Ardupilot2/libraries/GCS_MAVLink/GCS.h
Peter Barker 8fc55b9678 GCS_MAVLink: remove comm_get_available
available returns an unsigned integer, so this was just weird
2019-09-10 15:45:27 +10:00

848 lines
34 KiB
C++

/// @file GCS.h
/// @brief Interface definition for the various Ground Control System
// protocols.
#pragma once
#include <AP_HAL/AP_HAL.h>
#include <AP_Common/AP_Common.h>
#include "GCS_MAVLink.h"
#include <AP_Mission/AP_Mission.h>
#include <stdint.h>
#include "MAVLink_routing.h"
#include <AP_Frsky_Telem/AP_Frsky_Telem.h>
#include <AP_AdvancedFailsafe/AP_AdvancedFailsafe.h>
#include <AP_RTC/JitterCorrection.h>
#include <AP_Common/Bitmask.h>
#include <AP_Devo_Telem/AP_Devo_Telem.h>
#include <RC_Channel/RC_Channel.h>
#include "MissionItemProtocol_Waypoints.h"
#include "MissionItemProtocol_Rally.h"
#include "ap_message.h"
#define GCS_DEBUG_SEND_MESSAGE_TIMINGS 0
// check if a message will fit in the payload space available
#define PAYLOAD_SIZE(chan, id) (GCS_MAVLINK::packet_overhead_chan(chan)+MAVLINK_MSG_ID_ ## id ## _LEN)
#define HAVE_PAYLOAD_SPACE(chan, id) (comm_get_txspace(chan) >= PAYLOAD_SIZE(chan, id))
#define CHECK_PAYLOAD_SIZE(id) if (comm_get_txspace(chan) < packet_overhead()+MAVLINK_MSG_ID_ ## id ## _LEN) return false
#define CHECK_PAYLOAD_SIZE2(id) if (!HAVE_PAYLOAD_SPACE(chan, id)) return false
// convenience macros for defining which ap_message ids are in which streams:
#define MAV_STREAM_ENTRY(stream_name) \
{ \
GCS_MAVLINK::stream_name, \
stream_name ## _msgs, \
ARRAY_SIZE(stream_name ## _msgs) \
}
#define MAV_STREAM_TERMINATOR { (streams)0, nullptr, 0 }
#define GCS_MAVLINK_NUM_STREAM_RATES 10
class GCS_MAVLINK_Parameters
{
public:
GCS_MAVLINK_Parameters();
static const struct AP_Param::GroupInfo var_info[];
// saveable rate of each stream
AP_Int16 streamRates[GCS_MAVLINK_NUM_STREAM_RATES];
};
///
/// @class GCS_MAVLINK
/// @brief MAVLink transport control class
///
class GCS_MAVLINK
{
public:
friend class GCS;
GCS_MAVLINK(GCS_MAVLINK_Parameters &parameters, AP_HAL::UARTDriver &uart);
virtual ~GCS_MAVLINK() {}
void update_receive(uint32_t max_time_us=1000);
void update_send();
bool init(uint8_t instance);
void send_message(enum ap_message id);
void send_text(MAV_SEVERITY severity, const char *fmt, ...) const FMT_PRINTF(3, 4);
void queued_param_send();
void queued_mission_request_send();
bool sending_mavlink1() const;
// returns true if we are requesting any items from the GCS:
bool requesting_mission_items() const;
void send_mission_ack(const mavlink_message_t &msg,
MAV_MISSION_TYPE mission_type,
MAV_MISSION_RESULT result) const {
mavlink_msg_mission_ack_send(chan,
msg.sysid,
msg.compid,
result,
mission_type);
}
static const MAV_MISSION_TYPE supported_mission_types[2];
// packetReceived is called on any successful decode of a mavlink message
virtual void packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg);
// send a mavlink_message_t out this GCS_MAVLINK connection.
