Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_LSM9DS0.cpp
2014-07-14 09:44:34 +10:00

817 lines
27 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
-- Coded by Victor Mayoral Vilches --
the code reuses partially the Sparkfun library
from https://github.com/sparkfun/LSM9DS0_Breakout/tree/master/Libraries/Arduino/SFE_LSM9DS0
*/
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX || CONFIG_HAL_BOARD == HAL_BOARD_ERLE
#include "AP_InertialSensor_LSM9DS0.h"
#include "../AP_HAL_Linux/GPIO.h"
extern const AP_HAL::HAL& hal;
////////////////////////////
// LSM9DS0 Gyro Registers //
////////////////////////////
#define WHO_AM_I_G 0x0F
#define CTRL_REG1_G 0x20
#define CTRL_REG2_G 0x21
#define CTRL_REG3_G 0x22
#define CTRL_REG4_G 0x23
#define CTRL_REG5_G 0x24
#define REFERENCE_G 0x25
#define STATUS_REG_G 0x27
#define OUT_X_L_G 0x28
#define OUT_X_H_G 0x29
#define OUT_Y_L_G 0x2A
#define OUT_Y_H_G 0x2B
#define OUT_Z_L_G 0x2C
#define OUT_Z_H_G 0x2D
#define FIFO_CTRL_REG_G 0x2E
#define FIFO_SRC_REG_G 0x2F
#define INT1_CFG_G 0x30
#define INT1_SRC_G 0x31
#define INT1_THS_XH_G 0x32
#define INT1_THS_XL_G 0x33
#define INT1_THS_YH_G 0x34
#define INT1_THS_YL_G 0x35
#define INT1_THS_ZH_G 0x36
#define INT1_THS_ZL_G 0x37
#define INT1_DURATION_G 0x38
//////////////////////////////////////////
// LSM9DS0 Accel/Magneto (XM) Registers //
//////////////////////////////////////////
#define OUT_TEMP_L_XM 0x05
#define OUT_TEMP_H_XM 0x06
#define STATUS_REG_M 0x07
#define OUT_X_L_M 0x08
#define OUT_X_H_M 0x09
#define OUT_Y_L_M 0x0A
#define OUT_Y_H_M 0x0B
#define OUT_Z_L_M 0x0C
#define OUT_Z_H_M 0x0D
#define WHO_AM_I_XM 0x0F
#define INT_CTRL_REG_M 0x12
#define INT_SRC_REG_M 0x13
#define INT_THS_L_M 0x14
#define INT_THS_H_M 0x15
#define OFFSET_X_L_M 0x16
#define OFFSET_X_H_M 0x17
#define OFFSET_Y_L_M 0x18
#define OFFSET_Y_H_M 0x19
#define OFFSET_Z_L_M 0x1A
#define OFFSET_Z_H_M 0x1B
#define REFERENCE_X 0x1C
#define REFERENCE_Y 0x1D
#define REFERENCE_Z 0x1E
#define CTRL_REG0_XM 0x1F
#define CTRL_REG1_XM 0x20
#define CTRL_REG2_XM 0x21
#define CTRL_REG3_XM 0x22
#define CTRL_REG4_XM 0x23
#define CTRL_REG5_XM 0x24
#define CTRL_REG6_XM 0x25
#define CTRL_REG7_XM 0x26
#define STATUS_REG_A 0x27
#define OUT_X_L_A 0x28
#define OUT_X_H_A 0x29
#define OUT_Y_L_A 0x2A
#define OUT_Y_H_A 0x2B
#define OUT_Z_L_A 0x2C
#define OUT_Z_H_A 0x2D
#define FIFO_CTRL_REG 0x2E
#define FIFO_SRC_REG 0x2F
#define INT_GEN_1_REG 0x30
#define INT_GEN_1_SRC 0x31
#define INT_GEN_1_THS 0x32
#define INT_GEN_1_DURATION 0x33
#define INT_GEN_2_REG 0x34
#define INT_GEN_2_SRC 0x35
#define INT_GEN_2_THS 0x36
#define INT_GEN_2_DURATION 0x37
#define CLICK_CFG 0x38
#define CLICK_SRC 0x39
#define CLICK_THS 0x3A
#define TIME_LIMIT 0x3B
#define TIME_LATENCY 0x3C
#define TIME_WINDOW 0x3D
#define ACT_THS 0x3E
#define ACT_DUR 0x3F
AP_InertialSensor_LSM9DS0::AP_InertialSensor_LSM9DS0():
AP_InertialSensor(),
_drdy_pin_a(NULL),
_drdy_pin_m(NULL),
_drdy_pin_g(NULL),
_initialised(false),
_lsm9ds0_product_id(AP_PRODUCT_ID_NONE)
{
}
uint16_t AP_InertialSensor_LSM9DS0::_init_sensor( Sample_rate sample_rate)
{
if (_initialised) return _lsm9ds0_product_id;
_initialised = true;
