Ardupilot2/libraries/GCS_MAVLink/GCS.h

1445 lines
55 KiB
C++

/// @file GCS.h
/// @brief Interface definition for the various Ground Control System
// protocols.
#pragma once
#include "GCS_config.h"
#if HAL_GCS_ENABLED
#include <AP_AdvancedFailsafe/AP_AdvancedFailsafe_config.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Common/AP_Common.h>
#include "GCS_MAVLink.h"
#include <AP_Mission/AP_Mission.h>
#include <stdint.h>
#include "MAVLink_routing.h"
#include <AP_RTC/JitterCorrection.h>
#include <AP_Common/Bitmask.h>
#include <AP_LTM_Telem/AP_LTM_Telem.h>
#include <AP_Devo_Telem/AP_Devo_Telem.h>
#include <AP_Filesystem/AP_Filesystem_config.h>
#include <AP_Frsky_Telem/AP_Frsky_config.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_Mount/AP_Mount_config.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_RangeFinder/AP_RangeFinder_config.h>
#include <AP_Winch/AP_Winch_config.h>
#include <AP_AHRS/AP_AHRS_config.h>
#include <AP_Arming/AP_Arming_config.h>
#include <AP_Airspeed/AP_Airspeed_config.h>
#include "ap_message.h"
#define GCS_DEBUG_SEND_MESSAGE_TIMINGS 0
// macros used to determine if a message will fit in the space available.
void gcs_out_of_space_to_send(mavlink_channel_t chan);
bool check_payload_size(mavlink_channel_t chan, uint16_t max_payload_len);
// important note: despite the names, these messages do NOT check to
// see if the payload will fit in the buffer. They check to see if
// the packed message along with any channel overhead will fit.
// PAYLOAD_SIZE returns the amount of space required to send the
// mavlink message with id id on channel chan. Mavlink2 has higher
// overheads than mavlink1, for example.
// check if a message will fit in the payload space available
#define PAYLOAD_SIZE(chan, id) (unsigned(GCS_MAVLINK::packet_overhead_chan(chan)+MAVLINK_MSG_ID_ ## id ## _LEN))
// HAVE_PAYLOAD_SPACE evaluates to an expression that can be used
// anywhere in the code to determine if the mavlink message with ID id
// can currently fit in the output of _chan. Note the use of the ","
// operator here to increment a counter.
#define HAVE_PAYLOAD_SPACE(_chan, id) (comm_get_txspace(_chan) >= PAYLOAD_SIZE(_chan, id) ? true : (gcs_out_of_space_to_send(_chan), false))
// CHECK_PAYLOAD_SIZE - macro which may only be used within a
// GCS_MAVLink object's methods. It inserts code which will
// immediately return false from the current function if there is no
// room to fit the mavlink message with id id on the current object's
// output
#define CHECK_PAYLOAD_SIZE(id) if (!check_payload_size(MAVLINK_MSG_ID_ ## id ## _LEN)) return false
// CHECK_PAYLOAD_SIZE2 - macro which inserts code which will
// immediately return false from the current function if there is no
// room to fit the mavlink message with id id on the mavlink output
// channel "chan". It is expecting there to be a "chan" variable in
// scope.
#define CHECK_PAYLOAD_SIZE2(id) if (!HAVE_PAYLOAD_SPACE(chan, id)) return false
// CHECK_PAYLOAD_SIZE2_VOID - macro which inserts code which will
// immediately return from the current (void) function if there is no
// room to fit the mavlink message with id id on the mavlink output
// channel "chan".
#define CHECK_PAYLOAD_SIZE2_VOID(chan, id) if (!HAVE_PAYLOAD_SPACE(chan, id)) return
// convenience macros for defining which ap_message ids are in which streams:
#define MAV_STREAM_ENTRY(stream_name) \
{ \
GCS_MAVLINK::stream_name, \
stream_name ## _msgs, \
ARRAY_SIZE(stream_name ## _msgs) \
}
#define MAV_STREAM_TERMINATOR { (streams)0, nullptr, 0 }
// code generation; avoid each subclass duplicating these two methods
// and just changing the name. These methods allow retrieval of
// objects specific to the vehicle's subclass, which the vehicle can
// then call its own specific methods on
#define GCS_MAVLINK_CHAN_METHOD_DEFINITIONS(subclass_name) \
subclass_name *chan(const uint8_t ofs) override { \
if (ofs >= _num_gcs) { \
return nullptr; \
} \
return (subclass_name *)_chan[ofs]; \
} \
\
const subclass_name *chan(const uint8_t ofs) const override { \
if (ofs >= _num_gcs) { \
return nullptr; \
} \
return (subclass_name *)_chan[ofs]; \
}
#define GCS_MAVLINK_NUM_STREAM_RATES 10
class GCS_MAVLINK_Parameters
{
public:
GCS_MAVLINK_Parameters();
static const struct AP_Param::GroupInfo var_info[];
// saveable rate of each stream
AP_Int16 streamRates[GCS_MAVLINK_NUM_STREAM_RATES];
};
#if HAL_MAVLINK_INTERVALS_FROM_FILES_ENABLED
class DefaultIntervalsFromFiles
{
public:
DefaultIntervalsFromFiles(uint16_t max_num);
~DefaultIntervalsFromFiles();
void set(ap_message id, uint16_t interval);
uint16_t num_intervals() const {
return _num_intervals;
}
bool get_interval_for_ap_message_id(ap_message id, uint16_t &interval) const;
ap_message id_at(uint8_t ofs) const;
uint16_t interval_at(uint8_t ofs) const;
private:
struct from_file_default_interval {
ap_message id;
uint16_t interval;
};
from_file_default_interval *_intervals;
uint16_t _num_intervals;
uint16_t _max_intervals;
};
#endif
class GCS_MAVLINK_InProgress
{
public:
enum class Type {
NONE,
AIRSPEED_CAL,
SD_FORMAT,
};
// these can fail if there's no space on the channel to send the ack:
bool conclude(MAV_RESULT result);
bool send_in_progress();
// abort task without sending any further ACKs:
void abort() { task = Type::NONE; }
Type task;