// Caller is responsible for ensuring space.
void send_message(uint32_t msgid, const char *pkt) const {
const mavlink_msg_entry_t *entry = mavlink_get_msg_entry(msgid);
if (entry == nullptr) {
return;
}
send_message(pkt, entry);
}
void send_message(const char *pkt, const mavlink_msg_entry_t *entry) const {
_mav_finalize_message_chan_send(chan,
entry->msgid,
pkt,
entry->min_msg_len,
entry->max_msg_len,
entry->crc_extra);
}
// accessor for uart
AP_HAL::UARTDriver *get_uart() { return _port; }
virtual uint8_t sysid_my_gcs() const = 0;
virtual bool sysid_enforce() const { return false; }
void send_parameter_value(const char *param_name,
ap_var_type param_type,
float param_value);
// NOTE! The streams enum below and the
// set of AP_Int16 stream rates _must_ be
// kept in the same order
enum streams : uint8_t {
STREAM_RAW_SENSORS,
STREAM_EXTENDED_STATUS,
STREAM_RC_CHANNELS,
STREAM_RAW_CONTROLLER,
STREAM_POSITION,
STREAM_EXTRA1,
STREAM_EXTRA2,
STREAM_EXTRA3,
STREAM_PARAMS,
STREAM_ADSB,
NUM_STREAMS
};
// streams must be moved out into the top level for
// GCS_MAVLINK_Parameters to be able to use it. This is an
// extensive change, so we 'll just keep them in sync with a
// static assert for now:
static_assert(NUM_STREAMS == GCS_MAVLINK_NUM_STREAM_RATES, "num streams must equal num stream rates");
bool is_high_bandwidth() { return chan == MAVLINK_COMM_0; }
// return true if this channel has hardware flow control
bool have_flow_control();
bool is_active() const {
return GCS_MAVLINK::active_channel_mask() & (1 << (chan-MAVLINK_COMM_0));
}
bool is_streaming() const {
return sending_bucket_id != no_bucket_to_send;
}
mavlink_channel_t get_chan() const { return chan; }
uint32_t get_last_heartbeat_time() const { return last_heartbeat_time; };
uint32_t last_heartbeat_time; // milliseconds
// last time we got a non-zero RSSI from RADIO_STATUS
static uint32_t last_radio_status_remrssi_ms;
// mission item index to be sent on queued msg, delayed or not
uint16_t mission_item_reached_index = AP_MISSION_CMD_INDEX_NONE;
// common send functions
void send_heartbeat(void) const;
void send_meminfo(void);
void send_fence_status() const;
void send_power_status(void);
void send_battery_status(const uint8_t instance) const;
bool send_battery_status() const;
void send_distance_sensor() const;
// send_rangefinder sends only if a downward-facing instance is
// found. Rover overrides this!
virtual void send_rangefinder() const;
void send_proximity() const;
virtual void send_nav_controller_output() const = 0;
virtual void send_pid_tuning() = 0;
void send_ahrs2();
void send_ahrs3();
void send_system_time();
void send_rc_channels() const;
void send_rc_channels_raw() const;
void send_raw_imu();
void send_scaled_pressure_instance(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_boot_ms, float press_abs, float press_diff, int16_t temperature));
void send_scaled_pressure();
void send_scaled_pressure2();
virtual void send_scaled_pressure3(); // allow sub to override this
void send_sensor_offsets();
virtual void send_simstate() const;
void send_ahrs();
void send_battery2();
void send_opticalflow();
virtual void send_attitude() const;
void send_autopilot_version() const;
void send_extended_sys_state() const;
void send_local_position() const;
void send_vfr_hud();
void send_vibration() const;
void send_mount_status() const;
void send_named_float(const char *name, float value) const;
void send_gimbal_report() const;
void send_home_position() const;
void send_gps_global_origin() const;
virtual void send_position_target_global_int() { };
virtual void send_position_target_local_ned() { };
void send_servo_output_raw();
void send_accelcal_vehicle_position(uint32_t position);
void send_scaled_imu(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_ms, int16_t xacc, int16_t yacc, int16_t zacc, int16_t xgyro, int16_t ygyro, int16_t zgyro, int16_t xmag, int16_t ymag, int16_t zmag));