_spi = hal.spi->device(AP_HAL::SPIDevice_LSM9DS0);
_spi_sem = _spi->get_semaphore();
_drdy_pin_a = hal.gpio->channel(BBB_P8_8);
_drdy_pin_m = hal.gpio->channel(BBB_P8_10);
_drdy_pin_g = hal.gpio->channel(BBB_P8_34);
// For some reason configuring the pins as an inputs make the driver fail
// _drdy_pin_a->mode(GPIO_IN);
// _drdy_pin_m->mode(GPIO_IN);
// _drdy_pin_g->mode(GPIO_IN);
hal.scheduler->suspend_timer_procs();
uint8_t tries = 0;
do {
bool success = _hardware_init(sample_rate);
if (success) {
hal.scheduler->delay(5+2);
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("LSM9DS0: Unable to get semaphore"));
}
if (_data_ready()) {
_spi_sem->give();
break;
} else {
hal.console->println_P(
PSTR("LSM9DS0 startup failed: no data ready"));
}
_spi_sem->give();
}
if (tries++ > 5) {
hal.scheduler->panic(PSTR("PANIC: failed to boot LSM9DS0 5 times"));
}
} while (1);
hal.scheduler->resume_timer_procs();
/* read the first lot of data.
* _read_data_transaction requires the spi semaphore to be taken by
* its caller. */
_last_sample_time_micros = hal.scheduler->micros();
hal.scheduler->delay(10);
if (_spi_sem->take(100)) {
_read_data_transaction_g();
_read_data_transaction_xm();
_spi_sem->give();
}
// start the timer process to read samples
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_LSM9DS0::_poll_data));
#if LSM9DS0_DEBUG
_dump_registers();
#endif
return _lsm9ds0_product_id;
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_LSM9DS0::wait_for_sample(uint16_t timeout_ms)
{
if (_sample_available()) {
return true;
}
uint32_t start = hal.scheduler->millis();
while ((hal.scheduler->millis() - start) < timeout_ms) {
hal.scheduler->delay_microseconds(100);
if (_sample_available()) {
return true;
}
}
return false;
}
// TODO finish
bool AP_InertialSensor_LSM9DS0::update( void )
{
// wait for at least 1 sample
if (!wait_for_sample(1000)) {
return false;
}
_previous_accel[0] = _accel[0];
// disable timer procs for mininum time
hal.scheduler->suspend_timer_procs();
_gyro[0] = Vector3f(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z);
_accel[0] = Vector3f(_accel_sum.x, _accel_sum.y, _accel_sum.z);
// _mag[0] = Vector3f(_mag_sum.x, _mag_sum.y, _mag_sum.z);
// TODO divide num_samples
_num_samples_g = _sum_count_g;
_num_samples_xm = _sum_count_xm;
_accel_sum.zero();
_gyro_sum.zero();
_sum_count_g = 0;
_sum_count_xm = 0;
hal.scheduler->resume_timer_procs();
_gyro[0].rotate(_board_orientation);
_gyro[0] *= _gRes / _num_samples_g;
_gyro[0] -= _gyro_offset[0];
_accel[0].rotate(_board_orientation);
_accel[0] *= _aRes / _num_samples_xm;
Vector3f accel_scaling = _accel_scale[0].get();
_accel[0].x *= accel_scaling.x;
_accel[0].y *= accel_scaling.y;
_accel[0].z *= accel_scaling.z;
_accel[0] -= _accel_offset[0];
// // Configure mag
// _mag[0] *= _mRes / _num_samples_xm;
// if (_last_filter_hz != _mpu6000_filter) {
// if (_spi_sem->take(10)) {
// _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
// _set_filter_register(_mpu6000_filter, 0);
// _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
// _error_count = 0;
// _spi_sem->give();
// }
// }
return true;
}
// return the LSM9DS0 gyro drift rate in radian/s/s
// TODO to be reviewed. Not sure about this value