MAV_CMD mav_cmd;
static class GCS_MAVLINK_InProgress *get_task(MAV_CMD cmd, Type t, uint8_t sysid, uint8_t compid, mavlink_channel_t chan);
static void check_tasks();
private:
uint8_t requesting_sysid;
uint8_t requesting_compid;
mavlink_channel_t chan;
bool send_ack(MAV_RESULT result);
static GCS_MAVLINK_InProgress in_progress_tasks[1];
// allocate a task-tracking ID
static uint32_t last_check_ms;
};
///
/// @class GCS_MAVLINK
/// @brief MAVLink transport control class
///
class GCS_MAVLINK
{
public:
friend class GCS;
GCS_MAVLINK(GCS_MAVLINK_Parameters &parameters, AP_HAL::UARTDriver &uart);
virtual ~GCS_MAVLINK() {}
// accessors used to retrieve objects used for parsing incoming messages:
mavlink_message_t *channel_buffer() { return &_channel_buffer; }
mavlink_status_t *channel_status() { return &_channel_status; }
void update_receive(uint32_t max_time_us=1000);
void update_send();
bool init(uint8_t instance);
void send_message(enum ap_message id);
void send_text(MAV_SEVERITY severity, const char *fmt, ...) const FMT_PRINTF(3, 4);
void queued_param_send();
void queued_mission_request_send();
bool sending_mavlink1() const;
// returns true if we are requesting any items from the GCS:
bool requesting_mission_items() const;
/// Check for available transmit space
uint16_t txspace() const {
if (_locked) {
return 0;
}
// there were concerns over return a too-large value for
// txspace (in case we tried to do too much with the space in
// a single loop):
return MIN(_port->txspace(), 8192U);
}
bool check_payload_size(uint16_t max_payload_len);
// this is called when we discover we'd like to send something but can't:
void out_of_space_to_send() { out_of_space_to_send_count++; }
void send_mission_ack(const mavlink_message_t &msg,
MAV_MISSION_TYPE mission_type,
MAV_MISSION_RESULT result) const {
CHECK_PAYLOAD_SIZE2_VOID(chan, MISSION_ACK);
mavlink_msg_mission_ack_send(chan,
msg.sysid,
msg.compid,
result,
mission_type);
}
// packetReceived is called on any successful decode of a mavlink message
virtual void packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg);
// send a mavlink_message_t out this GCS_MAVLINK connection.
void send_message(uint32_t msgid, const char *pkt) {
const mavlink_msg_entry_t *entry = mavlink_get_msg_entry(msgid);
if (entry == nullptr) {
return;
}
send_message(pkt, entry);
}
void send_message(const char *pkt, const mavlink_msg_entry_t *entry) {
if (!check_payload_size(entry->max_msg_len)) {
return;
}
_mav_finalize_message_chan_send(chan,
entry->msgid,
pkt,
entry->min_msg_len,
entry->max_msg_len,
entry->crc_extra);
}
// accessor for uart
AP_HAL::UARTDriver *get_uart() { return _port; }
// cap the MAVLink message rate. It can't be greater than 0.8 * SCHED_LOOP_RATE
uint16_t cap_message_interval(uint16_t interval_ms) const;
virtual uint8_t sysid_my_gcs() const = 0;
virtual bool sysid_enforce() const { return false; }
// NOTE: param_name here must point to a 16+1 byte buffer - so do
// NOT try to pass in a static-char-* unless it does have that
// length!
void send_parameter_value(const char *param_name,
ap_var_type param_type,
float param_value);
// NOTE! The streams enum below and the
// set of AP_Int16 stream rates _must_ be
// kept in the same order
enum streams : uint8_t {
STREAM_RAW_SENSORS,
STREAM_EXTENDED_STATUS,
STREAM_RC_CHANNELS,
STREAM_RAW_CONTROLLER,
STREAM_POSITION,
STREAM_EXTRA1,
STREAM_EXTRA2,
STREAM_EXTRA3,
STREAM_PARAMS,
STREAM_ADSB,
NUM_STREAMS
};
// streams must be moved out into the top level for
// GCS_MAVLINK_Parameters to be able to use it. This is an
// extensive change, so we 'll just keep them in sync with a
// static assert for now:
static_assert(NUM_STREAMS == GCS_MAVLINK_NUM_STREAM_RATES, "num streams must equal num stream rates");
bool is_high_bandwidth() { return chan == MAVLINK_COMM_0; }
// return true if this channel has hardware flow control
bool have_flow_control();
bool is_active() const {
return GCS_MAVLINK::active_channel_mask() & (1 << (chan-MAVLINK_COMM_0));
}
bool is_streaming() const {
return sending_bucket_id != no_bucket_to_send;
}
mavlink_channel_t get_chan() const { return chan; }
uint32_t get_last_heartbeat_time() const { return last_heartbeat_time; };
uint32_t last_heartbeat_time; // milliseconds
static uint32_t last_radio_status_remrssi_ms() {
return last_radio_status.remrssi_ms;
}
static float telemetry_radio_rssi(); // 0==no signal, 1==full signal
static bool last_txbuf_is_greater(uint8_t txbuf_limit);
// mission item index to be sent on queued msg, delayed or not
uint16_t mission_item_reached_index = AP_MISSION_CMD_INDEX_NONE;
// generate a MISSION_STATE enumeration value for where the
// mission is up to:
virtual MISSION_STATE mission_state(const class AP_Mission &mission) const;
// send a mission_current message for the supplied waypoint
void send_mission_current(const class AP_Mission &mission, uint16_t seq);
// common send functions
void send_heartbeat(void) const;
void send_meminfo(void);
void send_fence_status() const;
void send_power_status(void);
#if HAL_WITH_MCU_MONITORING
void send_mcu_status(void);
#endif
void send_battery_status(const uint8_t instance) const;
bool send_battery_status();
void send_distance_sensor();
// send_rangefinder sends only if a downward-facing instance is
// found. Rover overrides this!