void send_sys_status();
void send_set_position_target_global_int(uint8_t target_system, uint8_t target_component, const Location& loc);
void send_rpm() const;
bool locked() const;
// return a bitmap of active channels. Used by libraries to loop
// over active channels to send to all active channels
static uint8_t active_channel_mask(void) { return mavlink_active; }
// return a bitmap of streaming channels
static uint8_t streaming_channel_mask(void) { return chan_is_streaming; }
// set a channel as private. Private channels get sent heartbeats, but
// don't get broadcast packets or forwarded packets
static void set_channel_private(mavlink_channel_t chan);
// return true if channel is private
static bool is_private(mavlink_channel_t _chan) {
return (mavlink_private & (1U<<(unsigned)_chan)) != 0;
}
// return true if channel is private
bool is_private(void) const { return is_private(chan); }
/*
send a MAVLink message to all components with this vehicle's system id
This is a no-op if no routes to components have been learned
*/
static void send_to_components(const mavlink_message_t &msg) { routing.send_to_components(msg); }
/*
allow forwarding of packets / heartbeats to be blocked as required by some components to reduce traffic
*/
static void disable_channel_routing(mavlink_channel_t chan) { routing.no_route_mask |= (1U<<(chan-MAVLINK_COMM_0)); }
/*
search for a component in the routing table with given mav_type and retrieve it's sysid, compid and channel
returns if a matching component is found
*/
static bool find_by_mavtype(uint8_t mav_type, uint8_t &sysid, uint8_t &compid, mavlink_channel_t &channel) { return routing.find_by_mavtype(mav_type, sysid, compid, channel); }
// update signing timestamp on GPS lock
static void update_signing_timestamp(uint64_t timestamp_usec);
// return current packet overhead for a channel
static uint8_t packet_overhead_chan(mavlink_channel_t chan);
// alternative protocol function handler
FUNCTOR_TYPEDEF(protocol_handler_fn_t, bool, uint8_t, AP_HAL::UARTDriver *);
struct stream_entries {
const streams stream_id;
const ap_message *ap_message_ids;
const uint8_t num_ap_message_ids;
};
// vehicle subclass cpp files should define this:
static const struct stream_entries all_stream_entries[];
virtual uint64_t capabilities() const;
uint8_t get_stream_slowdown_ms() const { return stream_slowdown_ms; }
protected:
virtual bool in_hil_mode() const { return false; }
bool mavlink_coordinate_frame_to_location_alt_frame(MAV_FRAME coordinate_frame,
Location::AltFrame &frame);
// overridable method to check for packet acceptance. Allows for
// enforcement of GCS sysid
bool accept_packet(const mavlink_status_t &status, const mavlink_message_t &msg);
virtual AP_AdvancedFailsafe *get_advanced_failsafe() const { return nullptr; };
virtual bool set_mode(uint8_t mode) = 0;
void set_ekf_origin(const Location& loc);
virtual MAV_MODE base_mode() const = 0;
virtual MAV_STATE system_status() const = 0;
virtual MAV_VTOL_STATE vtol_state() const { return MAV_VTOL_STATE_UNDEFINED; }
virtual MAV_LANDED_STATE landed_state() const { return MAV_LANDED_STATE_UNDEFINED; }
// return a MAVLink parameter type given a AP_Param type
static MAV_PARAM_TYPE mav_param_type(enum ap_var_type t);
AP_Param * _queued_parameter; ///< next parameter to
// be sent in queue
mavlink_channel_t chan;
uint8_t packet_overhead(void) const { return packet_overhead_chan(chan); }
// saveable rate of each stream
AP_Int16 *streamRates;
virtual bool persist_streamrates() const { return false; }
void handle_request_data_stream(const mavlink_message_t &msg);
virtual void handle_command_ack(const mavlink_message_t &msg);
void handle_set_mode(const mavlink_message_t &msg);
void handle_command_int(const mavlink_message_t &msg);
