Ardupilot2/ArduCopter/mode_auto.cpp
2017-12-12 10:39:26 +09:00

908 lines
32 KiB
C++

#include "Copter.h"
/*
* Init and run calls for auto flight mode
*
* This file contains the implementation for Land, Waypoint navigation and Takeoff from Auto mode
* Command execution code (i.e. command_logic.pde) should:
* a) switch to Auto flight mode with set_mode() function. This will cause auto_init to be called
* b) call one of the three auto initialisation functions: auto_wp_start(), auto_takeoff_start(), auto_land_start()
* c) call one of the verify functions auto_wp_verify(), auto_takeoff_verify, auto_land_verify repeated to check if the command has completed
* The main loop (i.e. fast loop) will call update_flight_modes() which will in turn call auto_run() which, based upon the auto_mode variable will call
* correct auto_wp_run, auto_takeoff_run or auto_land_run to actually implement the feature
*/
/*
* While in the auto flight mode, navigation or do/now commands can be run.
* Code in this file implements the navigation commands
*/
// auto_init - initialise auto controller
bool Copter::ModeAuto::init(bool ignore_checks)
{
if ((_copter.position_ok() && mission.num_commands() > 1) || ignore_checks) {
_mode = Auto_Loiter;
// reject switching to auto mode if landed with motors armed but first command is not a takeoff (reduce chance of flips)
if (motors->armed() && ap.land_complete && !mission.starts_with_takeoff_cmd()) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "Auto: Missing Takeoff Cmd");
return false;
}
// stop ROI from carrying over from previous runs of the mission
// To-Do: reset the yaw as part of auto_wp_start when the previous command was not a wp command to remove the need for this special ROI check
if (_copter.auto_yaw_mode == AUTO_YAW_ROI) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init();
// clear guided limits
_copter.mode_guided.limit_clear();
// start/resume the mission (based on MIS_RESTART parameter)
mission.start_or_resume();
return true;
}else{
return false;
}
}
// auto_run - runs the auto controller
// should be called at 100hz or more
// relies on run_autopilot being called at 10hz which handles decision making and non-navigation related commands
void Copter::ModeAuto::run()
{
// call the correct auto controller
switch (_mode) {
case Auto_TakeOff:
takeoff_run();
break;
case Auto_WP:
case Auto_CircleMoveToEdge:
wp_run();
break;
case Auto_Land:
land_run();
break;
case Auto_RTL:
rtl_run();
break;
case Auto_Circle:
circle_run();
break;
case Auto_Spline:
spline_run();
break;
case Auto_NavGuided:
#if NAV_GUIDED == ENABLED
nav_guided_run();
#endif
break;
case Auto_Loiter:
loiter_run();
break;
case Auto_NavPayloadPlace:
payload_place_run();
break;
}
}
// auto_takeoff_start - initialises waypoint controller to implement take-off
void Copter::ModeAuto::takeoff_start(const Location& dest_loc)
{
_mode = Auto_TakeOff;
// convert location to class
Location_Class dest(dest_loc);
// set horizontal target
dest.lat = _copter.current_loc.lat;
dest.lng = _copter.current_loc.lng;
// get altitude target
int32_t alt_target;
if (!dest.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, alt_target)) {
// this failure could only happen if take-off alt was specified as an alt-above terrain and we have no terrain data
_copter.Log_Write_Error(ERROR_SUBSYSTEM_TERRAIN, ERROR_CODE_MISSING_TERRAIN_DATA);
// fall back to altitude above current altitude
alt_target = _copter.current_loc.alt + dest.alt;
}
// sanity check target
if (alt_target < _copter.current_loc.alt) {
dest.set_alt_cm(_copter.current_loc.alt, Location_Class::ALT_FRAME_ABOVE_HOME);
}
// Note: if taking off from below home this could cause a climb to an unexpectedly high altitude
if (alt_target < 100) {
dest.set_alt_cm(100, Location_Class::ALT_FRAME_ABOVE_HOME);
}
// set waypoint controller target
if (!wp_nav->set_wp_destination(dest)) {
// failure to set destination can only be because of missing terrain data
_copter.failsafe_terrain_on_event();
return;
}
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
// clear i term when we're taking off
set_throttle_takeoff();
// get initial alt for WP_NAVALT_MIN
_copter.auto_takeoff_set_start_alt();
}
// auto_takeoff_run - takeoff in auto mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::takeoff_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
// initialise wpnav targets
wp_nav->shift_wp_origin_to_current_pos();
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else // multicopters do not stabilize roll/pitch/yaw when disarmed
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// reset attitude control targets
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// clear i term when we're taking off