#if AP_RANGEFINDER_ENABLED
virtual void send_rangefinder() const;
#endif
void send_proximity();
virtual void send_nav_controller_output() const = 0;
virtual void send_pid_tuning() = 0;
void send_ahrs2();
void send_system_time() const;
void send_rc_channels() const;
void send_rc_channels_raw() const;
void send_raw_imu();
void send_highres_imu();
void send_scaled_pressure_instance(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_boot_ms, float press_abs, float press_diff, int16_t temperature, int16_t temperature_press_diff));
void send_scaled_pressure();
void send_scaled_pressure2();
virtual void send_scaled_pressure3(); // allow sub to override this
#if AP_AIRSPEED_ENABLED
// Send per instance airspeed message
// last index is used to rotate through sensors
void send_airspeed();
uint8_t last_airspeed_idx;
#endif
void send_simstate() const;
void send_sim_state() const;
void send_ahrs();
#if AP_MAVLINK_BATTERY2_ENABLED
void send_battery2();
#endif
void send_opticalflow();
virtual void send_attitude() const;
virtual void send_attitude_quaternion() const;
void send_autopilot_version() const;
void send_extended_sys_state() const;
void send_local_position() const;
void send_vfr_hud();
void send_vibration() const;
void send_gimbal_device_attitude_status() const;
void send_gimbal_manager_information() const;
void send_gimbal_manager_status() const;
void send_named_float(const char *name, float value) const;
void send_home_position() const;
void send_gps_global_origin() const;
virtual void send_attitude_target() {};
virtual void send_position_target_global_int() { };
virtual void send_position_target_local_ned() { };
void send_servo_output_raw();
void send_accelcal_vehicle_position(uint32_t position);
void send_scaled_imu(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_ms, int16_t xacc, int16_t yacc, int16_t zacc, int16_t xgyro, int16_t ygyro, int16_t zgyro, int16_t xmag, int16_t ymag, int16_t zmag, int16_t temperature));
void send_sys_status();
void send_set_position_target_global_int(uint8_t target_system, uint8_t target_component, const Location& loc);
void send_rpm() const;
void send_generator_status() const;
#if AP_WINCH_ENABLED
virtual void send_winch_status() const {};
#endif
void send_water_depth() const;
int8_t battery_remaining_pct(const uint8_t instance) const;
#if HAL_HIGH_LATENCY2_ENABLED
void send_high_latency2() const;
#endif // HAL_HIGH_LATENCY2_ENABLED
void send_uavionix_adsb_out_status() const;
void send_autopilot_state_for_gimbal_device() const;
// Send the mode with the given index (not mode number!) return the total number of modes
// Index starts at 1
virtual uint8_t send_available_mode(uint8_t index) const = 0;
// lock a channel, preventing use by MAVLink
void lock(bool _lock) {
_locked = _lock;
}
// returns true if this channel isn't available for MAVLink
bool locked() const {
return _locked;
}
// return a bitmap of active channels. Used by libraries to loop
// over active channels to send to all active channels
static uint8_t active_channel_mask(void) { return mavlink_active; }
// return a bitmap of streaming channels
static uint8_t streaming_channel_mask(void) { return chan_is_streaming; }
// return a bitmap of private channels
static uint8_t private_channel_mask(void) { return mavlink_private; }
// set a channel as private. Private channels get sent heartbeats, but
// don't get broadcast packets or forwarded packets
static void set_channel_private(mavlink_channel_t chan);
// return true if channel is private
static bool is_private(mavlink_channel_t _chan) {
return (mavlink_private & (1U<<(unsigned)_chan)) != 0;
}
// return true if channel is private
bool is_private(void) const { return is_private(chan); }
#if HAL_HIGH_LATENCY2_ENABLED
// true if this is a high latency link
bool is_high_latency_link;
#endif
/*
send a MAVLink message to all components with this vehicle's system id
This is a no-op if no routes to components have been learned
*/
static void send_to_components(uint32_t msgid, const char *pkt, uint8_t pkt_len) { routing.send_to_components(msgid, pkt, pkt_len); }
/*
allow forwarding of packets / heartbeats to be blocked as required by some components to reduce traffic
*/
static void disable_channel_routing(mavlink_channel_t chan) { routing.no_route_mask |= (1U<<(chan-MAVLINK_COMM_0)); }
/*
search for a component in the routing table with given mav_type and retrieve it's sysid, compid and channel
returns if a matching component is found
*/
static bool find_by_mavtype(uint8_t mav_type, uint8_t &sysid, uint8_t &compid, mavlink_channel_t &channel) { return routing.find_by_mavtype(mav_type, sysid, compid, channel); }
/*
search for the first vehicle or component in the routing table with given mav_type and component id and retrieve its sysid and channel
returns true if a match is found
*/
static bool find_by_mavtype_and_compid(uint8_t mav_type, uint8_t compid, uint8_t &sysid, mavlink_channel_t &channel) { return routing.find_by_mavtype_and_compid(mav_type, compid, sysid, channel); }
// same as above, but returns a pointer to the GCS_MAVLINK object
// corresponding to the channel
static GCS_MAVLINK *find_by_mavtype_and_compid(uint8_t mav_type, uint8_t compid, uint8_t &sysid);
// update signing timestamp on GPS lock
static void update_signing_timestamp(uint64_t timestamp_usec);
// return current packet overhead for a channel
static uint8_t packet_overhead_chan(mavlink_channel_t chan);
// alternative protocol function handler
FUNCTOR_TYPEDEF(protocol_handler_fn_t, bool, uint8_t, AP_HAL::UARTDriver *);
struct stream_entries {
const streams stream_id;
const ap_message *ap_message_ids;
const uint8_t num_ap_message_ids;
};
// vehicle subclass cpp files should define this:
static const struct stream_entries all_stream_entries[];
virtual uint64_t capabilities() const;
uint16_t get_stream_slowdown_ms() const { return stream_slowdown_ms; }
MAV_RESULT set_message_interval(uint32_t msg_id, int32_t interval_us);
protected:
bool mavlink_coordinate_frame_to_location_alt_frame(MAV_FRAME coordinate_frame,
Location::AltFrame &frame);
// overridable method to check for packet acceptance. Allows for
// enforcement of GCS sysid
bool accept_packet(const mavlink_status_t &status, const mavlink_message_t &msg) const;
void set_ekf_origin(const Location& loc);
virtual MAV_MODE base_mode() const = 0;
MAV_STATE system_status() const;
virtual MAV_STATE vehicle_system_status() const = 0;
virtual MAV_VTOL_STATE vtol_state() const { return MAV_VTOL_STATE_UNDEFINED; }
virtual MAV_LANDED_STATE landed_state() const { return MAV_LANDED_STATE_UNDEFINED; }
// return a MAVLink parameter type given a AP_Param type
static MAV_PARAM_TYPE mav_param_type(enum ap_var_type t);
AP_Param * _queued_parameter; ///< next parameter to
// be sent in queue
mavlink_channel_t chan;
uint8_t packet_overhead(void) const { return packet_overhead_chan(chan); }
// saveable rate of each stream
AP_Int16 *streamRates;
void handle_heartbeat(const mavlink_message_t &msg) const;
virtual bool persist_streamrates() const { return false; }
void handle_request_data_stream(const mavlink_message_t &msg);
virtual void handle_command_ack(const mavlink_message_t &msg);
void handle_set_mode(const mavlink_message_t &msg);
void handle_command_int(const mavlink_message_t &msg);
virtual MAV_RESULT handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg);
MAV_RESULT handle_command_int_external_position_estimate(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_int_external_wind_estimate(const mavlink_command_int_t &packet);
#if AP_HOME_ENABLED
MAV_RESULT handle_command_do_set_home(const mavlink_command_int_t &packet);
bool set_home_to_current_location(bool lock);
bool set_home(const Location& loc, bool lock);
#endif
#if AP_ARMING_ENABLED
virtual MAV_RESULT handle_command_component_arm_disarm(const mavlink_command_int_t &packet);
#endif
MAV_RESULT handle_command_do_aux_function(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_storage_format(const mavlink_command_int_t &packet, const mavlink_message_t &msg);
void handle_mission_request_list(const mavlink_message_t &msg);
#if AP_MAVLINK_MSG_MISSION_REQUEST_ENABLED
void handle_mission_request(const mavlink_message_t &msg);
#endif
void handle_mission_request_int(const mavlink_message_t &msg);
void handle_mission_clear_all(const mavlink_message_t &msg);
#if AP_MAVLINK_MISSION_SET_CURRENT_ENABLED
// Note that there exists a relatively new mavlink DO command,
// MAV_CMD_DO_SET_MISSION_CURRENT which provides an acknowledgement
// that the command has been received, rather than the GCS having to
// rely on getting back an identical sequence number as some currently
// do.
virtual void handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg);
#endif
void handle_mission_count(const mavlink_message_t &msg);
void handle_mission_write_partial_list(const mavlink_message_t &msg);
void handle_mission_item(const mavlink_message_t &msg);
void handle_distance_sensor(const mavlink_message_t &msg);
void handle_obstacle_distance(const mavlink_message_t &msg);
void handle_obstacle_distance_3d(const mavlink_message_t &msg);
void handle_adsb_message(const mavlink_message_t &msg);
void handle_osd_param_config(const mavlink_message_t &msg) const;
void handle_common_param_message(const mavlink_message_t &msg);
void handle_param_set(const mavlink_message_t &msg);
void handle_param_request_list(const mavlink_message_t &msg);
void handle_param_request_read(const mavlink_message_t &msg);
virtual bool params_ready() const { return true; }
void handle_rc_channels_override(const mavlink_message_t &msg);
void handle_system_time_message(const mavlink_message_t &msg);
void handle_common_rally_message(const mavlink_message_t &msg);
void handle_rally_fetch_point(const mavlink_message_t &msg);
void handle_rally_point(const mavlink_message_t &msg) const;
#if HAL_MOUNT_ENABLED
virtual void handle_mount_message(const mavlink_message_t &msg);
#endif
void handle_fence_message(const mavlink_message_t &msg);
void handle_param_value(const mavlink_message_t &msg);
#if HAL_LOGGING_ENABLED
virtual uint32_t log_radio_bit() const { return 0; }
#endif
void handle_radio_status(const mavlink_message_t &msg);
void handle_serial_control(const mavlink_message_t &msg);
void handle_vision_position_delta(const mavlink_message_t &msg);
virtual void handle_message(const mavlink_message_t &msg);
void handle_set_gps_global_origin(const mavlink_message_t &msg);
void handle_setup_signing(const mavlink_message_t &msg) const;
virtual MAV_RESULT handle_preflight_reboot(const mavlink_command_int_t &packet, const mavlink_message_t &msg);
#if AP_MAVLINK_FAILURE_CREATION_ENABLED
struct {
HAL_Semaphore sem;
bool taken;
} _deadlock_sem;
void deadlock_sem(void);
#endif
MAV_RESULT handle_do_set_safety_switch_state(const mavlink_command_int_t &packet, const mavlink_message_t &msg);
// reset a message interval via mavlink:
MAV_RESULT handle_command_set_message_interval(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_get_message_interval(const mavlink_command_int_t &packet);
bool get_ap_message_interval(ap_message id, uint16_t &interval_ms) const;
MAV_RESULT handle_command_request_message(const mavlink_command_int_t &packet);
MAV_RESULT handle_START_RX_PAIR(const mavlink_command_int_t &packet);
virtual MAV_RESULT handle_flight_termination(const mavlink_command_int_t &packet);
#if AP_MAVLINK_AUTOPILOT_VERSION_REQUEST_ENABLED