MAV_RESULT handle_command_int_do_set_home(const mavlink_command_int_t &packet);
virtual MAV_RESULT handle_command_int_packet(const mavlink_command_int_t &packet);
virtual bool set_home_to_current_location(bool lock) = 0;
virtual bool set_home(const Location& loc, bool lock) = 0;
MAV_RESULT handle_command_do_set_home(const mavlink_command_long_t &packet);
void handle_mission_request_list(const mavlink_message_t &msg);
void handle_mission_request(const mavlink_message_t &msg);
void handle_mission_request_int(const mavlink_message_t &msg);
void handle_mission_clear_all(const mavlink_message_t &msg);
virtual void handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg);
void handle_mission_count(const mavlink_message_t &msg);
void handle_mission_write_partial_list(const mavlink_message_t &msg);
void handle_mission_item(const mavlink_message_t &msg);
void handle_common_param_message(const mavlink_message_t &msg);
void handle_param_set(const mavlink_message_t &msg);
void handle_param_request_list(const mavlink_message_t &msg);
void handle_param_request_read(const mavlink_message_t &msg);
virtual bool params_ready() const { return true; }
virtual void handle_rc_channels_override(const mavlink_message_t &msg);
void handle_system_time_message(const mavlink_message_t &msg);
void handle_common_rally_message(const mavlink_message_t &msg);
void handle_rally_fetch_point(const mavlink_message_t &msg);
void handle_rally_point(const mavlink_message_t &msg);
virtual void handle_mount_message(const mavlink_message_t &msg);
void handle_fence_message(const mavlink_message_t &msg);
void handle_param_value(const mavlink_message_t &msg);
void handle_radio_status(const mavlink_message_t &msg, bool log_radio);
void handle_serial_control(const mavlink_message_t &msg);
void handle_vision_position_delta(const mavlink_message_t &msg);
void handle_common_message(const mavlink_message_t &msg);
void handle_set_gps_global_origin(const mavlink_message_t &msg);
void handle_setup_signing(const mavlink_message_t &msg);
virtual bool should_zero_rc_outputs_on_reboot() const { return false; }
MAV_RESULT handle_preflight_reboot(const mavlink_command_long_t &packet);
// reset a message interval via mavlink:
MAV_RESULT handle_command_set_message_interval(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_get_message_interval(const mavlink_command_long_t &packet);
bool get_ap_message_interval(ap_message id, uint16_t &interval_ms) const;
MAV_RESULT handle_command_request_message(const mavlink_command_long_t &packet);
MAV_RESULT handle_rc_bind(const mavlink_command_long_t &packet);
virtual MAV_RESULT handle_flight_termination(const mavlink_command_long_t &packet);
void handle_send_autopilot_version(const mavlink_message_t &msg);
MAV_RESULT handle_command_request_autopilot_capabilities(const mavlink_command_long_t &packet);
virtual void send_banner();
void handle_device_op_read(const mavlink_message_t &msg);
void handle_device_op_write(const mavlink_message_t &msg);
void send_timesync();
// returns the time a timesync message was most likely received:
uint64_t timesync_receive_timestamp_ns() const;
// returns a timestamp suitable for packing into the ts1 field of TIMESYNC:
uint64_t timesync_timestamp_ns() const;
void handle_timesync(const mavlink_message_t &msg);
struct {
int64_t sent_ts1;
uint32_t last_sent_ms;
const uint16_t interval_ms = 10000;
} _timesync_request;
void handle_statustext(const mavlink_message_t &msg);
bool telemetry_delayed() const;
virtual uint32_t telem_delay() const = 0;
MAV_RESULT handle_command_preflight_set_sensor_offsets(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_flash_bootloader(const mavlink_command_long_t &packet);
// generally this should not be overridden; Plane overrides it to ensure
// failsafe isn't triggered during calibration
virtual MAV_RESULT handle_command_preflight_calibration(const mavlink_command_long_t &packet);
