15308af230
If there is another thread holding a lock that the main thread wants to take while pretending to be the IO thread, we will wait forever as we do not move SITL time forward while pretending to be the IO thread. This patch simply allows time to move forward if we've failed to take a semaphore immediately and need to wait.
356 lines
8.7 KiB
C++
356 lines
8.7 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_HAL_SITL.h"
|
|
#include "Scheduler.h"
|
|
#include "UARTDriver.h"
|
|
#include <sys/time.h>
|
|
#include <fenv.h>
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
|
#if defined (__clang__)
|
|
#include <stdlib.h>
|
|
#else
|
|
#include <malloc.h>
|
|
#endif
|
|
#include <AP_RCProtocol/AP_RCProtocol.h>
|
|
|
|
using namespace HALSITL;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
AP_HAL::Proc Scheduler::_failsafe = nullptr;
|
|
|
|
AP_HAL::MemberProc Scheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr};
|
|
uint8_t Scheduler::_num_timer_procs = 0;
|
|
bool Scheduler::_in_timer_proc = false;
|
|
|
|
AP_HAL::MemberProc Scheduler::_io_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr};
|
|
uint8_t Scheduler::_num_io_procs = 0;
|
|
bool Scheduler::_in_io_proc = false;
|
|
bool Scheduler::_should_reboot = false;
|
|
|
|
bool Scheduler::_in_semaphore_take_wait = false;
|
|
|
|
Scheduler::thread_attr *Scheduler::threads;
|
|
HAL_Semaphore Scheduler::_thread_sem;
|
|
|
|
Scheduler::Scheduler(SITL_State *sitlState) :
|
|
_sitlState(sitlState),
|
|
_stopped_clock_usec(0)
|
|
{
|
|
}
|
|
|
|
void Scheduler::init()
|
|
{
|
|
_main_ctx = pthread_self();
|
|
}
|
|
|
|
bool Scheduler::in_main_thread() const
|
|
{
|
|
if (!_in_timer_proc && !_in_io_proc && pthread_self() == _main_ctx) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* semaphore_wait_hack_required - possibly move time input step
|
|
* forward even if we are currently pretending to be the IO or timer
|
|
* threads.
|
|
*
|
|
* Without this, if another thread has taken a semaphore (e.g. the
|
|
* Object Avoidance thread), and an "IO process" tries to take that
|
|
* semaphore with a timeout specified, then we end up not advancing
|
|
* time (due to the logic in SITL_State::wait_clock) and thus taking
|
|
* the semaphore never times out - meaning we essentially deadlock.
|
|
*/
|
|
bool Scheduler::semaphore_wait_hack_required()
|
|
{
|
|
if (pthread_self() != _main_ctx) {
|
|
// only the main thread ever moves stuff forwards
|
|
return false;
|
|
}
|
|
|
|
return _in_semaphore_take_wait;
|
|
}
|
|
|
|
void Scheduler::delay_microseconds(uint16_t usec)
|
|
{
|
|
uint64_t start = AP_HAL::micros64();
|
|
do {
|
|
uint64_t dtime = AP_HAL::micros64() - start;
|
|
if (dtime >= usec) {
|
|
break;
|
|
}
|
|
_sitlState->wait_clock(start + usec);
|
|
} while (true);
|
|
}
|
|
|
|
void Scheduler::delay(uint16_t ms)
|
|
{
|
|
uint32_t start = AP_HAL::millis();
|
|
uint32_t now = start;
|
|
do {
|
|
delay_microseconds(1000);
|
|
if (_min_delay_cb_ms <= (ms - (now - start))) {
|
|
if (in_main_thread()) {
|
|