void handle_send_autopilot_version(const mavlink_message_t &msg);
#endif
#if AP_MAVLINK_MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES_ENABLED
MAV_RESULT handle_command_request_autopilot_capabilities(const mavlink_command_int_t &packet);
#endif
virtual void send_banner();
// send a (textual) message to the GCS that a received message has
// been deprecated
void send_received_message_deprecation_warning(const char *message);
void handle_device_op_read(const mavlink_message_t &msg);
void handle_device_op_write(const mavlink_message_t &msg);
void send_timesync();
// returns the time a timesync message was most likely received:
uint64_t timesync_receive_timestamp_ns() const;
// returns a timestamp suitable for packing into the ts1 field of TIMESYNC:
uint64_t timesync_timestamp_ns() const;
void handle_timesync(const mavlink_message_t &msg);
struct {
int64_t sent_ts1;
uint32_t last_sent_ms;
const uint16_t interval_ms = 10000;
} _timesync_request;
void handle_statustext(const mavlink_message_t &msg) const;
void handle_named_value(const mavlink_message_t &msg) const;
bool telemetry_delayed() const;
virtual uint32_t telem_delay() const = 0;
MAV_RESULT handle_command_run_prearm_checks(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_flash_bootloader(const mavlink_command_int_t &packet);
// generally this should not be overridden; Plane overrides it to ensure
// failsafe isn't triggered during calibration
virtual MAV_RESULT handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg);
virtual MAV_RESULT _handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg);
virtual MAV_RESULT _handle_command_preflight_calibration_baro(const mavlink_message_t &msg);
#if AP_MISSION_ENABLED
virtual MAV_RESULT handle_command_do_set_mission_current(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_do_jump_tag(const mavlink_command_int_t &packet);
#endif
MAV_RESULT handle_command_battery_reset(const mavlink_command_int_t &packet);
void handle_command_long(const mavlink_message_t &msg);
MAV_RESULT handle_command_accelcal_vehicle_pos(const mavlink_command_int_t &packet);
#if HAL_MOUNT_ENABLED
virtual MAV_RESULT handle_command_mount(const mavlink_command_int_t &packet, const mavlink_message_t &msg);
#endif
MAV_RESULT handle_command_mag_cal(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_fixed_mag_cal_yaw(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_camera(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_do_set_roi(const mavlink_command_int_t &packet);
virtual MAV_RESULT handle_command_do_set_roi(const Location &roi_loc);
MAV_RESULT handle_command_do_gripper(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_do_sprayer(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_do_set_mode(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_get_home_position(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_do_fence_enable(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_debug_trap(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_set_ekf_source_set(const mavlink_command_int_t &packet);
MAV_RESULT handle_command_airframe_configuration(const mavlink_command_int_t &packet);
/*
handle MAV_CMD_CAN_FORWARD and CAN_FRAME messages for CAN over MAVLink
*/
void can_frame_callback(uint8_t bus, const AP_HAL::CANFrame &);
#if HAL_CANMANAGER_ENABLED
MAV_RESULT handle_can_forward(const mavlink_command_int_t &packet, const mavlink_message_t &msg);
#endif
void handle_can_frame(const mavlink_message_t &msg) const;
void handle_optical_flow(const mavlink_message_t &msg);
void handle_manual_control(const mavlink_message_t &msg);
void handle_radio_rc_channels(const mavlink_message_t &msg);
// default empty handling of LANDING_TARGET
virtual void handle_landing_target(const mavlink_landing_target_t &packet, uint32_t timestamp_ms) { }
// vehicle-overridable message send function
virtual bool try_send_message(enum ap_message id);
virtual void send_global_position_int();
// message sending functions:
bool try_send_mission_message(enum ap_message id);
void send_hwstatus();
void handle_data_packet(const mavlink_message_t &msg);
// these two methods are called after current_loc is updated:
virtual int32_t global_position_int_alt() const;
virtual int32_t global_position_int_relative_alt() const;
virtual float vfr_hud_climbrate() const;
virtual float vfr_hud_airspeed() const;
virtual int16_t vfr_hud_throttle() const { return 0; }
#if AP_AHRS_ENABLED
virtual float vfr_hud_alt() const;
#endif
#if HAL_HIGH_LATENCY2_ENABLED
virtual int16_t high_latency_target_altitude() const { return 0; }
virtual uint8_t high_latency_tgt_heading() const { return 0; }
virtual uint16_t high_latency_tgt_dist() const { return 0; }
virtual uint8_t high_latency_tgt_airspeed() const { return 0; }
virtual uint8_t high_latency_wind_speed() const { return 0; }
virtual uint8_t high_latency_wind_direction() const { return 0; }
int8_t high_latency_air_temperature() const;
MAV_RESULT handle_control_high_latency(const mavlink_command_int_t &packet);
#endif // HAL_HIGH_LATENCY2_ENABLED
static constexpr const float magic_force_arm_value = 2989.0f;
static constexpr const float magic_force_arm_disarm_value = 21196.0f;
void manual_override(class RC_Channel *c, int16_t value_in, uint16_t offset, float scaler, const uint32_t tnow, bool reversed = false);
uint8_t receiver_rssi() const;
/*
correct an offboard timestamp in microseconds to a local time
since boot in milliseconds
*/
uint32_t correct_offboard_timestamp_usec_to_ms(uint64_t offboard_usec, uint16_t payload_size);
#if AP_MAVLINK_COMMAND_LONG_ENABLED
// converts a COMMAND_LONG packet to a COMMAND_INT packet, where
// the command-long packet is assumed to be in the supplied frame.