virtual MAV_RESULT _handle_command_preflight_calibration(const mavlink_command_long_t &packet);
virtual MAV_RESULT _handle_command_preflight_calibration_baro();
MAV_RESULT handle_command_preflight_can(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_battery_reset(const mavlink_command_long_t &packet);
void handle_command_long(const mavlink_message_t &msg);
MAV_RESULT handle_command_accelcal_vehicle_pos(const mavlink_command_long_t &packet);
virtual MAV_RESULT handle_command_mount(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_mag_cal(const mavlink_command_long_t &packet);
virtual MAV_RESULT handle_command_long_packet(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_camera(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_do_send_banner(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_do_set_roi(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_do_set_roi(const mavlink_command_long_t &packet);
virtual MAV_RESULT handle_command_do_set_roi(const Location &roi_loc);
MAV_RESULT handle_command_do_gripper(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_do_set_mode(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_get_home_position(const mavlink_command_long_t &packet);
MAV_RESULT handle_command_do_fence_enable(const mavlink_command_long_t &packet);
void handle_optical_flow(const mavlink_message_t &msg);
// vehicle-overridable message send function
virtual bool try_send_message(enum ap_message id);
virtual void send_global_position_int();
// message sending functions:
bool try_send_mission_message(enum ap_message id);
void send_hwstatus();
void handle_data_packet(const mavlink_message_t &msg);
// these two methods are called after current_loc is updated:
virtual int32_t global_position_int_alt() const;
virtual int32_t global_position_int_relative_alt() const;
virtual float vfr_hud_climbrate() const;
virtual float vfr_hud_airspeed() const;
virtual int16_t vfr_hud_throttle() const { return 0; }
virtual float vfr_hud_alt() const;
static constexpr const float magic_force_arm_value = 2989.0f;
static constexpr const float magic_force_disarm_value = 21196.0f;
virtual bool allow_disarm() const { return true; }
void manual_override(RC_Channel *c, int16_t value_in, uint16_t offset, float scaler, const uint32_t tnow, bool reversed = false);
private:
void log_mavlink_stats();
MAV_RESULT _set_mode_common(const MAV_MODE base_mode, const uint32_t custom_mode);
virtual void handleMessage(const mavlink_message_t &msg) = 0;
MAV_RESULT handle_servorelay_message(const mavlink_command_long_t &packet);
static bool command_long_stores_location(const MAV_CMD command);
static void convert_COMMAND_LONG_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out);
bool calibrate_gyros();
/// The stream we are communicating over
AP_HAL::UARTDriver *_port;
/// Perform queued sending operations
///
enum ap_var_type _queued_parameter_type; ///< type of the next
// parameter
AP_Param::ParamToken _queued_parameter_token; ///AP_Param token for
// next() call
uint16_t _queued_parameter_index; ///< next queued
// parameter's index
uint16_t _queued_parameter_count; ///< saved count of
// parameters for
// queued send
uint32_t _queued_parameter_send_time_ms;
/// Count the number of reportable parameters.
///
/// Not all parameters can be reported via MAVlink. We count the number
// that are
/// so that we can report to a GCS the number of parameters it should
// expect when it
/// requests the full set.
///
/// @return The number of reportable parameters.
///
uint16_t packet_drops;
// number of extra ms to add to slow things down for the radio
uint16_t stream_slowdown_ms;
// perf counters
AP_HAL::Util::perf_counter_t _perf_packet;
AP_HAL::Util::perf_counter_t _perf_update;
char _perf_packet_name[16];
char _perf_update_name[16];
// outbound ("deferred message") queue.