call_delay_cb();
|
|
}
|
|
}
|
|
now = AP_HAL::millis();
|
|
} while (now - start < ms);
|
|
}
|
|
|
|
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) {
|
|
_timer_proc[_num_timer_procs] = proc;
|
|
_num_timer_procs++;
|
|
}
|
|
}
|
|
|
|
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
|
|
{
|
|
for (uint8_t i = 0; i < _num_io_procs; i++) {
|
|
if (_io_proc[i] == proc) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_num_io_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) {
|
|
_io_proc[_num_io_procs] = proc;
|
|
_num_io_procs++;
|
|
}
|
|
}
|
|
|
|
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
|
|
{
|
|
_failsafe = failsafe;
|
|
}
|
|
|
|
void Scheduler::system_initialized() {
|
|
if (_initialized) {
|
|
AP_HAL::panic(
|
|
"PANIC: scheduler system initialized called more than once");
|
|
}
|
|
int exceptions = FE_OVERFLOW | FE_DIVBYZERO;
|
|
#ifndef __i386__
|
|
// i386 with gcc doesn't work with FE_INVALID
|
|
exceptions |= FE_INVALID;
|
|
#endif
|
|
if (_sitlState->_sitl == nullptr || _sitlState->_sitl->float_exception) {
|
|
feenableexcept(exceptions);
|
|
} else {
|
|
feclearexcept(exceptions);
|
|
}
|
|
_initialized = true;
|
|
}
|
|
|
|
void Scheduler::sitl_end_atomic() {
|
|
if (_nested_atomic_ctr == 0) {
|
|
hal.uartA->printf("NESTED ATOMIC ERROR\n");
|
|
} else {
|
|
_nested_atomic_ctr--;
|
|
}
|
|
}
|
|
|
|
void Scheduler::reboot(bool hold_in_bootloader)
|
|
{
|
|
if (AP_BoardConfig::in_sensor_config_error()) {
|
|
// the _should_reboot flag set below is not checked by the
|
|
// sensor-config-error loop, so force the reboot here:
|
|
HAL_SITL::actually_reboot();
|
|
abort();
|
|
}
|
|
_should_reboot = true;
|
|
}
|
|
|
|
void Scheduler::_run_timer_procs()
|
|
{
|
|
if (_in_timer_proc) {
|
|
// the timer calls took longer than the period of the
|
|
// timer. This is bad, and may indicate a serious
|
|
// driver failure. We can't just call the drivers
|
|
// again, as we could run out of stack. So we only
|
|
// call the _failsafe call. It's job is to detect if
|
|
// the drivers or the main loop are indeed dead and to
|
|
// activate whatever failsafe it thinks may help if
|
|
// need be. We assume the failsafe code can't
|
|
// block. If it does then we will recurse and die when
|
|
// we run out of stack
|
|
if (_failsafe != nullptr) {
|
|
_failsafe();
|
|
}
|
|
return;
|
|
}
|
|
_in_timer_proc = true;
|
|
|
|
// now call the timer based drivers
|
|
for (int i = 0; i < _num_timer_procs; i++) {
|
|
if (_timer_proc[i]) {
|
|
_timer_proc[i]();
|
|
}
|
|
}
|
|
|
|
// and the failsafe, if one is setup
|
|
if (_failsafe != nullptr) {
|
|
_failsafe();
|
|
}
|
|
|
|
_in_timer_proc = false;
|
|
}
|
|
|
|
void Scheduler::_run_io_procs()
|
|
{
|
|
if (_in_io_proc) {
|
|
return;
|
|
}
|
|
_in_io_proc = true;
|
|
|
|
// now call the IO based drivers
|
|
for (int i = 0; i < _num_io_procs; i++) {
|
|
if (_io_proc[i]) {
|
|
_io_proc[i]();
|
|
}
|
|
}
|
|
|
|
_in_io_proc = false;
|
|
|
|
hal.uartA->_timer_tick();
|
|
hal.uartB->_timer_tick();
|
|
hal.uartC->_timer_tick();
