************************/
|
|
|
|
// get_roi_yaw - returns heading towards location held in roi_WP
|
|
// should be called at 100hz
|
|
float Copter::get_roi_yaw()
|
|
{
|
|
static uint8_t roi_yaw_counter = 0; // used to reduce update rate to 100hz
|
|
|
|
roi_yaw_counter++;
|
|
if (roi_yaw_counter >= 4) {
|
|
roi_yaw_counter = 0;
|
|
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), roi_WP);
|
|
}
|
|
|
|
return yaw_look_at_WP_bearing;
|
|
}
|
|
|
|
float Copter::get_look_ahead_yaw()
|
|
{
|
|
const Vector3f& vel = inertial_nav.get_velocity();
|
|
float speed = pythagorous2(vel.x,vel.y);
|
|
// Commanded Yaw to automatically look ahead.
|
|
if (position_ok() && (speed > YAW_LOOK_AHEAD_MIN_SPEED)) {
|
|
yaw_look_ahead_bearing = degrees(atan2f(vel.y,vel.x))*100.0f;
|
|
}
|
|
return yaw_look_ahead_bearing;
|
|
}
|
|
|
|
/*************************************************************
|
|
* throttle control
|
|
****************************************************************/
|
|
|
|
// update_thr_average - update estimated throttle required to hover (if necessary)
|
|
// should be called at 100hz
|
|
void Copter::update_thr_average()
|
|
{
|
|
// ensure throttle_average has been initialised
|
|
if( is_zero(throttle_average) ) {
|
|
throttle_average = g.throttle_mid;
|
|
// update position controller
|
|
pos_control.set_throttle_hover(throttle_average);
|
|
}
|
|
|
|
// if not armed or landed exit
|
|
if (!motors.armed() || ap.land_complete) {
|
|
return;
|
|
}
|
|
|
|
// get throttle output
|
|
float throttle = motors.get_throttle();
|
|
|
|
// calc average throttle if we are in a level hover
|
|
if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) {
|
|
throttle_average = throttle_average * 0.99f + throttle * 0.01f;
|
|
// update position controller
|
|
pos_control.set_throttle_hover(throttle_average);
|
|
}
|
|
}
|
|
|
|
// set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared
|
|
void Copter::set_throttle_takeoff()
|
|
{
|
|
// tell position controller to reset alt target and reset I terms
|
|
pos_control.init_takeoff();
|
|
|
|
// tell motors to do a slow start
|
|
motors.slow_start(true);
|
|
}
|
|
|
|
// get_pilot_desired_throttle - transform pilot's throttle input to make cruise throttle mid stick
|
|
// used only for manual throttle modes
|
|
// returns throttle output 0 to 1
|
|
float Copter::get_pilot_desired_throttle(int16_t throttle_control)
|
|
{
|
|
float throttle_out;
|
|
|
|
int16_t mid_stick = channel_throttle->get_control_mid();
|
|
|
|
// ensure reasonable throttle values
|
|
throttle_control = constrain_int16(throttle_control,0,1000);
|
|
// ensure mid throttle is set within a reasonable range
|
|
g.throttle_mid = constrain_int16(g.throttle_mid,g.throttle_min+50,700);
|
|
float thr_mid = MAX(0,g.throttle_mid-g.throttle_min) / (float)(1000-g.throttle_min);
|
|
|
|
// check throttle is above, below or in the deadband
|
|
if (throttle_control < mid_stick) {
|
|
// below the deadband
|
|
throttle_out = ((float)throttle_control)*thr_mid/(float)mid_stick;
|
|
}else if(throttle_control > mid_stick) {
|
|
// above the deadband
|
|
throttle_out = (thr_mid) + ((float)(throttle_control-mid_stick)) * (1.0f - thr_mid) / (float)(1000-mid_stick);
|
|
}else{
|
|
// must be in the deadband
|
|
throttle_out = thr_mid;
|
|
}
|
|
|
|
return throttle_out;
|
|
}
|
|
|
|
// get_pilot_desired_climb_rate - transform pilot's throttle input to
|
|
// climb rate in cm/s. we use radio_in instead of control_in to get the full range
|
|
// without any deadzone at the bottom
|
|
float Copter::get_pilot_desired_climb_rate(float throttle_control)
|
|
{
|
|
// throttle failsafe check
|
|
if( failsafe.radio ) {
|
|
return 0.0f;
|
|
}
|
|
|
|
float desired_rate = 0.0f;
|
|
float mid_stick = channel_throttle->get_control_mid();
|
|
float deadband_top = mid_stick + g.throttle_deadzone;
|
|
float deadband_bottom = mid_stick - g.throttle_deadzone;
|
|
|
|
// ensure a reasonable throttle value
|
|
throttle_control = constrain_float(throttle_control,g.throttle_min,1000.0f);
|
|
|
|
// ensure a reasonable deadzone
|
|
g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400);
|
|
|
|
// check throttle is above, below or in the deadband
|
|
if (throttle_control < deadband_bottom) {
|
|
// below the deadband
|
|
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_bottom) / (deadband_bottom-g.throttle_min);
|
|
}else if (throttle_control > deadband_top) {
|
|
// above the deadband
|
|
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_top) / (1000.0f-deadband_top);
|
|
}else{
|
|
// must be in the deadband
|
|
desired_rate = 0.0f;
|
|
}
|
|
|
|
// desired climb rate for logging
|
|
desired_climb_rate = desired_rate;
|
|
|
|
return desired_rate;
|
|
}
|
|
|
|
// get_non_takeoff_throttle - a throttle somewhere between min and mid throttle which should not lead to a takeoff
|
|
float Copter::get_non_takeoff_throttle()
|
|
{
|
|
return (g.throttle_mid / 2.0f);
|
|
}
|
|
|
|
float Copter::get_takeoff_trigger_throttle()
|
|
{
|
|
return channel_throttle->get_control_mid() + g.takeoff_trigger_dz;
|
|
}
|
|
|
|
// get_throttle_pre_takeoff - convert pilot's input throttle to a throttle output before take-off
|
|
// used only for althold, loiter, hybrid flight modes
|
|
// returns throttle output 0 to 1000
|
|
float Copter::get_throttle_pre_takeoff(float input_thr)
|
|
{
|
|
// exit immediately if input_thr is zero
|
|
if (input_thr <= 0.0f) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// TODO: does this parameter sanity check really belong here?
