Ardupilot2/ArduCopterMega/motors_y6.pde
jasonshort b6db64f9be 2.0.36
Added Yaw control when descending in Alt hold
lowered kP & kD for Alt hold a tad
Adjusted RTL behavior to do speed control up to 4m to home, then go into Loiter
Fixed issue with AUTO not getting proper input.
Added Limit to high side of motors

git-svn-id: https://arducopter.googlecode.com/svn/trunk@2874 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-07-16 23:08:07 +00:00

152 lines
4.3 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == Y6_FRAME
void output_motors_armed()
{
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
//left
motor_out[CH_2] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW
//right
motor_out[CH_7] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out + pitch_out); // CCW TOP
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; // CW
//back
motor_out[CH_8] = ((g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_2.pwm_out); // CCW TOP
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW
// Yaw
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_7] += g.rc_4.pwm_out; // CCW
motor_out[CH_8] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_1] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
// limit output so motors don't stop
motor_out[CH_1] = max(motor_out[CH_1], out_min);
motor_out[CH_2] = max(motor_out[CH_2], out_min);
motor_out[CH_3] = max(motor_out[CH_3], out_min);
motor_out[CH_4] = max(motor_out[CH_4], out_min);
motor_out[CH_7] = max(motor_out[CH_7], out_min);
motor_out[CH_8] = max(motor_out[CH_8], out_min);
motor_out[CH_1] = min(motor_out[CH_1], out_max);
motor_out[CH_2] = min(motor_out[CH_2], out_max);
motor_out[CH_3] = min(motor_out[CH_3], out_max);
motor_out[CH_4] = min(motor_out[CH_4], out_max);
motor_out[CH_7] = min(motor_out[CH_7], out_max);
motor_out[CH_8] = min(motor_out[CH_8], out_max);
#if CUT_MOTORS == ENABLED
// Send commands to motors
if(g.rc_3.servo_out > 0){
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out6_Out7();
APM_RC.Force_Out2_Out3();
}else{
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
}
#else
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out6_Out7();
APM_RC.Force_Out2_Out3();
#endif
}
void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
}
void output_motor_test()
{
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
motor_out[CH_7] = g.rc_3.radio_min;
motor_out[CH_8] = g.rc_3.radio_min;
if(g.rc_1.control_in > 3000){ // right
motor_out[CH_1] += 50;
motor_out[CH_7] += 50;
}
if(g.rc_1.control_in < -3000){ // left
motor_out[CH_2] += 50;
motor_out[CH_3] += 50;
}
if(g.rc_2.control_in > 3000){ // back
motor_out[CH_8] += 50;
motor_out[CH_4] += 50;
}
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_4]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
}
#endif