Ardupilot2/libraries/SITL/SIM_Sailboat.cpp
2024-07-20 19:10:09 +10:00

336 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Sailboat simulator class
see explanation of lift and drag explained here: https://en.wikipedia.org/wiki/Forces_on_sails
To-Do: add heel handling by calculating lateral force from wind vs gravity force from heel to arrive at roll rate or acceleration
*/
#include "SIM_Sailboat.h"
#include <AP_Math/AP_Math.h>
#include <string.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
namespace SITL {
#define STEERING_SERVO_CH 0 // steering controlled by servo output 1
#define MAINSAIL_SERVO_CH 3 // main sail controlled by servo output 4
#define THROTTLE_SERVO_CH 2 // throttle controlled by servo output 3
#define MOTORLEFT_SERVO_CH 0 // skid-steering left motor controlled by servo output 1
#define MOTORRIGHT_SERVO_CH 2 // skid-steering right motor controlled by servo output 3
#define DIRECT_WING_SERVO_CH 4
// very roughly sort of a stability factors for waves
#define WAVE_ANGLE_GAIN 1
#define WAVE_HEAVE_GAIN 1
Sailboat::Sailboat(const char *frame_str) :
Aircraft(frame_str),
steering_angle_max(35),
turning_circle(1.8),
sail_area(1.0)
{
motor_connected = (strcmp(frame_str, "sailboat-motor") == 0);
skid_steering = strstr(frame_str, "skid") != nullptr;
lock_step_scheduled = true;
}
// calculate the lift and drag as values from 0 to 1
// given an apparent wind speed in m/s and angle-of-attack in degrees
void Sailboat::calc_lift_and_drag(float wind_speed, float angle_of_attack_deg, float& lift, float& drag) const
{
const uint16_t index_width_deg = 10;
const uint8_t index_max = ARRAY_SIZE(lift_curve) - 1;
// Convert to expected range
angle_of_attack_deg = wrap_180(angle_of_attack_deg);
// assume a symmetrical airfoil
const float aoa = fabs(angle_of_attack_deg);
// check extremes
if (aoa <= 0.0f) {
lift = lift_curve[0];
drag = drag_curve[0];
} else if (aoa >= index_max * index_width_deg) {
lift = lift_curve[index_max];
drag = drag_curve[index_max];
} else {
uint8_t index = constrain_int16(aoa / index_width_deg, 0, index_max);
float remainder = aoa - (index * index_width_deg);
lift = linear_interpolate(lift_curve[index], lift_curve[index+1], remainder, 0.0f, index_width_deg);
drag = linear_interpolate(drag_curve[index], drag_curve[index+1], remainder, 0.0f, index_width_deg);
}
// apply scaling by wind speed
lift *= wind_speed * sail_area;
drag *= wind_speed * sail_area;
if (is_negative(angle_of_attack_deg)) {
// invert lift for negative aoa
lift *= -1;
}
}
// return turning circle (diameter) in meters for steering angle proportion in the range -1 to +1
float Sailboat::get_turn_circle(float steering) const
{
if (is_zero(steering)) {
return 0;
}
return turning_circle * sinf(radians(steering_angle_max)) / sinf(radians(steering * steering_angle_max));
}
// return yaw rate in deg/sec given a steering input (in the range -1 to +1) and speed in m/s
float Sailboat::get_yaw_rate(float steering, float speed) const
{
float rate = 0.0f;
if (is_zero(steering) || (!skid_steering && is_zero(speed))) {
return rate;
}
if (is_zero(speed) && skid_steering) {
rate = steering * M_PI * 5;
} else {
float d = get_turn_circle(steering);
float c = M_PI * d;
float t = c / speed;
rate = 360.0f / t;
}
return rate;
}
// return lateral acceleration in m/s/s given a steering input (in the range -1 to +1) and speed in m/s
float Sailboat::get_lat_accel(float steering, float speed) const