set_throttle_takeoff();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!_copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
#if FRAME_CONFIG == HELI_FRAME
// helicopters stay in landed state until rotor speed runup has finished
if (motors->rotor_runup_complete()) {
set_land_complete(false);
} else {
// initialise wpnav targets
wp_nav->shift_wp_origin_to_current_pos();
}
#else
set_land_complete(false);
#endif
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
_copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
_copter.auto_takeoff_attitude_run(target_yaw_rate);
}
// auto_wp_start - initialises waypoint controller to implement flying to a particular destination
void Copter::ModeAuto::wp_start(const Vector3f& destination)
{
_mode = Auto_WP;
// initialise wpnav (no need to check return status because terrain data is not used)
wp_nav->set_wp_destination(destination, false);
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (_copter.auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(_copter.get_default_auto_yaw_mode(false));
}
}
// auto_wp_start - initialises waypoint controller to implement flying to a particular destination
void Copter::ModeAuto::wp_start(const Location_Class& dest_loc)
{
_mode = Auto_WP;
// send target to waypoint controller
if (!wp_nav->set_wp_destination(dest_loc)) {
// failure to set destination can only be because of missing terrain data
_copter.failsafe_terrain_on_event();
return;
}
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (_copter.auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(_copter.get_default_auto_yaw_mode(false));
}
}
// auto_wp_run - runs the auto waypoint controller
// called by auto_run at 100hz or more
void Copter::ModeAuto::wp_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
// To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off
// (of course it would be better if people just used take-off)
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else // multicopters do not stabilize roll/pitch/yaw when disarmed
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// clear i term when we're taking off
set_throttle_takeoff();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!_copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
_copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
if (_copter.auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain());
}
}
// auto_spline_start - initialises waypoint controller to implement flying to a particular destination using the spline controller
// seg_end_type can be SEGMENT_END_STOP, SEGMENT_END_STRAIGHT or SEGMENT_END_SPLINE. If Straight or Spline the next_destination should be provided
void Copter::ModeAuto::spline_start(const Location_Class& destination, bool stopped_at_start,
AC_WPNav::spline_segment_end_type seg_end_type,
const Location_Class& next_destination)
{
_mode = Auto_Spline;
// initialise wpnav
if (!wp_nav->set_spline_destination(destination, stopped_at_start, seg_end_type, next_destination)) {
// failure to set destination can only be because of missing terrain data
_copter.failsafe_terrain_on_event();
return;
}
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (_copter.auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(_copter.get_default_auto_yaw_mode(false));
}
}
// auto_spline_run - runs the auto spline controller
// called by auto_run at 100hz or more
void Copter::ModeAuto::spline_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
// To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off
// (of course it would be better if people just used take-off)
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else // multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
#endif
// clear i term when we're taking off
set_throttle_takeoff();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!_copter.failsafe.radio) {
// get pilot's desired yaw rat
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
wp_nav->update_spline();
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
if (_copter.auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(), true, get_smoothing_gain());
}
}
// auto_land_start - initialises controller to implement a landing
void Copter::ModeAuto::land_start()
{
// set target to stopping point
Vector3f stopping_point;
wp_nav->get_loiter_stopping_point_xy(stopping_point);
// call location specific land start function
land_start(stopping_point);
}
// auto_land_start - initialises controller to implement a landing
void Copter::ModeAuto::land_start(const Vector3f& destination)
{
_mode = Auto_Land;
// initialise loiter target destination
wp_nav->init_loiter_target(destination);