// If location is not present in the command then just omit frame.
// this method ensures the passed-in structure is entirely
// initialised.
virtual void convert_COMMAND_LONG_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out, MAV_FRAME frame = MAV_FRAME_GLOBAL_RELATIVE_ALT);
virtual bool mav_frame_for_command_long(MAV_FRAME &fame, MAV_CMD packet_command) const;
MAV_RESULT try_command_long_as_command_int(const mavlink_command_long_t &packet, const mavlink_message_t &msg);
#endif
// methods to extract a Location object from a command_int
bool location_from_command_t(const mavlink_command_int_t &in, Location &out);
private:
// define the two objects used for parsing incoming messages:
mavlink_message_t _channel_buffer;
mavlink_status_t _channel_status;
const AP_SerialManager::UARTState *uartstate;
// last time we got a non-zero RSSI from RADIO_STATUS
static struct LastRadioStatus {
uint32_t remrssi_ms;
uint8_t rssi;
uint32_t received_ms; // time RADIO_STATUS received
uint8_t txbuf = 100;
} last_radio_status;
enum class Flags {
USING_SIGNING = (1<<0),
ACTIVE = (1<<1),
STREAMING = (1<<2),
PRIVATE = (1<<3),
LOCKED = (1<<4),
};
void log_mavlink_stats();
MAV_RESULT _set_mode_common(const MAV_MODE base_mode, const uint32_t custom_mode);
// send a (textual) message to the GCS that a received message has
// been deprecated
uint32_t last_deprecation_warning_send_time_ms;
const char *last_deprecation_message;
void service_statustext(void);
MAV_RESULT handle_servorelay_message(const mavlink_command_int_t &packet);
bool send_relay_status() const;
static bool command_long_stores_location(const MAV_CMD command);
bool calibrate_gyros();
/// The stream we are communicating over
AP_HAL::UARTDriver *_port;
/// Perform queued sending operations
///
enum ap_var_type _queued_parameter_type; ///< type of the next
// parameter
AP_Param::ParamToken _queued_parameter_token; ///AP_Param token for
// next() call
uint16_t _queued_parameter_index; ///< next queued
// parameter's index
uint16_t _queued_parameter_count; ///< saved count of
// parameters for
// queued send
uint32_t _queued_parameter_send_time_ms;
// number of extra ms to add to slow things down for the radio
uint16_t stream_slowdown_ms;
// outbound ("deferred message") queue.
// "special" messages such as heartbeat, next_param etc are stored
// separately to stream-rated messages like AHRS2 etc. If these
// were to be stored in buckets then they would be slowed down
// based on stream_slowdown, which we have not traditionally done.
struct deferred_message_t {
const ap_message id;
uint16_t interval_ms;
uint16_t last_sent_ms; // from AP_HAL::millis16()
} deferred_message[3] = {
{ MSG_HEARTBEAT, },
{ MSG_NEXT_PARAM, },
#if HAL_HIGH_LATENCY2_ENABLED
{ MSG_HIGH_LATENCY2, },
#endif
};
// returns index of id in deferred_message[] or -1 if not present
int8_t get_deferred_message_index(const ap_message id) const;
// returns index of a message in deferred_message[] which should
// be sent (or -1 if none to send at the moment)
int8_t deferred_message_to_send_index(uint16_t now16_ms);
// cache of which deferred message should be sent next:
int8_t next_deferred_message_to_send_cache = -1;
struct deferred_message_bucket_t {
Bitmask<MSG_LAST> ap_message_ids;
uint16_t interval_ms;
uint16_t last_sent_ms; // from AP_HAL::millis16()
};
deferred_message_bucket_t deferred_message_bucket[10];
static const uint8_t no_bucket_to_send = -1;
static const ap_message no_message_to_send = (ap_message)-1;
uint8_t sending_bucket_id = no_bucket_to_send;
Bitmask<MSG_LAST> bucket_message_ids_to_send;
ap_message next_deferred_bucket_message_to_send(uint16_t now16_ms);
void find_next_bucket_to_send(uint16_t now16_ms);
void remove_message_from_bucket(int8_t bucket, ap_message id);
// bitmask of IDs the code has spontaneously decided it wants to
// send out. Examples include HEARTBEAT (gcs_send_heartbeat)
Bitmask<MSG_LAST> pushed_ap_message_ids;
// returns true if it is OK to send a message while we are in
// delay callback. In particular, when we are doing sensor init
// we still send heartbeats.
bool should_send_message_in_delay_callback(const ap_message id) const;
// if true is returned, interval will contain the default interval for id
bool get_default_interval_for_ap_message(const ap_message id, uint16_t &interval) const;
// if true is returned, interval will contain the default interval for id
// returns an interval in milliseconds for any ap_message in stream id
uint16_t get_interval_for_stream(GCS_MAVLINK::streams id) const;
// set an inverval for a specific mavlink message. Returns false
// on failure (typically because there is no mapping from that
// mavlink ID to an ap_message)
bool set_mavlink_message_id_interval(const uint32_t mavlink_id,
const uint16_t interval_ms);
// map a mavlink ID to an ap_message which, if passed to
// try_send_message, will cause a mavlink message with that id to
// be emitted. Returns MSG_LAST if no such mapping exists.