{
float yaw_rate = get_yaw_rate(steering, speed);
float accel = radians(yaw_rate) * speed;
return accel;
}
// simulate basic waves / swell
void Sailboat::update_wave(float delta_time)
{
const float wave_heading = sitl->wave.direction;
const float wave_speed = sitl->wave.speed;
const float wave_lenght = sitl->wave.length;
const float wave_amp = sitl->wave.amp;
// apply rate propositional to error between boat angle and water angle
// this gives a 'stability' effect
float r, p, y;
dcm.to_euler(&r, &p, &y);
// if not armed don't do waves, to allow gyro init
if (sitl->wave.enable == 0 || !hal.util->get_soft_armed() || is_zero(wave_amp) ) {
wave_gyro = Vector3f(-r,-p,0.0f) * WAVE_ANGLE_GAIN;
wave_heave = -velocity_ef.z * WAVE_HEAVE_GAIN;
wave_phase = 0.0f;
return;
}
// calculate the sailboat speed in the direction of the wave
const float boat_speed = velocity_ef.x * sinf(radians(wave_heading)) + velocity_ef.y * cosf(radians(wave_heading));
// update the wave phase
const float aprarent_wave_distance = (wave_speed - boat_speed) * delta_time;
const float apparent_wave_phase_change = (aprarent_wave_distance / wave_lenght) * M_2PI;
wave_phase += apparent_wave_phase_change;
wave_phase = wrap_2PI(wave_phase);
// calculate the angles at this phase on the wave
// use basic sine wave, dy/dx of sine = cosine
// atan( cosine ) = wave angle
const float wave_slope = (wave_amp * 0.5f) * (M_2PI / wave_lenght) * cosf(wave_phase);
const float wave_angle = atanf(wave_slope);
// convert wave angle to vehicle frame
const float heading_dif = wave_heading - y;
float angle_error_x = (sinf(heading_dif) * wave_angle) - r;
float angle_error_y = (cosf(heading_dif) * wave_angle) - p;
// apply gain
wave_gyro.x = angle_error_x * WAVE_ANGLE_GAIN;
wave_gyro.y = angle_error_y * WAVE_ANGLE_GAIN;
wave_gyro.z = 0.0f;
// calculate wave height (NED)
if (sitl->wave.enable == 2) {
wave_heave = (wave_slope - velocity_ef.z) * WAVE_HEAVE_GAIN;
} else {
wave_heave = 0.0f;
}
}
/*
update the sailboat simulation by one time step
*/
void Sailboat::update(const struct sitl_input &input)
{
// update wind
update_wind(input);
// in sailboats the steering controls the rudder, the throttle controls the main sail position
float steering = 0.0f;
if (skid_steering) {
float steering_left = 2.0f*((input.servos[MOTORLEFT_SERVO_CH]-1000)/1000.0f - 0.5f);
float steering_right = 2.0f*((input.servos[MOTORRIGHT_SERVO_CH]-1000)/1000.0f - 0.5f);
steering = steering_left - steering_right;
} else {
steering = 2*((input.servos[STEERING_SERVO_CH]-1000)/1000.0f - 0.5f);
}
// calculate apparent wind in earth-frame (this is the direction the wind is coming from)
// Note than the SITL wind direction is defined as the direction the wind is travelling to
// This is accounted for in these calculations
Vector3f wind_apparent_ef = velocity_ef - wind_ef;
const float wind_apparent_dir_ef = degrees(atan2f(wind_apparent_ef.y, wind_apparent_ef.x));
const float wind_apparent_speed = safe_sqrt(sq(wind_apparent_ef.x)+sq(wind_apparent_ef.y));
float roll, pitch, yaw;
dcm.to_euler(&roll, &pitch, &yaw);
const float wind_apparent_dir_bf = wrap_180(wind_apparent_dir_ef - degrees(yaw));
// set RPM and airspeed from wind speed, allows to test RPM and Airspeed wind vane back end in SITL
rpm[0] = wind_apparent_speed;
airspeed_pitot = wind_apparent_speed;
float aoa_deg = 0.0f;
if (sitl->sail_type.get() == 1) {
// directly actuated wing