// "special" messages such as heartbeat, next_param etc are stored
// separately to stream-rated messages like AHRS2 etc. If these
// were to be stored in buckets then they would be slowed down
// based on stream_slowdown, which we have not traditionally done.
struct deferred_message_t {
const ap_message id;
uint16_t interval_ms;
uint16_t last_sent_ms; // from AP_HAL::millis16()
} deferred_message[2] = {
{ MSG_HEARTBEAT, },
{ MSG_NEXT_PARAM, },
};
// returns index of id in deferred_message[] or -1 if not present
int8_t get_deferred_message_index(const ap_message id) const;
// returns index of a message in deferred_message[] which should
// be sent (or -1 if none to send at the moment)
int8_t deferred_message_to_send_index();
// cache of which deferred message should be sent next:
int8_t next_deferred_message_to_send_cache = -1;
struct deferred_message_bucket_t {
Bitmask<MSG_LAST> ap_message_ids;
uint16_t interval_ms;
uint16_t last_sent_ms; // from AP_HAL::millis16()
};
deferred_message_bucket_t deferred_message_bucket[10];
static const uint8_t no_bucket_to_send = -1;
static const ap_message no_message_to_send = (ap_message)-1;
uint8_t sending_bucket_id = no_bucket_to_send;
Bitmask<MSG_LAST> bucket_message_ids_to_send;
ap_message next_deferred_bucket_message_to_send();
void find_next_bucket_to_send();
void remove_message_from_bucket(int8_t bucket, ap_message id);
// bitmask of IDs the code has spontaneously decided it wants to
// send out. Examples include HEARTBEAT (gcs_send_heartbeat)
Bitmask<MSG_LAST> pushed_ap_message_ids;
// returns true if it is OK to send a message while we are in
// delay callback. In particular, when we are doing sensor init
// we still send heartbeats.
bool should_send_message_in_delay_callback(const ap_message id) const;
// if true is returned, interval will contain the default interval for id
bool get_default_interval_for_ap_message(const ap_message id, uint16_t &interval) const;
// if true is returned, interval will contain the default interval for id
bool get_default_interval_for_mavlink_message_id(const uint32_t mavlink_message_id, uint16_t &interval) const;
// returns an interval in milliseconds for any ap_message in stream id
uint16_t get_interval_for_stream(GCS_MAVLINK::streams id) const;
// set an inverval for a specific mavlink message. Returns false
// on failure (typically because there is no mapping from that
// mavlink ID to an ap_message)
bool set_mavlink_message_id_interval(const uint32_t mavlink_id,
const uint16_t interval_ms);
// map a mavlink ID to an ap_message which, if passed to
// try_send_message, will cause a mavlink message with that id to
// be emitted. Returns MSG_LAST if no such mapping exists.
ap_message mavlink_id_to_ap_message_id(const uint32_t mavlink_id) const;
// set the interval at which an ap_message should be emitted (in ms)
bool set_ap_message_interval(enum ap_message id, uint16_t interval_ms);
// call set_ap_message_interval for each entry in a stream,
// the interval being based on the stream's rate
void initialise_message_intervals_for_stream(GCS_MAVLINK::streams id);
// call initialise_message_intervals_for_stream on every stream:
void initialise_message_intervals_from_streamrates();
// boolean that indicated that message intervals have been set
// from streamrates:
bool deferred_messages_initialised;
// return interval deferred message bucket should be sent after.
// When sending parameters and waypoints this may be longer than
// the interval specified in "deferred"
uint16_t get_reschedule_interval_ms(const deferred_message_bucket_t &deferred) const;
bool do_try_send_message(const ap_message id);
// time when we missed sending a parameter for GCS
static uint32_t reserve_param_space_start_ms;
// bitmask of what mavlink channels are active
static uint8_t mavlink_active;
// bitmask of what mavlink channels are private
static uint8_t mavlink_private;
// bitmask of what mavlink channels are streaming
static uint8_t chan_is_streaming;
// mavlink routing object
static MAVLink_routing routing;
struct pending_param_request {
mavlink_channel_t chan;
int16_t param_index;
char param_name[AP_MAX_NAME_SIZE+1];
};
struct pending_param_reply {
mavlink_channel_t chan;
float value;
enum ap_var_type p_type;
int16_t param_index;
uint16_t count;
char param_name[AP_MAX_NAME_SIZE+1];
};
// queue of pending parameter requests and replies
static ObjectBuffer<pending_param_request> param_requests;
static ObjectBuffer<pending_param_reply> param_replies;
// have we registered the IO timer callback?
