Ardupilot2/libraries/AP_Math/vector2.h
Peter Barker f6cb0ffb6f AP_Math: add Vector2f perpendicular
Add closest_distance_between_radial_and_point function
2016-07-25 20:24:37 +09:00

200 lines
5.3 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Copyright 2010 Michael Smith, all rights reserved.
// Derived closely from:
/****************************************
* 2D Vector Classes
* By Bill Perone (billperone@yahoo.com)
* Original: 9-16-2002
* Revised: 19-11-2003
* 18-12-2003
* 06-06-2004
*
* © 2003, This code is provided "as is" and you can use it freely as long as
* credit is given to Bill Perone in the application it is used in
****************************************/
#pragma once
#include <cmath>
template <typename T>
struct Vector2
{
T x, y;
// trivial ctor
constexpr Vector2<T>()
: x(0)
, y(0) {}
// setting ctor
constexpr Vector2<T>(const T x0, const T y0)
: x(x0)
, y(y0) {}
// function call operator
void operator ()(const T x0, const T y0)
{
x= x0; y= y0;
}
// test for equality
bool operator ==(const Vector2<T> &v) const;
// test for inequality
bool operator !=(const Vector2<T> &v) const;
// negation
Vector2<T> operator -(void) const;
// addition
Vector2<T> operator +(const Vector2<T> &v) const;
// subtraction
Vector2<T> operator -(const Vector2<T> &v) const;
// uniform scaling
Vector2<T> operator *(const T num) const;
// uniform scaling
Vector2<T> operator /(const T num) const;
// addition
Vector2<T> &operator +=(const Vector2<T> &v);
// subtraction
Vector2<T> &operator -=(const Vector2<T> &v);
// uniform scaling
Vector2<T> &operator *=(const T num);
// uniform scaling
Vector2<T> &operator /=(const T num);
// dot product
T operator *(const Vector2<T> &v) const;
// cross product
T operator %(const Vector2<T> &v) const;
// computes the angle between this vector and another vector
float angle(const Vector2<T> &v2) const;
// computes the angle in radians between the origin and this vector
T angle(void) const;
// check if any elements are NAN
bool is_nan(void) const;
// check if any elements are infinity
bool is_inf(void) const;
// check if all elements are zero
bool is_zero(void) const { return (fabsf(x) < FLT_EPSILON) && (fabsf(y) < FLT_EPSILON); }
const T & operator[](uint8_t i) const {
const T *_v = &x;
#if MATH_CHECK_INDEXES
assert(i >= 0 && i < 2);
#endif
return _v[i];
}
// zero the vector
void zero()
{
x = y = 0;
}
// gets the length of this vector squared
T length_squared() const
{
return (T)(*this * *this);
}
// gets the length of this vector
float length(void) const;
// normalizes this vector
void normalize()
{
*this/=length();
}
// returns the normalized vector
Vector2<T> normalized() const
{
return *this/length();
}
// reflects this vector about n
void reflect(const Vector2<T> &n)
{
Vector2<T> orig(*this);
project(n);
*this= *this*2 - orig;
}
// projects this vector onto v
void project(const Vector2<T> &v)
{
*this= v * (*this * v)/(v*v);
}
// returns this vector projected onto v
Vector2<T> projected(const Vector2<T> &v)
{
return v * (*this * v)/(v*v);
}
// given a position p1 and a velocity v1 produce a vector
// perpendicular to v1 maximising distance from p1
static Vector2<T> perpendicular(const Vector2<T> &pos_delta, const Vector2<T> &v1)
{
Vector2<T> perpendicular1 = Vector2<T>(-v1[1], v1[0]);
Vector2<T> perpendicular2 = Vector2<T>(v1[1], -v1[0]);
T d1 = perpendicular1 * pos_delta;
T d2 = perpendicular2 * pos_delta;
if (d1 > d2) {
return perpendicular1;
}
return perpendicular2;
}
// thanks to grumdrig (http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment)
// w defines a line segment from the origin
// p is a point
// returns the closest distance between the radial and the point
static float closest_distance_between_radial_and_point(const Vector2<T> &w,
const Vector2<T> &p)
{
const float len = w.length_squared();
if (len < FLT_EPSILON) return p.length();
const float t = fmax(0, fmin(1, (p*w) / len));
const Vector2<T> projection = w * t;
return (p-projection).length();
}
};
typedef Vector2<int16_t> Vector2i;
typedef Vector2<uint16_t> Vector2ui;
typedef Vector2<int32_t> Vector2l;
typedef Vector2<uint32_t> Vector2ul;
typedef Vector2<float> Vector2f;