ap_message mavlink_id_to_ap_message_id(const uint32_t mavlink_id) const;
// set the interval at which an ap_message should be emitted (in ms)
bool set_ap_message_interval(enum ap_message id, uint16_t interval_ms);
// call set_ap_message_interval for each entry in a stream,
// the interval being based on the stream's rate
void initialise_message_intervals_for_stream(GCS_MAVLINK::streams id);
// call initialise_message_intervals_for_stream on every stream:
void initialise_message_intervals_from_streamrates();
// boolean that indicated that message intervals have been set
// from streamrates:
bool deferred_messages_initialised;
#if HAL_MAVLINK_INTERVALS_FROM_FILES_ENABLED
// read configuration files from (e.g.) SD and ROMFS, set
// intervals from same
void initialise_message_intervals_from_config_files();
// read file, set message intervals from it:
void get_intervals_from_filepath(const char *path, DefaultIntervalsFromFiles &);
#endif
// return interval deferred message bucket should be sent after.
// When sending parameters and waypoints this may be longer than
// the interval specified in "deferred"
uint16_t get_reschedule_interval_ms(const deferred_message_bucket_t &deferred) const;
bool do_try_send_message(const ap_message id);
// time when we missed sending a parameter for GCS
static uint32_t reserve_param_space_start_ms;
// bitmask of what mavlink channels are active
static uint8_t mavlink_active;
// bitmask of what mavlink channels are private
static uint8_t mavlink_private;
// bitmask of what mavlink channels are streaming
static uint8_t chan_is_streaming;
// mavlink routing object
static MAVLink_routing routing;
struct pending_param_request {
mavlink_channel_t chan;
int16_t param_index;
char param_name[AP_MAX_NAME_SIZE+1];
};
struct pending_param_reply {
mavlink_channel_t chan;
float value;
enum ap_var_type p_type;
int16_t param_index;
uint16_t count;
char param_name[AP_MAX_NAME_SIZE+1];
};
// queue of pending parameter requests and replies
static ObjectBuffer<pending_param_request> param_requests;
static ObjectBuffer<pending_param_reply> param_replies;
// have we registered the IO timer callback?
static bool param_timer_registered;
// IO timer callback for parameters
void param_io_timer(void);
uint8_t send_parameter_async_replies();
#if AP_MAVLINK_FTP_ENABLED
enum class FTP_OP : uint8_t {
None = 0,
TerminateSession = 1,
ResetSessions = 2,
ListDirectory = 3,
OpenFileRO = 4,
ReadFile = 5,
CreateFile = 6,
WriteFile = 7,
RemoveFile = 8,
CreateDirectory = 9,
RemoveDirectory = 10,
OpenFileWO = 11,
TruncateFile = 12,
Rename = 13,
CalcFileCRC32 = 14,
BurstReadFile = 15,
Ack = 128,
Nack = 129,
};
enum class FTP_ERROR : uint8_t {
None = 0,
Fail = 1,
FailErrno = 2,
InvalidDataSize = 3,
InvalidSession = 4,
NoSessionsAvailable = 5,
EndOfFile = 6,
UnknownCommand = 7,
FileExists = 8,
FileProtected = 9,
FileNotFound = 10,
};
struct pending_ftp {
uint32_t offset;
mavlink_channel_t chan;
uint16_t seq_number;
FTP_OP opcode;
FTP_OP req_opcode;
bool burst_complete;
uint8_t size;
uint8_t session;
uint8_t sysid;
uint8_t compid;
uint8_t data[239];
};
enum class FTP_FILE_MODE {
Read,
Write,
};
struct ftp_state {
ObjectBuffer<pending_ftp> *requests;
// session specific info, currently only support a single session over all links
int fd = -1;
FTP_FILE_MODE mode; // work around AP_Filesystem not supporting file modes
int16_t current_session;
uint32_t last_send_ms;
uint8_t need_banner_send_mask;
};
static struct ftp_state ftp;
static void ftp_error(struct pending_ftp &response, FTP_ERROR error); // FTP helper method for packing a NAK
static int gen_dir_entry(char *dest, size_t space, const char * path, const struct dirent * entry); // FTP helper for emitting a dir response
static void ftp_list_dir(struct pending_ftp &request, struct pending_ftp &response);
bool ftp_init(void);
void handle_file_transfer_protocol(const mavlink_message_t &msg);
bool send_ftp_reply(const pending_ftp &reply);
void ftp_worker(void);
void ftp_push_replies(pending_ftp &reply);
#endif // AP_MAVLINK_FTP_ENABLED
void send_distance_sensor(const class AP_RangeFinder_Backend *sensor, const uint8_t instance) const;
virtual bool handle_guided_request(AP_Mission::Mission_Command &cmd) { return false; };
virtual void handle_change_alt_request(AP_Mission::Mission_Command &cmd) {};
void handle_common_mission_message(const mavlink_message_t &msg);
virtual void handle_manual_control_axes(const mavlink_manual_control_t &packet, const uint32_t tnow) {};
void handle_vicon_position_estimate(const mavlink_message_t &msg);
void handle_vision_position_estimate(const mavlink_message_t &msg);
void handle_global_vision_position_estimate(const mavlink_message_t &msg);
void handle_att_pos_mocap(const mavlink_message_t &msg);
void handle_odometry(const mavlink_message_t &msg);
void handle_common_vision_position_estimate_data(const uint64_t usec,
const float x,
const float y,
const float z,
const float roll,
const float pitch,
const float yaw,
const float covariance[21],
const uint8_t reset_counter,
const uint16_t payload_size);
void handle_vision_speed_estimate(const mavlink_message_t &msg);
void handle_landing_target(const mavlink_message_t &msg);
void lock_channel(const mavlink_channel_t chan, bool lock);
mavlink_signing_t signing;