float AP_InertialSensor_LSM9DS0::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
float AP_InertialSensor_LSM9DS0::get_delta_time() const
{
// the sensor runs at 200Hz
return (1./700) * _num_samples_g;
}
/*================ HARDWARE FUNCTIONS ==================== */
// TODO finish the method
bool AP_InertialSensor_LSM9DS0::_hardware_init(Sample_rate sample_rate)
{
// Store the resolutions in private variables
_calcgRes(G_SCALE_245DPS); // Calculate DPS / ADC tick, stored in gRes variable
_calcmRes(M_SCALE_2GS); // Calculate Gs / ADC tick, stored in mRes variable
_calcaRes(A_SCALE_2G); // Calculate g / ADC tick, stored in aRes variable
if (!_spi_sem->take(100)) {
hal.scheduler->panic(PSTR("LSM9DS0: Unable to get semaphore"));
}
// initially run the bus at low speed (500kHz on APM2)
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
// Init the sensors
_initGyro();
_initAccel();
_initMag();
uint8_t default_filter;
// sample rate and filtering
// to minimise the effects of aliasing we choose a filter
// that is less than half of the sample rate
switch (sample_rate) {
case RATE_50HZ:
// this is used for plane and rover, where noise resistance is
// more important than update rate. Tests on an aerobatic plane
// show that 10Hz is fine, and makes it very noise resistant
// default_filter = BITS_DLPF_CFG_10HZ;
_sample_shift = 2;
break;
case RATE_100HZ:
// default_filter = BITS_DLPF_CFG_20HZ;
_sample_shift = 1;
break;
case RATE_200HZ:
default:
// default_filter = BITS_DLPF_CFG_20HZ;
_sample_shift = 0;
break;
}
// _set_filter_register(_mpu6000_filter, default_filter);
// To verify communication, we can read from the WHO_AM_I register of
// each device.
uint8_t gTest = _register_read_g(WHO_AM_I_G); // Read the gyro WHO_AM_I
uint8_t xmTest = _register_read_xm(WHO_AM_I_XM); // Read the accel/mag WHO_AM_I
// TODO check the content of these variables.
// now that we have initialised, we set the SPI bus speed to high
// (8MHz on APM2)
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
_spi_sem->give();
return true;
}
/**
* Return true if the LSM9DS0 has new data available for reading.
*
* We use the data ready pin if it is available.
* Returns 1 if LSM9DS0 gyro is available, 2 if either the mag or the accel is available and
* 3 if both are.
*
* TODO, read the
* status register.
*/
uint8_t AP_InertialSensor_LSM9DS0::_data_ready()
{
uint8_t rvalue = 0;
if (_drdy_pin_g) {
if (_drdy_pin_g->read() != 0){
rvalue=1;
}
if (_drdy_pin_a) {
if (_drdy_pin_a->read() != 0){
rvalue = 3;
}
}
} else if (_drdy_pin_a) {
if (_drdy_pin_a->read() != 0){
rvalue = 2;
}
}
return rvalue;
// TODO Implement a read on the status register
// uint8_t status = _register_read(MPUREG_INT_STATUS);
// return (status & BIT_RAW_RDY_INT) != 0;
}
/**
* Timer process to poll for new data from the LSM9DS0.
*/
void AP_InertialSensor_LSM9DS0::_poll_data(void)
{
if (hal.scheduler->in_timerprocess()) {
if (!_spi_sem->take_nonblocking()) {
/*
the semaphore being busy is an expected condition when the
mainline code is calling wait_for_sample() which will
grab the semaphore. We return now and rely on the mainline
code grabbing the latest sample.