static bool param_timer_registered;
// IO timer callback for parameters
void param_io_timer(void);
uint8_t send_parameter_async_replies();
void send_distance_sensor(const class AP_RangeFinder_Backend *sensor, const uint8_t instance) const;
virtual bool handle_guided_request(AP_Mission::Mission_Command &cmd) = 0;
virtual void handle_change_alt_request(AP_Mission::Mission_Command &cmd) = 0;
void handle_common_mission_message(const mavlink_message_t &msg);
void handle_vicon_position_estimate(const mavlink_message_t &msg);
void handle_vision_position_estimate(const mavlink_message_t &msg);
void handle_global_vision_position_estimate(const mavlink_message_t &msg);
void handle_att_pos_mocap(const mavlink_message_t &msg);
void handle_common_vision_position_estimate_data(const uint64_t usec,
const float x,
const float y,
const float z,
const float roll,
const float pitch,
const float yaw,
const uint16_t payload_size);
void log_vision_position_estimate_data(const uint64_t usec,
const uint32_t corrected_msec,
const float x,
const float y,
const float z,
const float roll,
const float pitch,
const float yaw);
void lock_channel(const mavlink_channel_t chan, bool lock);
/*
correct an offboard timestamp in microseconds to a local time
since boot in milliseconds
*/
uint32_t correct_offboard_timestamp_usec_to_ms(uint64_t offboard_usec, uint16_t payload_size);
mavlink_signing_t signing;
static mavlink_signing_streams_t signing_streams;
static uint32_t last_signing_save_ms;
static StorageAccess _signing_storage;
static bool signing_key_save(const struct SigningKey &key);
static bool signing_key_load(struct SigningKey &key);
void load_signing_key(void);
bool signing_enabled(void) const;
static void save_signing_timestamp(bool force_save_now);
// alternative protocol handler support
struct {
GCS_MAVLINK::protocol_handler_fn_t handler;
uint32_t last_mavlink_ms;
uint32_t last_alternate_ms;
bool active;
} alternative;
JitterCorrection lag_correction;
// we cache the current location and send it even if the AHRS has
// no idea where we are:
struct Location global_position_current_loc;
void zero_rc_outputs();
uint8_t last_tx_seq;
uint16_t send_packet_count;
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
struct {
uint32_t longest_time_us;
ap_message longest_id;
uint32_t no_space_for_message;
uint16_t statustext_last_sent_ms;
uint32_t behind;
uint32_t out_of_time;
uint16_t fnbts_maxtime;
uint32_t max_retry_deferred_body_us;
uint8_t max_retry_deferred_body_type;
} try_send_message_stats;
uint16_t max_slowdown_ms;
#endif
uint32_t last_mavlink_stats_logged;
};
/// @class GCS
/// @brief global GCS object
class GCS
{
public:
GCS() {
if (_singleton == nullptr) {
_singleton = this;
} else {
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
// this is a serious problem, but we don't need to kill a
// real vehicle
AP_HAL::panic("GCS must be singleton");
#endif
}
};
static class GCS *get_singleton() {
return _singleton;
}
virtual uint32_t custom_mode() const = 0;
virtual MAV_TYPE frame_type() const = 0;
virtual const char* frame_string() const { return nullptr; }
void send_to_active_channels(uint32_t msgid, const char *pkt);
void send_text(MAV_SEVERITY severity, const char *fmt, ...) FMT_PRINTF(3, 4);
void send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list);
virtual void send_statustext(MAV_SEVERITY severity, uint8_t dest_bitmask, const char *text);