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target(inertial_nav.get_altitude());
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// auto_land_run - lands in auto mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::land_run()
{
// if not auto armed or landed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// set target to current position
wp_nav->init_loiter_target();
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
_copter.land_run_horizontal_control();
_copter.land_run_vertical_control();
}
bool Copter::ModeAuto::landing_gear_should_be_deployed()
{
switch(_mode) {
case Auto_Land:
return true;
case Auto_RTL:
switch(_copter.mode_rtl.state()) {
case RTL_LoiterAtHome:
case RTL_Land:
case RTL_FinalDescent:
return true;
default:
return false;
}
return false;
default:
return false;
}
return false;
}
// auto_rtl_start - initialises RTL in AUTO flight mode
void Copter::ModeAuto::rtl_start()
{
_mode = Auto_RTL;
// call regular rtl flight mode initialisation and ask it to ignore checks
_copter.mode_rtl.init(true);
}
// auto_rtl_run - rtl in AUTO flight mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::rtl_run()
{
// call regular rtl flight mode run function
_copter.mode_rtl.run(false);
}
// auto_circle_movetoedge_start - initialise waypoint controller to move to edge of a circle with it's center at the specified location
// we assume the caller has performed all required GPS_ok checks
void Copter::ModeAuto::circle_movetoedge_start(const Location_Class &circle_center, float radius_m)
{
// convert location to vector from ekf origin
Vector3f circle_center_neu;
if (!circle_center.get_vector_from_origin_NEU(circle_center_neu)) {
// default to current position and log error
circle_center_neu = inertial_nav.get_position();
_copter.Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_CIRCLE_INIT);
}
circle_nav->set_center(circle_center_neu);
// set circle radius
if (!is_zero(radius_m)) {
circle_nav->set_radius(radius_m * 100.0f);
}
// check our distance from edge of circle
Vector3f circle_edge_neu;
circle_nav->get_closest_point_on_circle(circle_edge_neu);
float dist_to_edge = (inertial_nav.get_position() - circle_edge_neu).length();
// if more than 3m then fly to edge
if (dist_to_edge > 300.0f) {
// set the state to move to the edge of the circle
_mode = Auto_CircleMoveToEdge;
// convert circle_edge_neu to Location_Class
Location_Class circle_edge(circle_edge_neu);
// convert altitude to same as command
circle_edge.set_alt_cm(circle_center.alt, circle_center.get_alt_frame());
// initialise wpnav to move to edge of circle
if (!wp_nav->set_wp_destination(circle_edge)) {
// failure to set destination can only be because of missing terrain data
_copter.failsafe_terrain_on_event();
}
// if we are outside the circle, point at the edge, otherwise hold yaw
const Vector3f &curr_pos = inertial_nav.get_position();
float dist_to_center = norm(circle_center_neu.x - curr_pos.x, circle_center_neu.y - curr_pos.y);
if (dist_to_center > circle_nav->get_radius() && dist_to_center > 500) {
set_auto_yaw_mode(_copter.get_default_auto_yaw_mode(false));
} else {
// vehicle is within circle so hold yaw to avoid spinning as we move to edge of circle
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
} else {
circle_start();
}
}
// auto_circle_start - initialises controller to fly a circle in AUTO flight mode
// assumes that circle_nav object has already been initialised with circle center and radius
void Copter::ModeAuto::circle_start()
{
_mode = Auto_Circle;
// initialise circle controller
circle_nav->init(circle_nav->get_center());
}
// auto_circle_run - circle in AUTO flight mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::circle_run()
{
// call circle controller
circle_nav->update();
// call z-axis position controller
pos_control->update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_yaw(circle_nav->get_roll(), circle_nav->get_pitch(), circle_nav->get_yaw(),true, get_smoothing_gain());
}
#if NAV_GUIDED == ENABLED
// auto_nav_guided_start - hand over control to external navigation controller in AUTO mode
void Copter::ModeAuto::nav_guided_start()
{
_mode = Auto_NavGuided;
// call regular guided flight mode initialisation
_copter.mode_guided.init(true);
// initialise guided start time and position as reference for limit checking
_copter.mode_guided.limit_init_time_and_pos();
}
// auto_nav_guided_run - allows control by external navigation controller
// called by auto_run at 100hz or more
void Copter::ModeAuto::nav_guided_run()
{
// call regular guided flight mode run function
_copter.mode_guided.run();
}
#endif // NAV_GUIDED
// auto_loiter_start - initialises loitering in auto mode