float wing_angle_bf = constrain_float((input.servos[DIRECT_WING_SERVO_CH]-1500)/500.0f * 90.0f, -90.0f, 90.0f);
aoa_deg = wind_apparent_dir_bf - wing_angle_bf;
} else {
// mainsail with sheet
// calculate mainsail angle from servo output 4, 0 to 90 degrees
float mainsail_angle_bf = constrain_float((input.servos[MAINSAIL_SERVO_CH]-1000)/1000.0f * 90.0f, 0.0f, 90.0f);
// calculate angle-of-attack from wind to mainsail, cannot have negative angle of attack, sheet would go slack
aoa_deg = MAX(fabsf(wind_apparent_dir_bf) - mainsail_angle_bf, 0);
if (is_negative(wind_apparent_dir_bf)) {
// take into account the current tack
aoa_deg *= -1;
}
}
// calculate Lift force (perpendicular to wind direction) and Drag force (parallel to wind direction)
float lift_wf, drag_wf;
calc_lift_and_drag(wind_apparent_speed, aoa_deg, lift_wf, drag_wf);
// rotate lift and drag from wind frame into body frame
const float sin_rot_rad = sinf(radians(wind_apparent_dir_bf));
const float cos_rot_rad = cosf(radians(wind_apparent_dir_bf));
const float force_fwd = (lift_wf * sin_rot_rad) - (drag_wf * cos_rot_rad);
// how much time has passed?
float delta_time = frame_time_us * 1.0e-6f;
// speed in m/s in body frame
Vector3f velocity_body = dcm.transposed() * velocity_ef_water;
// speed along x axis, +ve is forward
float speed = velocity_body.x;
// yaw rate in degrees/s
float yaw_rate = get_yaw_rate(steering, speed);
gyro = Vector3f(0,0,radians(yaw_rate)) + wave_gyro;
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// hull drag
float hull_drag = sq(speed) * 0.5f;
if (!is_positive(speed)) {
hull_drag *= -1.0f;
}
// throttle force (for motor sailing)
// gives throttle force == hull drag at 10m/s
float throttle_force = 0.0f;
if (motor_connected) {
if (skid_steering) {
const uint16_t throttle_left = constrain_int16(input.servos[MOTORLEFT_SERVO_CH], 1000, 2000);
const uint16_t throttle_right = constrain_int16(input.servos[MOTORRIGHT_SERVO_CH], 1000, 2000);
throttle_force = (0.5f*(throttle_left + throttle_right)-1500) * 0.1f;
} else {
const uint16_t throttle_out = constrain_int16(input.servos[THROTTLE_SERVO_CH], 1000, 2000);
throttle_force = (throttle_out-1500) * 0.1f;
}
}
// accel in body frame due acceleration from sail and deceleration from hull friction
accel_body = Vector3f((throttle_force + force_fwd) - hull_drag, 0, 0);
accel_body /= mass;
// add in accel due to direction change
accel_body.y += radians(yaw_rate) * speed;
// now in earth frame
// remove roll and pitch effects from waves
float r, p, y;
dcm.to_euler(&r, &p, &y);
Matrix3f temp_dcm;
temp_dcm.from_euler(0.0f, 0.0f, y);
Vector3f accel_earth = temp_dcm * accel_body;
// we are on the ground, so our vertical accel is zero
accel_earth.z = 0 + wave_heave;
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// tide calcs
Vector3f tide_velocity_ef;
if (hal.util->get_soft_armed() && !is_zero(sitl->tide.speed) ) {
tide_velocity_ef.x = -cosf(radians(sitl->tide.direction)) * sitl->tide.speed;
tide_velocity_ef.y = -sinf(radians(sitl->tide.direction)) * sitl->tide.speed;
tide_velocity_ef.z = 0.0f;
}
// new velocity vector
velocity_ef_water += accel_earth * delta_time;
velocity_ef = velocity_ef_water + tide_velocity_ef;
// new position vector
position += (velocity_ef * delta_time).todouble();
// update lat/lon/altitude
update_position();
time_advance();
// update magnetic field
update_mag_field_bf();
// update wave calculations
update_wave(delta_time);
}
} // namespace SITL