void service_statustext(void);
virtual GCS_MAVLINK *chan(const uint8_t ofs) = 0;
virtual const GCS_MAVLINK *chan(const uint8_t ofs) const = 0;
// return the number of valid GCS objects
uint8_t num_gcs() const { return _num_gcs; };
void send_message(enum ap_message id);
void send_mission_item_reached_message(uint16_t mission_index);
void send_named_float(const char *name, float value) const;
void send_parameter_value(const char *param_name,
ap_var_type param_type,
float param_value);
static MissionItemProtocol_Waypoints *_missionitemprotocol_waypoints;
static MissionItemProtocol_Rally *_missionitemprotocol_rally;
MissionItemProtocol *get_prot_for_mission_type(const MAV_MISSION_TYPE mission_type) const;
void try_send_queued_message_for_type(MAV_MISSION_TYPE type);
void update_send();
void update_receive();
// minimum amount of time (in microseconds) that must remain in
// the main scheduler loop before we are allowed to send any
// mavlink messages. We want to prioritise the main flight
// control loop over communications
virtual uint16_t min_loop_time_remaining_for_message_send_us() const {
return 200;
}
void setup_console();
void setup_uarts();
bool out_of_time() const;
// frsky backend
AP_Frsky_Telem *frsky;
#if !HAL_MINIMIZE_FEATURES
// Devo backend
AP_DEVO_Telem devo_telemetry;
#endif
// install an alternative protocol handler
bool install_alternative_protocol(mavlink_channel_t chan, GCS_MAVLINK::protocol_handler_fn_t handler);
// get the VFR_HUD throttle
int16_t get_hud_throttle(void) const { return num_gcs()>0?chan(0)->vfr_hud_throttle():0; }
// update uart pass-thru
void update_passthru();
void get_sensor_status_flags(uint32_t &present, uint32_t &enabled, uint32_t &health);
virtual bool vehicle_initialised() const { return true; }
virtual bool simple_input_active() const { return false; }
virtual bool supersimple_input_active() const { return false; }
protected:
virtual GCS_MAVLINK *new_gcs_mavlink_backend(GCS_MAVLINK_Parameters &params,
AP_HAL::UARTDriver &uart) = 0;
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
virtual void update_vehicle_sensor_status_flags() {}
GCS_MAVLINK_Parameters chan_parameters[MAVLINK_COMM_NUM_BUFFERS];
uint8_t _num_gcs;
GCS_MAVLINK *_chan[MAVLINK_COMM_NUM_BUFFERS];
private:
static GCS *_singleton;
void create_gcs_mavlink_backend(GCS_MAVLINK_Parameters &params,
AP_HAL::UARTDriver &uart);
struct statustext_t {
uint8_t bitmask;
mavlink_statustext_t msg;
};
void update_sensor_status_flags();
#if HAL_CPU_CLASS <= HAL_CPU_CLASS_150 || CONFIG_HAL_BOARD == HAL_BOARD_SITL
static const uint8_t _status_capacity = 5;
#else
static const uint8_t _status_capacity = 30;
#endif
// a lock for the statustext queue, to make it safe to use send_text()
// from multiple threads
HAL_Semaphore _statustext_sem;
// queue of outgoing statustext messages
ObjectArray<statustext_t> _statustext_queue{_status_capacity};
// true if we have already allocated protocol objects:
bool initialised_missionitemprotocol_objects;
// handle passthru between two UARTs
struct {
bool enabled;
bool timer_installed;
AP_HAL::UARTDriver *port1;
AP_HAL::UARTDriver *port2;
uint32_t start_ms;
uint32_t last_ms;
uint32_t last_port1_data_ms;
uint8_t timeout_s;
HAL_Semaphore sem;
} _passthru;
// timer called to implement pass-thru
void passthru_timer();
};
GCS &gcs();