// returns success/failure because this can be called by exit_mission
bool Copter::ModeAuto::loiter_start()
{
// return failure if GPS is bad
if (!_copter.position_ok()) {
return false;
}
_mode = Auto_Loiter;
// calculate stopping point
Vector3f stopping_point;
wp_nav->get_wp_stopping_point(stopping_point);
// initialise waypoint controller target to stopping point
wp_nav->set_wp_destination(stopping_point);
// hold yaw at current heading
set_auto_yaw_mode(AUTO_YAW_HOLD);
return true;
}
// auto_loiter_run - loiter in AUTO flight mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::loiter_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
return;
}
// accept pilot input of yaw
float target_yaw_rate = 0;
if(!_copter.failsafe.radio) {
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint and z-axis position controller
_copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
pos_control->update_z_controller();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
}
// get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter
// set rtl parameter to true if this is during an RTL
uint8_t Copter::get_default_auto_yaw_mode(bool rtl)
{
switch (g.wp_yaw_behavior) {
case WP_YAW_BEHAVIOR_NONE:
return AUTO_YAW_HOLD;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL:
if (rtl) {
return AUTO_YAW_HOLD;
}else{
return AUTO_YAW_LOOK_AT_NEXT_WP;
}
case WP_YAW_BEHAVIOR_LOOK_AHEAD:
return AUTO_YAW_LOOK_AHEAD;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP:
default:
return AUTO_YAW_LOOK_AT_NEXT_WP;
}
}
// set_auto_yaw_mode - sets the yaw mode for auto
void Copter::set_auto_yaw_mode(uint8_t yaw_mode)
{
// return immediately if no change
if (auto_yaw_mode == yaw_mode) {
return;
}
auto_yaw_mode = yaw_mode;
// perform initialisation
switch (auto_yaw_mode) {
case AUTO_YAW_LOOK_AT_NEXT_WP:
// wpnav will initialise heading when wpnav's set_destination method is called
break;
case AUTO_YAW_ROI:
// point towards a location held in yaw_look_at_WP
yaw_look_at_WP_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading
// caller should set the yaw_look_at_heading
break;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
yaw_look_ahead_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_RESETTOARMEDYAW:
// initial_armed_bearing will be set during arming so no init required
break;
case AUTO_YAW_RATE:
// initialise target yaw rate to zero
auto_yaw_rate_cds = 0.0f;
break;
}
}
// set_auto_yaw_look_at_heading - sets the yaw look at heading for auto mode
void Copter::set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, bool relative_angle)
{
// get current yaw target
int32_t curr_yaw_target = attitude_control->get_att_target_euler_cd().z;
// calculate final angle as relative to vehicle heading or absolute
if (!relative_angle) {
// absolute angle
yaw_look_at_heading = wrap_360_cd(angle_deg * 100);
} else {
// relative angle
if (direction < 0) {
angle_deg = -angle_deg;
}
yaw_look_at_heading = wrap_360_cd((angle_deg * 100) + curr_yaw_target);
}
// get turn speed
if (is_zero(turn_rate_dps)) {
// default to regular auto slew rate
yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE;
}else{
int32_t turn_rate = (wrap_180_cd(yaw_look_at_heading - curr_yaw_target) / 100) / turn_rate_dps;
yaw_look_at_heading_slew = constrain_int32(turn_rate, 1, 360); // deg / sec
}
// set yaw mode
set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING);
// TO-DO: restore support for clockwise and counter clockwise rotation held in cmd.content.yaw.direction. 1 = clockwise, -1 = counterclockwise
}
// set_auto_yaw_roi - sets the yaw to look at roi for auto mode
void Copter::set_auto_yaw_roi(const Location &roi_location)
{
// if location is zero lat, lon and altitude turn off ROI
if (roi_location.alt == 0 && roi_location.lat == 0 && roi_location.lng == 0) {
// set auto yaw mode back to default assuming the active command is a waypoint command. A more sophisticated method is required to ensure we return to the proper yaw control for the active command
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
#if MOUNT == ENABLED
// switch off the camera tracking if enabled
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
camera_mount.set_mode_to_default();
}
#endif // MOUNT == ENABLED
}else{
#if MOUNT == ENABLED
// check if mount type requires us to rotate the quad
if(!camera_mount.has_pan_control()) {
roi_WP = pv_location_to_vector(roi_location);
set_auto_yaw_mode(AUTO_YAW_ROI);
}
// send the command to the camera mount
camera_mount.set_roi_target(roi_location);
// TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below)
// 0: do nothing
// 1: point at next waypoint
// 2: point at a waypoint taken from WP# parameter (2nd parameter?)