*/
return;
}
if (_data_ready() == 1) {
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction_g();
} else if (_data_ready() == 2){
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction_xm();
} else if (_data_ready() == 3){
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction_g();
_read_data_transaction_xm();
}
_spi_sem->give();
} else {
/* Synchronous read - take semaphore */
if (_spi_sem->take(10)) {
if (_data_ready() == 1) {
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction_g();
} else if (_data_ready() == 2){
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction_xm();
} else if (_data_ready() == 3){
_last_sample_time_micros = hal.scheduler->micros();
_read_data_transaction_g();
_read_data_transaction_xm();
}
_spi_sem->give();
} else {
hal.scheduler->panic(
PSTR("PANIC: AP_InertialSensor_LSM9DS0::_poll_data "
"failed to take SPI semaphore synchronously"));
}
}
}
// TODO use error_count to notifify if a transaction has gone wrong
void AP_InertialSensor_LSM9DS0::_read_data_transaction_g() {
// read gyro values
uint8_t temp[6]; // We'll read six bytes from the gyro into temp
for (uint8_t i=0;i<6;i++){
temp[i] = _register_read_g(OUT_X_L_G + i);
}
uint16_t gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
uint16_t gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
uint16_t gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
_gyro_sum.x += gx;
_gyro_sum.y += gy;
_gyro_sum.z -= gz;
_sum_count_g++;
if (_sum_count_g == 0) {
_gyro_sum.zero();
}
}
// TODO use error_count to notifify if a transaction has gone wrong
void AP_InertialSensor_LSM9DS0::_read_data_transaction_xm() {
uint8_t temp[6]; // We'll read six bytes from the accel into temp
// read accel values
for (uint8_t i=0;i<6;i++){
temp[i] = _register_read_xm(OUT_X_L_A + i);
}
uint16_t ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
uint16_t ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
uint16_t az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
_accel_sum.x += ax;
_accel_sum.y += ay;
_accel_sum.z -= az;
// read mag values
for (uint8_t i=0;i<6;i++){
temp[i] = _register_read_xm(OUT_X_L_M + i);
}
uint16_t mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
uint16_t my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
uint16_t mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
_mag_sum.x += mx;
_mag_sum.y += my;
_mag_sum.z -= mz;
_sum_count_xm++;
if (_sum_count_xm == 0) {
_gyro_sum.zero();
_mag_sum.zero();
}
}
/*================ PRIVATE INTERFACE ==================== */
// void AP_InertialSensor_LSM9DS0::_set_filter_register(uint8_t filter_hz, uint8_t default_filter)
// {
// uint8_t filter = default_filter;
// // choose filtering frequency
// switch (filter_hz) {
// case 5:
// filter = BITS_DLPF_CFG_5HZ;
// break;
// case 10:
// filter = BITS_DLPF_CFG_10HZ;
// break;
// case 20:
// filter = BITS_DLPF_CFG_20HZ;
// break;
// case 42:
// filter = BITS_DLPF_CFG_42HZ;
// break;
// case 98:
// filter = BITS_DLPF_CFG_98HZ;
// break;
// }
// if (filter != 0) {
// _last_filter_hz = filter_hz;
// _register_write(MPUREG_CONFIG, filter);
// }
// }
// return true if a sample is available
bool AP_InertialSensor_LSM9DS0::_sample_available()
{
_poll_data();
return (_sum_count_g >> _sample_shift || _sum_count_xm >> _sample_shift) > 0;
}
uint8_t AP_InertialSensor_LSM9DS0::_register_read_xm( uint8_t reg )
{
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[2];
uint8_t rx[2];
tx[0] = addr;
tx[1] = 0;
_spi->transaction(tx, rx, 2);
return rx[1];
}
uint8_t AP_InertialSensor_LSM9DS0::_register_read_g( uint8_t reg )
{
uint8_t addr = reg | 0x80; // Set most significant bit
uint8_t tx[2];
uint8_t rx[2];
tx[0] = addr;
tx[1] = 0;
_spi->transaction(tx, rx, 2);
return rx[1];
}
void AP_InertialSensor_LSM9DS0::_register_write_xm(uint8_t reg, uint8_t val)
{
uint8_t tx[2];
uint8_t rx[2];
tx[0] = reg;
tx[1] = val;
_spi->transaction(tx, rx, 2);
}
void AP_InertialSensor_LSM9DS0::_register_write_g(uint8_t reg, uint8_t val)
{
uint8_t tx[2];
uint8_t rx[2];
tx[0] = reg;
tx[1] = val;
_spi->transaction(tx, rx, 2);
}
void AP_InertialSensor_LSM9DS0::_initGyro()
{
/* CTRL_REG1_G sets output data rate, bandwidth, power-down and enables
Bits[7:0]: DR1 DR0 BW1 BW0 PD Zen Xen Yen
DR[1:0] - Output data rate selection
00=95Hz, 01=190Hz, 10=380Hz, 11=760Hz
BW[1:0] - Bandwidth selection (sets cutoff frequency)
Value depends on ODR. See datasheet table 21.
