Ardupilot2/APMrover2/AP_MotorsUGV.cpp
Randy Mackay 2c568f8046 Rover: minor parameter description change
non-functional change
2017-10-26 19:43:42 +09:00

496 lines
18 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#include "SRV_Channel/SRV_Channel.h"
#include "AP_MotorsUGV.h"
#include "Rover.h"
extern const AP_HAL::HAL& hal;
// parameters for the motor class
const AP_Param::GroupInfo AP_MotorsUGV::var_info[] = {
// @Param: PWM_TYPE
// @DisplayName: Motor Output PWM type
// @Description: This selects the output PWM type as regular PWM, OneShot, Brushed motor support using PWM (duty cycle) with separated direction signal, Brushed motor support with separate throttle and direction PWM (duty cyle)
// @Values: 0:Normal,1:OneShot,2:OneShot125,3:BrushedWithRelay,4:BrushedBiPolar
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("PWM_TYPE", 1, AP_MotorsUGV, _pwm_type, PWM_TYPE_NORMAL),
// @Param: PWM_FREQ
// @DisplayName: Motor Output PWM freq for brushed motors
// @Description: Motor Output PWM freq for brushed motors
// @Units: kHz
// @Range: 1 20
// @Increment: 1
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("PWM_FREQ", 2, AP_MotorsUGV, _pwm_freq, 16),
// @Param: SAFE_DISARM
// @DisplayName: Motor PWM output disabled when disarmed
// @Description: Disables motor PWM output when disarmed
// @Values: 0:PWM enabled while disarmed, 1:PWM disabled while disarmed
// @User: Advanced
AP_GROUPINFO("SAFE_DISARM", 3, AP_MotorsUGV, _disarm_disable_pwm, 0),
// @Param: THR_SLEWRATE
// @DisplayName: Throttle slew rate
// @Description: maximum percentage change in throttle per second. A setting of 10 means to not change the throttle by more than 10% of the full throttle range in one second. A value of zero means no limit. A value of 100 means the throttle can change over its full range in one second. Note that for some NiMH powered rovers setting a lower value like 40 or 50 may be worthwhile as the sudden current demand on the battery of a big rise in throttle may cause a brownout.
// @Units: %/s
// @Range: 0 100
// @Increment: 1
// @User: Standard
AP_GROUPINFO("SLEWRATE", 4, AP_MotorsUGV, _slew_rate, 100),
// @Param: THR_MIN
// @DisplayName: Throttle minimum
// @Description: Throttle minimum percentage the autopilot will apply. This is mostly useful for rovers with internal combustion motors, to prevent the motor from cutting out in auto mode.
// @Units: %
// @Range: 0 20
// @Increment: 1
// @User: Standard
AP_GROUPINFO("THR_MIN", 5, AP_MotorsUGV, _throttle_min, 0),
// @Param: THR_MAX
// @DisplayName: Throttle maximum
// @Description: Throttle maximum percentage the autopilot will apply. This can be used to prevent overheating an ESC or motor on an electric rover
// @Units: %
// @Range: 30 100
// @Increment: 1
// @User: Standard
AP_GROUPINFO("THR_MAX", 6, AP_MotorsUGV, _throttle_max, 100),
// @Param: SKID_FRIC
// @DisplayName: Motor skid steering friction compensation
// @Description: Motor output for skid steering vehicles will be increased by this percentage to overcome friction when stopped
// @Units: %
// @Range: 0 100
// @Increment: 1
// @User: Standard
AP_GROUPINFO("SKID_FRIC", 7, AP_MotorsUGV, _skid_friction, 0.0f),
AP_GROUPEND
};
AP_MotorsUGV::AP_MotorsUGV(AP_ServoRelayEvents &relayEvents) :
_relayEvents(relayEvents)
{
AP_Param::setup_object_defaults(this, var_info);
}
void AP_MotorsUGV::init()
{
// setup servo ouput
setup_servo_output();
// setup pwm type
setup_pwm_type();
// set safety output
setup_safety_output();
}
// setup output in case of main CPU failure
void AP_MotorsUGV::setup_safety_output()
{
if (_pwm_type == PWM_TYPE_BRUSHED_WITH_RELAY) {
// set trim to min to set duty cycle range (0 - 100%) to servo range
SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttle);
SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttleLeft);
SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttleRight);
}
if (_disarm_disable_pwm) {
// throttle channels output zero pwm (i.e. no signal)
SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
SRV_Channels::set_safety_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
SRV_Channels::set_safety_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
} else {
// throttle channels output trim values (because rovers will go backwards if set to MIN)
SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM);
SRV_Channels::set_safety_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM);
SRV_Channels::set_safety_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM);
}
// stop sending pwm if main CPU fails
SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
}
// setup servo output ranges
void AP_MotorsUGV::setup_servo_output()
{
// k_steering are limited to -45;45 degree
SRV_Channels::set_angle(SRV_Channel::k_steering, SERVO_MAX);
// k_throttle are in power percent so -100 ... 100
SRV_Channels::set_angle(SRV_Channel::k_throttle, 100);
// skid steering left/right throttle as -1000 to 1000 values
SRV_Channels::set_angle(SRV_Channel::k_throttleLeft, 1000);
SRV_Channels::set_angle(SRV_Channel::k_throttleRight, 1000);
}
// set steering as a value from -4500 to +4500
void AP_MotorsUGV::set_steering(float steering)
{
_steering = constrain_float(steering, -4500.0f, 4500.0f);
}
// set throttle as a value from -100 to 100
void AP_MotorsUGV::set_throttle(float throttle)
{
// sanity check throttle min and max
_throttle_min = constrain_int16(_throttle_min, 0, 20);
_throttle_max = constrain_int16(_throttle_max, 30, 100);
// check throttle is between -_throttle_max ~ +_throttle_max but outside -throttle_min ~ +throttle_min
_throttle = constrain_float(throttle, -_throttle_max, _throttle_max);
if ((_throttle_min > 0) && (fabsf(_throttle) < _throttle_min)) {
if (is_negative(_throttle)) {
_throttle = -_throttle_min;
} else {
_throttle = _throttle_min;
}
}
}
/*
work out if skid steering is available
*/
bool AP_MotorsUGV::have_skid_steering() const
{
if (SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft) &&
SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) {
return true;
}
return false;
}
void AP_MotorsUGV::output(bool armed, float dt)
{
// soft-armed overrides passed in armed status
if (!hal.util->get_soft_armed()) {
armed = false;
}
slew_limit_throttle(dt);
// clear and set limits based on input (limit flags may be set again by output_regular or output_skid_steering methods)
set_limits_from_input(armed, _steering, _throttle);
// output for regular steering/throttle style frames
output_regular(armed, _steering, _throttle);
// output for skid steering style frames
output_skid_steering(armed, _steering, _throttle);
// send values to the PWM timers for output
SRV_Channels::calc_pwm();
hal.rcout->cork();
SRV_Channels::output_ch_all();
hal.rcout->push();
_last_throttle = _throttle;
}
// output to regular steering and throttle channels
void AP_MotorsUGV::output_regular(bool armed, float steering, float throttle)
{
// always allow steering to move
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering);
// output to throttle channels
if (armed) {
// handle armed case
output_throttle(SRV_Channel::k_throttle, throttle);
} else {
// handle disarmed case
if (_disarm_disable_pwm) {
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
} else {
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM);
}
}
}
// output to skid steering channels