|
|
g.throttle_mid = constrain_int16(g.throttle_mid,g.throttle_min+50,700);
|
|
|
|
float in_min = g.throttle_min;
|
|
float in_max = get_takeoff_trigger_throttle();
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
// helicopters swash will move from bottom to 1/2 of mid throttle
|
|
float out_min = 0;
|
|
#else
|
|
// multicopters will output between spin-when-armed and 1/2 of mid throttle
|
|
float out_min = motors.get_throttle_warn();
|
|
#endif
|
|
float out_max = get_non_takeoff_throttle();
|
|
|
|
if ((g.throttle_behavior & THR_BEHAVE_FEEDBACK_FROM_MID_STICK) != 0) {
|
|
in_min = channel_throttle->get_control_mid();
|
|
}
|
|
|
|
float input_range = in_max-in_min;
|
|
float output_range = out_max-out_min;
|
|
|
|
// sanity check ranges
|
|
if (input_range <= 0.0f || output_range <= 0.0f) {
|
|
return 0.0f;
|
|
}
|
|
|
|
return constrain_float(out_min + (input_thr-in_min)*output_range/input_range, out_min, out_max);
|
|
}
|
|
|
|
// get_surface_tracking_climb_rate - hold copter at the desired distance above the ground
|
|
// returns climb rate (in cm/s) which should be passed to the position controller
|
|
float Copter::get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt)
|
|
{
|
|
static uint32_t last_call_ms = 0;
|
|
float distance_error;
|
|
float velocity_correction;
|
|
float current_alt = inertial_nav.get_altitude();
|
|
|
|
uint32_t now = millis();
|
|
|
|
// reset target altitude if this controller has just been engaged
|
|
if (now - last_call_ms > SONAR_TIMEOUT_MS) {
|
|
target_sonar_alt = sonar_alt + current_alt_target - current_alt;
|
|
}
|
|
last_call_ms = now;
|
|
|
|
// adjust sonar target alt if motors have not hit their limits
|
|
if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) {
|
|
target_sonar_alt += target_rate * dt;
|
|
}
|
|
|
|
// do not let target altitude get too far from current altitude above ground
|
|
// Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition
|
|
target_sonar_alt = constrain_float(target_sonar_alt,sonar_alt-pos_control.get_leash_down_z(),sonar_alt+pos_control.get_leash_up_z());
|
|
|
|
// calc desired velocity correction from target sonar alt vs actual sonar alt (remove the error already passed to Altitude controller to avoid oscillations)
|
|
distance_error = (target_sonar_alt - sonar_alt) - (current_alt_target - current_alt);
|
|
velocity_correction = distance_error * g.sonar_gain;
|
|
velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX);
|
|
|
|
// return combined pilot climb rate + rate to correct sonar alt error
|
|
return (target_rate + velocity_correction);
|
|
}
|
|
|
|
// set_accel_throttle_I_from_pilot_throttle - smoothes transition from pilot controlled throttle to autopilot throttle
|
|
void Copter::set_accel_throttle_I_from_pilot_throttle(int16_t pilot_throttle)
|
|
{
|
|
// shift difference between pilot's throttle and hover throttle into accelerometer I
|
|
g.pid_accel_z.set_integrator(pilot_throttle-throttle_average);
|
|
}
|
|
|
|
// updates position controller's maximum altitude using fence and EKF limits
|
|
void Copter::update_poscon_alt_max()
|
|
{
|
|
float alt_limit_cm = 0.0f; // interpreted as no limit if left as zero
|
|
|
|
#if AC_FENCE == ENABLED
|
|
// set fence altitude limit in position controller
|
|
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
|
|
alt_limit_cm = pv_alt_above_origin(fence.get_safe_alt()*100.0f);
|
|
}
|
|
#endif
|
|
|
|
// get alt limit from EKF (limited during optical flow flight)
|
|
float ekf_limit_cm = 0.0f;
|
|
if (inertial_nav.get_hgt_ctrl_limit(ekf_limit_cm)) {
|
|
if ((alt_limit_cm <= 0.0f) || (ekf_limit_cm < alt_limit_cm)) {
|
|
alt_limit_cm = ekf_limit_cm;
|
|
}
|
|
}
|
|
|
|
// pass limit to pos controller
|
|
pos_control.set_alt_max(alt_limit_cm);
|
|
}
|
|
|
|
// rotate vector from vehicle's perspective to North-East frame
|
|
void Copter::rotate_body_frame_to_NE(float &x, float &y)
|
|
{
|
|
float ne_x = x*ahrs.cos_yaw() - y*ahrs.sin_yaw();
|
|
float ne_y = x*ahrs.sin_yaw() + y*ahrs.cos_yaw();
|
|
x = ne_x;
|
|
y = ne_y;
|
|
}
|