PD - Power down enable (0=power down mode, 1=normal or sleep mode)
Zen, Xen, Yen - Axis enable (o=disabled, 1=enabled) */
_register_write_g(CTRL_REG1_G, 0x0F); // Normal mode, enable all axes
hal.scheduler->delay(1);
/* CTRL_REG2_G sets up the HPF
Bits[7:0]: 0 0 HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0
HPM[1:0] - High pass filter mode selection
00=normal (reset reading HP_RESET_FILTER, 01=ref signal for filtering,
10=normal, 11=autoreset on interrupt
HPCF[3:0] - High pass filter cutoff frequency
Value depends on data rate. See datasheet table 26.
*/
_register_write_g(CTRL_REG2_G, 0x00); // Normal mode, high cutoff frequency
hal.scheduler->delay(1);
/* CTRL_REG3_G sets up interrupt and DRDY_G pins
Bits[7:0]: I1_IINT1 I1_BOOT H_LACTIVE PP_OD I2_DRDY I2_WTM I2_ORUN I2_EMPTY
I1_INT1 - Interrupt enable on INT_G pin (0=disable, 1=enable)
I1_BOOT - Boot status available on INT_G (0=disable, 1=enable)
H_LACTIVE - Interrupt active configuration on INT_G (0:high, 1:low)
PP_OD - Push-pull/open-drain (0=push-pull, 1=open-drain)
I2_DRDY - Data ready on DRDY_G (0=disable, 1=enable)
I2_WTM - FIFO watermark interrupt on DRDY_G (0=disable 1=enable)
I2_ORUN - FIFO overrun interrupt on DRDY_G (0=disable 1=enable)
I2_EMPTY - FIFO empty interrupt on DRDY_G (0=disable 1=enable) */
// Int1 enabled (pp, active low), data read on DRDY_G:
_register_write_g(CTRL_REG3_G, 0x88);
hal.scheduler->delay(1);
/* CTRL_REG4_G sets the scale, update mode
Bits[7:0] - BDU BLE FS1 FS0 - ST1 ST0 SIM
BDU - Block data update (0=continuous, 1=output not updated until read
BLE - Big/little endian (0=data LSB @ lower address, 1=LSB @ higher add)
FS[1:0] - Full-scale selection
00=245dps, 01=500dps, 10=2000dps, 11=2000dps
ST[1:0] - Self-test enable
00=disabled, 01=st 0 (x+, y-, z-), 10=undefined, 11=st 1 (x-, y+, z+)
SIM - SPI serial interface mode select
0=4 wire, 1=3 wire */
_register_write_g(CTRL_REG4_G, 0x00); // Set scale to 245 dps
hal.scheduler->delay(1);
/* CTRL_REG5_G sets up the FIFO, HPF, and INT1
Bits[7:0] - BOOT FIFO_EN - HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0
BOOT - Reboot memory content (0=normal, 1=reboot)
FIFO_EN - FIFO enable (0=disable, 1=enable)
HPen - HPF enable (0=disable, 1=enable)
INT1_Sel[1:0] - Int 1 selection configuration
Out_Sel[1:0] - Out selection configuration */
_register_write_g(CTRL_REG5_G, 0x00);
hal.scheduler->delay(1);
}
void AP_InertialSensor_LSM9DS0::_initAccel()
{
/* CTRL_REG0_XM (0x1F) (Default value: 0x00)
Bits (7-0): BOOT FIFO_EN WTM_EN 0 0 HP_CLICK HPIS1 HPIS2
BOOT - Reboot memory content (0: normal, 1: reboot)
FIFO_EN - Fifo enable (0: disable, 1: enable)
WTM_EN - FIFO watermark enable (0: disable, 1: enable)
HP_CLICK - HPF enabled for click (0: filter bypassed, 1: enabled)
HPIS1 - HPF enabled for interrupt generator 1 (0: bypassed, 1: enabled)
HPIS2 - HPF enabled for interrupt generator 2 (0: bypassed, 1 enabled) */
_register_write_xm(CTRL_REG0_XM, 0x00);
hal.scheduler->delay(1);
/* CTRL_REG1_XM (0x20) (Default value: 0x07)
Bits (7-0): AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN
AODR[3:0] - select the acceleration data rate:
0000=power down, 0001=3.125Hz, 0010=6.25Hz, 0011=12.5Hz,
0100=25Hz, 0101=50Hz, 0110=100Hz, 0111=200Hz, 1000=400Hz,
1001=800Hz, 1010=1600Hz, (remaining combinations undefined).