void AP_MotorsUGV::output_skid_steering(bool armed, float steering, float throttle)
{
if (!have_skid_steering()) {
return;
}
// handle simpler disarmed case
if (!armed) {
if (_disarm_disable_pwm) {
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM);
} else {
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM);
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM);
}
return;
}
// skid steering mixer
float steering_scaled = steering / 4500.0f; // steering scaled -1 to +1
float throttle_scaled = throttle / 100.0f; // throttle scaled -1 to +1
// apply constraints
steering_scaled = constrain_float(steering_scaled, -1.0f, 1.0f);
throttle_scaled = constrain_float(throttle_scaled, -1.0f, 1.0f);
// check for saturation and scale back throttle and steering proportionally
const float saturation_value = fabsf(steering_scaled) + fabsf(throttle_scaled);
if (saturation_value > 1.0f) {
steering_scaled = steering_scaled / saturation_value;
throttle_scaled = throttle_scaled / saturation_value;
// set limits
if (is_negative(steering)) {
limit.steer_left = true;
} else {
limit.steer_right = true;
}
if (is_negative(throttle)) {
limit.throttle_lower = true;
} else {
limit.throttle_upper = true;
}
}
// add in throttle
float motor_left = throttle_scaled;
float motor_right = throttle_scaled;
// deal with case of turning on the spot
if (is_zero(throttle_scaled)) {
// steering output split evenly between left and right motors and compensated for friction
const float friction_comp = MAX(0.0f, 1.0f + (_skid_friction * 0.01f));
motor_left += steering_scaled * 0.5f * friction_comp;
motor_right -= steering_scaled * 0.5f * friction_comp;
} else {
// add in steering
const float dir = is_positive(throttle_scaled) ? 1.0f : -1.0f;
if (is_negative(steering_scaled)) {
// moving left all steering to right wheel
motor_right -= dir * steering_scaled;
} else {
// turning right, all steering to left wheel
motor_left += dir * steering_scaled;
}
}
// send pwm value to each motor
output_throttle(SRV_Channel::k_throttleLeft, 100.0f * motor_left);
output_throttle(SRV_Channel::k_throttleRight, 100.0f * motor_right);
}
// output throttle value to main throttle channel, left throttle or right throttle. throttle should be scaled from -100 to 100
void AP_MotorsUGV::output_throttle(SRV_Channel::Aux_servo_function_t function, float throttle)
{
// sanity check servo function
if (function != SRV_Channel::k_throttle && function != SRV_Channel::k_throttleLeft && function != SRV_Channel::k_throttleRight) {
return;
}
// constrain output
throttle = constrain_float(throttle, -100.0f, 100.0f);
// set relay if necessary
if (_pwm_type == PWM_TYPE_BRUSHED_WITH_RELAY) {
// find the output channel, if not found return
const SRV_Channel *out_chan = SRV_Channels::get_channel_for(function);
if (out_chan == nullptr) {
return;
}
const int8_t reverse_multiplier = out_chan->get_reversed() ? -1 : 1;
bool relay_high = is_negative(reverse_multiplier * throttle);
switch (function) {
case SRV_Channel::k_throttle:
case SRV_Channel::k_throttleLeft:
_relayEvents.do_set_relay(0, relay_high);
break;
case SRV_Channel::k_throttleRight:
_relayEvents.do_set_relay(1, relay_high);
break;
default:
// do nothing
break;
}
// invert the output to always have positive value calculated by calc_pwm
throttle = reverse_multiplier * fabsf(throttle);
}
// output to servo channel
switch (function) {
case SRV_Channel::k_throttle:
SRV_Channels::set_output_scaled(function, throttle);
break;
case SRV_Channel::k_throttleLeft:
case SRV_Channel::k_throttleRight:
SRV_Channels::set_output_scaled(function, throttle * 10.0f);
break;
default:
// do nothing
break;
}
}
// slew limit throttle for one iteration
void AP_MotorsUGV::slew_limit_throttle(float dt)
{