|
|
hal.uartD->_timer_tick();
|
|
hal.uartE->_timer_tick();
|
|
hal.uartF->_timer_tick();
|
|
hal.uartG->_timer_tick();
|
|
hal.uartH->_timer_tick();
|
|
hal.storage->_timer_tick();
|
|
|
|
check_thread_stacks();
|
|
|
|
AP::RC().update();
|
|
}
|
|
|
|
/*
|
|
set simulation timestamp
|
|
*/
|
|
void Scheduler::stop_clock(uint64_t time_usec)
|
|
{
|
|
_stopped_clock_usec = time_usec;
|
|
if (time_usec - _last_io_run > 10000) {
|
|
_last_io_run = time_usec;
|
|
_run_io_procs();
|
|
}
|
|
}
|
|
|
|
/*
|
|
trampoline for thread create
|
|
*/
|
|
void *Scheduler::thread_create_trampoline(void *ctx)
|
|
{
|
|
struct thread_attr *a = (struct thread_attr *)ctx;
|
|
a->f[0]();
|
|
|
|
WITH_SEMAPHORE(_thread_sem);
|
|
if (threads == a) {
|
|
threads = a->next;
|
|
} else {
|
|
for (struct thread_attr *p=threads; p->next; p=p->next) {
|
|
if (p->next == a) {
|
|
p->next = p->next->next;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
free(a->stack);
|
|
free(a->f);
|
|
delete a;
|
|
return nullptr;
|
|
}
|
|
|
|
#ifndef PTHREAD_STACK_MIN
|
|
#define PTHREAD_STACK_MIN 16384U
|
|
#endif
|
|
|
|
/*
|
|
create a new thread
|
|
*/
|
|
bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
|
|
{
|
|
WITH_SEMAPHORE(_thread_sem);
|
|
|
|
// even an empty thread takes 2500 bytes on Linux, so always add 2300, giving us 200 bytes
|
|
// safety margin
|
|
stack_size += 2300;
|
|
|
|
pthread_t thread {};
|
|
const uint32_t alloc_stack = MAX(size_t(PTHREAD_STACK_MIN),stack_size);
|
|
|
|
struct thread_attr *a = new struct thread_attr;
|
|
if (!a) {
|
|
return false;
|
|
}
|
|
// take a copy of the MemberProc, it is freed after thread exits
|
|
a->f = (AP_HAL::MemberProc *)malloc(sizeof(proc));
|
|
if (!a->f) {
|
|
goto failed;
|
|
}
|
|
if (posix_memalign(&a->stack, 4096, alloc_stack) != 0) {
|
|
goto failed;
|
|
}
|
|
if (!a->stack) {
|
|
goto failed;
|
|
}
|
|
memset(a->stack, stackfill, alloc_stack);
|
|
a->stack_min = (const uint8_t *)((((uint8_t *)a->stack) + alloc_stack) - stack_size);
|
|
|
|
a->stack_size = stack_size;
|
|
a->f[0] = proc;
|
|
a->name = name;
|
|
|
|
pthread_attr_init(&a->attr);
|
|
#if !defined(__CYGWIN__) && !defined(__CYGWIN64__)
|
|
if (pthread_attr_setstack(&a->attr, a->stack, alloc_stack) != 0) {
|
|
AP_HAL::panic("Failed to set stack of size %u for thread %s", alloc_stack, name);
|
|
}
|
|
#endif
|
|
if (pthread_create(&thread, &a->attr, thread_create_trampoline, a) != 0) {
|
|
goto failed;
|
|
}
|
|
a->next = threads;
|
|
threads = a;
|
|
return true;
|
|
|
|
failed:
|
|
if (a->stack) {
|
|
free(a->stack);
|
|
}
|
|
if (a->f) {
|
|
free(a->f);
|
|
}
|
|
delete a;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
check for stack overflow
|
|
*/
|
|
void Scheduler::check_thread_stacks(void)
|
|
{
|
|
WITH_SEMAPHORE(_thread_sem);
|
|
for (struct thread_attr *p=threads; p; p=p->next) {
|
|
const uint8_t ncheck = 8;
|
|
for (uint8_t i=0; i<ncheck; i++) {
|
|
if (p->stack_min[i] != stackfill) {
|
|
AP_HAL::panic("stack overflow in thread %s\n", p->name);
|
|
}
|
|
}
|
|
}
|
|
}
|