BDU - block data update for accel AND mag
0: Continuous update
1: Output registers aren't updated until MSB and LSB have been read.
AZEN, AYEN, and AXEN - Acceleration x/y/z-axis enabled.
0: Axis disabled, 1: Axis enabled */
_register_write_xm(CTRL_REG1_XM, 0x57); // 100Hz data rate, x/y/z all enabled
hal.scheduler->delay(1);
//Serial.println(xmReadByte(CTRL_REG1_XM));
/* CTRL_REG2_XM (0x21) (Default value: 0x00)
Bits (7-0): ABW1 ABW0 AFS2 AFS1 AFS0 AST1 AST0 SIM
ABW[1:0] - Accelerometer anti-alias filter bandwidth
00=773Hz, 01=194Hz, 10=362Hz, 11=50Hz
AFS[2:0] - Accel full-scale selection
000=+/-2g, 001=+/-4g, 010=+/-6g, 011=+/-8g, 100=+/-16g
AST[1:0] - Accel self-test enable
00=normal (no self-test), 01=positive st, 10=negative st, 11=not allowed
SIM - SPI mode selection
0=4-wire, 1=3-wire */
_register_write_xm(CTRL_REG2_XM, 0x00); // Set scale to 2g
hal.scheduler->delay(1);
/* CTRL_REG3_XM is used to set interrupt generators on INT1_XM
Bits (7-0): P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY
*/
// Accelerometer data ready on INT1_XM (0x04)
_register_write_xm(CTRL_REG3_XM, 0x04);
hal.scheduler->delay(1);
}
void AP_InertialSensor_LSM9DS0::_initMag()
{
/* CTRL_REG5_XM enables temp sensor, sets mag resolution and data rate
Bits (7-0): TEMP_EN M_RES1 M_RES0 M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1
TEMP_EN - Enable temperature sensor (0=disabled, 1=enabled)
M_RES[1:0] - Magnetometer resolution select (0=low, 3=high)
M_ODR[2:0] - Magnetometer data rate select
000=3.125Hz, 001=6.25Hz, 010=12.5Hz, 011=25Hz, 100=50Hz, 101=100Hz
LIR2 - Latch interrupt request on INT2_SRC (cleared by reading INT2_SRC)
0=interrupt request not latched, 1=interrupt request latched
LIR1 - Latch interrupt request on INT1_SRC (cleared by readging INT1_SRC)
0=irq not latched, 1=irq latched */
_register_write_xm(CTRL_REG5_XM, 0x14); // Mag data rate - 100 Hz
hal.scheduler->delay(1);
/* CTRL_REG6_XM sets the magnetometer full-scale
Bits (7-0): 0 MFS1 MFS0 0 0 0 0 0
MFS[1:0] - Magnetic full-scale selection
00:+/-2Gauss, 01:+/-4Gs, 10:+/-8Gs, 11:+/-12Gs */
_register_write_xm(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS
hal.scheduler->delay(1);
/* CTRL_REG7_XM sets magnetic sensor mode, low power mode, and filters
AHPM1 AHPM0 AFDS 0 0 MLP MD1 MD0
AHPM[1:0] - HPF mode selection
00=normal (resets reference registers), 01=reference signal for filtering,
10=normal, 11=autoreset on interrupt event
AFDS - Filtered acceleration data selection
0=internal filter bypassed, 1=data from internal filter sent to FIFO
MLP - Magnetic data low-power mode
0=data rate is set by M_ODR bits in CTRL_REG5
1=data rate is set to 3.125Hz
MD[1:0] - Magnetic sensor mode selection (default 10)
00=continuous-conversion, 01=single-conversion, 10 and 11=power-down */
_register_write_xm(CTRL_REG7_XM, 0x00); // Continuous conversion mode
hal.scheduler->delay(1);