if (_use_slew_rate && (_slew_rate > 0)) {
float temp = _slew_rate * dt * 0.01f * 100.0f; // TODO : get THROTTLE MIN and THROTTLE MAX
if (temp < 1.0f) {
temp = 1.0f;
}
_throttle = constrain_int16(_throttle, _last_throttle - temp, _last_throttle + temp);
}
}
// set limits based on steering and throttle input
void AP_MotorsUGV::set_limits_from_input(bool armed, float steering, float throttle)
{
// set limits based on inputs
limit.steer_left = !armed || (steering <= -4500.0f);
limit.steer_right = !armed || (steering >= 4500.0f);
limit.throttle_lower = !armed || (throttle <= -_throttle_max);
limit.throttle_upper = !armed || (throttle >= _throttle_max);
}
// setup pwm output type
void AP_MotorsUGV::setup_pwm_type()
{
switch (_pwm_type) {
case PWM_TYPE_ONESHOT:
case PWM_TYPE_ONESHOT125:
// tell HAL to do immediate output
hal.rcout->set_output_mode(AP_HAL::RCOutput::MODE_PWM_ONESHOT);
break;
case PWM_TYPE_BRUSHED_WITH_RELAY:
case PWM_TYPE_BRUSHED_BIPOLAR:
hal.rcout->set_output_mode(AP_HAL::RCOutput::MODE_PWM_BRUSHED);
/*
* Group 0: channels 0 1
* Group 1: channels 4 5 6 7
* Group 2: channels 2 3
*/
// TODO : See if we can seperate frequency between groups
hal.rcout->set_freq((1UL << 0), static_cast<uint16_t>(_pwm_freq * 1000)); // Steering group
hal.rcout->set_freq((1UL << 2), static_cast<uint16_t>(_pwm_freq * 1000)); // Throttle group
break;
default:
// do nothing
break;
}
}
// test steering or throttle output as a percentage of the total (range -100 to +100)
// used in response to DO_MOTOR_TEST mavlink command
bool AP_MotorsUGV::output_test_pct(motor_test_order motor_seq, float pct)
{
// check if the motor_seq is valid
if (motor_seq > MOTOR_TEST_THROTTLE_RIGHT) {
return false;
}
pct = constrain_float(pct, -100.0f, 100.0f);
switch (motor_seq) {
case MOTOR_TEST_THROTTLE: {
if (!SRV_Channels::function_assigned(SRV_Channel::k_throttle)) {
return false;
}
output_throttle(SRV_Channel::k_throttle, pct);
break;
}
case MOTOR_TEST_STEERING: {
if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) {
return false;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, pct * 45.0f);
break;
}
case MOTOR_TEST_THROTTLE_LEFT: {
if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft)) {
return false;
}
output_throttle(SRV_Channel::k_throttleLeft, pct);
break;
}
case MOTOR_TEST_THROTTLE_RIGHT: {
if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) {
return false;
}
output_throttle(SRV_Channel::k_throttleRight, pct);
break;
}
default:
return false;
}
SRV_Channels::calc_pwm();
hal.rcout->cork();
SRV_Channels::output_ch_all();
hal.rcout->push();
return true;
}
// test steering or throttle output using a pwm value
bool AP_MotorsUGV::output_test_pwm(motor_test_order motor_seq, float pwm)
{
// check if the motor_seq is valid
if (motor_seq > MOTOR_TEST_THROTTLE_RIGHT) {
return false;
}
switch (motor_seq) {
case MOTOR_TEST_THROTTLE: {
if (!SRV_Channels::function_assigned(SRV_Channel::k_throttle)) {
return false;
}
SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, pwm);
break;
}
case MOTOR_TEST_STEERING: {
if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) {
return false;
}
SRV_Channels::set_output_pwm(SRV_Channel::k_steering, pwm);
break;
}
case MOTOR_TEST_THROTTLE_LEFT: {
if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft)) {
return false;
}
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, pwm);
break;
}
case MOTOR_TEST_THROTTLE_RIGHT: {
if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) {
return false;
}
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, pwm);
break;
}
default:
return false;
}
SRV_Channels::calc_pwm();
hal.rcout->cork();
SRV_Channels::output_ch_all();
hal.rcout->push();
return true;
}