// 3: point at a location given by alt, lon, lat parameters
// 4: point at a target given a target id (can't be implemented)
#else
// if we have no camera mount aim the quad at the location
roi_WP = pv_location_to_vector(roi_location);
set_auto_yaw_mode(AUTO_YAW_ROI);
#endif // MOUNT == ENABLED
}
}
// set auto yaw rate in centi-degrees per second
void Copter::set_auto_yaw_rate(float turn_rate_cds)
{
set_auto_yaw_mode(AUTO_YAW_RATE);
auto_yaw_rate_cds = turn_rate_cds;
}
// get_auto_heading - returns target heading depending upon auto_yaw_mode
// 100hz update rate
float Copter::get_auto_heading(void)
{
switch(auto_yaw_mode) {
case AUTO_YAW_ROI:
// point towards a location held in roi_WP
return get_roi_yaw();
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
return yaw_look_at_heading;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
return get_look_ahead_yaw();
case AUTO_YAW_RESETTOARMEDYAW:
// changes yaw to be same as when quad was armed
return initial_armed_bearing;
case AUTO_YAW_LOOK_AT_NEXT_WP:
default:
// point towards next waypoint.
// we don't use wp_bearing because we don't want the copter to turn too much during flight
return wp_nav->get_yaw();
}
}
// returns yaw rate held in auto_yaw_rate and normally set by SET_POSITION_TARGET mavlink messages (positive it clockwise, negative is counter clockwise)
float Copter::get_auto_yaw_rate_cds(void)
{
if (auto_yaw_mode == AUTO_YAW_RATE) {
return auto_yaw_rate_cds;
}
// return zero turn rate (this should never happen)
return 0.0f;
}
// auto_payload_place_start - initialises controller to implement a placing
void Copter::ModeAuto::payload_place_start()
{
// set target to stopping point
Vector3f stopping_point;
wp_nav->get_loiter_stopping_point_xy(stopping_point);
// call location specific place start function
payload_place_start(stopping_point);
}
// auto_payload_place_start - initialises controller to implement placement of a load
void Copter::ModeAuto::payload_place_start(const Vector3f& destination)
{
_mode = Auto_NavPayloadPlace;
_copter.nav_payload_place.state = PayloadPlaceStateType_Calibrating_Hover_Start;
// initialise loiter target destination
wp_nav->init_loiter_target(destination);
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target(inertial_nav.get_altitude());
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
bool Copter::ModeAuto::payload_place_run_should_run()
{
// muts be armed
if (!motors->armed()) {
return false;
}
// muts be auto-armed
if (!ap.auto_armed) {
return false;
}
// must not be landed
if (ap.land_complete) {
return false;
}
// interlock must be enabled (i.e. unsafe)
if (!motors->get_interlock()) {
return false;
}
return true;
}
// auto_payload_place_run - places an object in auto mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::payload_place_run()
{
if (!payload_place_run_should_run()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// set target to current position
wp_nav->init_loiter_target();
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
switch (_copter.nav_payload_place.state) {
case PayloadPlaceStateType_FlyToLocation:
case PayloadPlaceStateType_Calibrating_Hover_Start:
case PayloadPlaceStateType_Calibrating_Hover:
return payload_place_run_loiter();
case PayloadPlaceStateType_Descending_Start:
case PayloadPlaceStateType_Descending:
return payload_place_run_descend();
case PayloadPlaceStateType_Releasing_Start:
case PayloadPlaceStateType_Releasing:
case PayloadPlaceStateType_Released:
case PayloadPlaceStateType_Ascending_Start:
case PayloadPlaceStateType_Ascending:
case PayloadPlaceStateType_Done:
return payload_place_run_loiter();
}
}
void Copter::ModeAuto::payload_place_run_loiter()
{
// loiter...
_copter.land_run_horizontal_control();
// run loiter controller
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
// call attitude controller
const float target_yaw_rate = 0;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
// call position controller
pos_control->update_z_controller();
}
void Copter::ModeAuto::payload_place_run_descend()
{
_copter.land_run_horizontal_control();
_copter.land_run_vertical_control();
}