/* CTRL_REG4_XM is used to set interrupt generators on INT2_XM
Bits (7-0): P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM
*/
_register_write_xm(CTRL_REG4_XM, 0x04); // Magnetometer data ready on INT2_XM (0x08)
hal.scheduler->delay(1);
/* INT_CTRL_REG_M to set push-pull/open drain, and active-low/high
Bits[7:0] - XMIEN YMIEN ZMIEN PP_OD IEA IEL 4D MIEN
XMIEN, YMIEN, ZMIEN - Enable interrupt recognition on axis for mag data
PP_OD - Push-pull/open-drain interrupt configuration (0=push-pull, 1=od)
IEA - Interrupt polarity for accel and magneto
0=active-low, 1=active-high
IEL - Latch interrupt request for accel and magneto
0=irq not latched, 1=irq latched
4D - 4D enable. 4D detection is enabled when 6D bit in INT_GEN1_REG is set
MIEN - Enable interrupt generation for magnetic data
0=disable, 1=enable) */
_register_write_xm(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull
hal.scheduler->delay(1);
}
void AP_InertialSensor_LSM9DS0::_calcgRes(gyro_scale_lsm9ds0 gScl)
{
// Possible gyro scales (and their register bit settings) are:
// 245 DPS (00), 500 DPS (01), 2000 DPS (10). Here's a bit of an algorithm
// to calculate DPS/(ADC tick) based on that 2-bit value:
switch (gScl)
{
case G_SCALE_245DPS:
_gRes = 245.0 / 32768.0;
break;
case G_SCALE_500DPS:
_gRes = 500.0 / 32768.0;
break;
case G_SCALE_2000DPS:
_gRes = 2000.0 / 32768.0;
break;
}
}
void AP_InertialSensor_LSM9DS0::_calcaRes(accel_scale aScl)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an
// algorithm to calculate g/(ADC tick) based on that 3-bit value:
_aRes = aScl == A_SCALE_16G ? 16.0 / 32768.0 :
(((float) aScl + 1.0) * 2.0) / 32768.0;
}
void AP_InertialSensor_LSM9DS0::_calcmRes(mag_scale mScl)
{
// Possible magnetometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). Here's a bit of an algorithm
// to calculate Gs/(ADC tick) based on that 2-bit value:
_mRes = mScl == M_SCALE_2GS ? 2.0 / 32768.0 :
(float) (mScl << 2) / 32768.0;
}
// TODO check the registers, dump first the Gyro registers and then the Mag registers
#if LSM9DS0_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_LSM9DS0::_dump_registers(void)
{
hal.console->println_P(PSTR("LSM9DS0 registers:"));
hal.console->println_P(PSTR("Gyroscope registers:"));
const uint8_t first = OUT_TEMP_L_XM;
const uint8_t last = ACT_DUR;
for (uint8_t reg=first; reg<=last; reg++) {
uint8_t v = _register_read_g(reg);
hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v);
if ((reg - (first-1)) % 16 == 0) {
hal.console->println();
}
}
hal.console->println();
hal.console->println_P(PSTR("Accelerometer and Magnetometers registers:"));
for (uint8_t reg=first; reg<=last; reg++) {
uint8_t v = _register_read_xm(reg);
hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v);
if ((reg - (first-1)) % 16 == 0) {
hal.console->println();
}
}
hal.console->println();
}
#endif
#endif // CONFIG_HAL_BOARD