static mavlink_signing_streams_t signing_streams;
static uint32_t last_signing_save_ms;
static StorageAccess _signing_storage;
static bool signing_key_save(const struct SigningKey &key);
static bool signing_key_load(struct SigningKey &key);
void load_signing_key(void);
bool signing_enabled(void) const;
static void save_signing_timestamp(bool force_save_now);
#if HAL_MAVLINK_INTERVALS_FROM_FILES_ENABLED
// structure containing default intervals read from files for this
// link:
DefaultIntervalsFromFiles *default_intervals_from_files;
#endif
// alternative protocol handler support
struct {
GCS_MAVLINK::protocol_handler_fn_t handler;
uint32_t last_mavlink_ms;
uint32_t last_alternate_ms;
bool active;
} alternative;
JitterCorrection lag_correction;
// we cache the current location and send it even if the AHRS has
// no idea where we are:
Location global_position_current_loc;
uint8_t last_tx_seq;
uint16_t send_packet_count;
uint16_t out_of_space_to_send_count; // number of times HAVE_PAYLOAD_SPACE and friends have returned false
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
struct {
uint32_t longest_time_us;
ap_message longest_id;
uint32_t no_space_for_message;
uint16_t statustext_last_sent_ms;
uint32_t behind;
uint32_t out_of_time;
uint16_t fnbts_maxtime;
uint32_t max_retry_deferred_body_us;
uint8_t max_retry_deferred_body_type;
} try_send_message_stats;
uint16_t max_slowdown_ms;
#endif
uint32_t last_mavlink_stats_logged;
uint8_t last_battery_status_idx;
// if we've ever sent a DISTANCE_SENSOR message out of an
// orientation we continue to send it out, even if it is not
// longer valid.
uint8_t proximity_ever_valid_bitmask;
// true if we should NOT do MAVLink on this port (usually because
// someone's doing SERIAL_CONTROL over mavlink)
bool _locked;
// Handling of AVAILABLE_MODES
struct {
bool should_send;
// Note these start at 1
uint8_t requested_index;
uint8_t next_index;
} available_modes;
bool send_available_modes();
bool send_available_mode_monitor();
};
/// @class GCS
/// @brief global GCS object
class GCS
{
public:
GCS() {
if (_singleton == nullptr) {
_singleton = this;
} else {
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
// this is a serious problem, but we don't need to kill a
// real vehicle
AP_HAL::panic("GCS must be singleton");
#endif
}
};
static class GCS *get_singleton() {
return _singleton;
}
virtual uint32_t custom_mode() const = 0;
virtual MAV_TYPE frame_type() const = 0;
virtual const char* frame_string() const { return nullptr; }
struct statustext_t {
mavlink_statustext_t msg;
uint16_t entry_created_ms;
uint8_t bitmask;
};
class StatusTextQueue : public ObjectArray<statustext_t> {
public:
using ObjectArray::ObjectArray;
HAL_Semaphore &semaphore() { return _sem; }
void prune();
private:
// a lock for the statustext queue, to make it safe to use send_text()
// from multiple threads
HAL_Semaphore _sem;
uint32_t last_prune_ms;
};
StatusTextQueue &statustext_queue() {
return _statustext_queue;
}
// last time traffic was seen from my designated GCS. traffic
// includes heartbeats and some manual control messages.
uint32_t sysid_myggcs_last_seen_time_ms() const {
return _sysid_mygcs_last_seen_time_ms;
}
// called when valid traffic has been seen from our GCS
void sysid_myggcs_seen(uint32_t seen_time_ms) {
_sysid_mygcs_last_seen_time_ms = seen_time_ms;
}
void send_to_active_channels(uint32_t msgid, const char *pkt);
void send_text(MAV_SEVERITY severity, const char *fmt, ...) FMT_PRINTF(3, 4);
void send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list);
virtual void send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list, uint8_t mask);
uint8_t statustext_send_channel_mask() const;
virtual GCS_MAVLINK *chan(const uint8_t ofs) = 0;
virtual const GCS_MAVLINK *chan(const uint8_t ofs) const = 0;
// return the number of valid GCS objects
uint8_t num_gcs() const { return _num_gcs; };
void send_message(enum ap_message id);
void send_mission_item_reached_message(uint16_t mission_index);
void send_named_float(const char *name, float value) const;
void send_parameter_value(const char *param_name,
ap_var_type param_type,
float param_value);
// an array of objects used to handle each of the different
// protocol types we support. This is indexed by the enumeration
// MAV_MISSION_TYPE, taking advantage of the fact that fence,
// mission and rally have values 0, 1 and 2. Indexing should be via
// get_prot_for_mission_type to do bounds checking.
static class MissionItemProtocol *missionitemprotocols[3];
class MissionItemProtocol *get_prot_for_mission_type(const MAV_MISSION_TYPE mission_type) const;
void try_send_queued_message_for_type(MAV_MISSION_TYPE type) const;
void update_send();
void update_receive();
// minimum amount of time (in microseconds) that must remain in
// the main scheduler loop before we are allowed to send any
// mavlink messages. We want to prioritise the main flight
// control loop over communications
virtual uint16_t min_loop_time_remaining_for_message_send_us() const {
return 200;
}
void init();
void setup_console();
void setup_uarts();
bool out_of_time() const;
#if AP_FRSKY_TELEM_ENABLED
// frsky backend
class AP_Frsky_Telem *frsky;
#endif
#if AP_LTM_TELEM_ENABLED
// LTM backend
AP_LTM_Telem ltm_telemetry;
#endif
#if AP_DEVO_TELEM_ENABLED
// Devo backend
AP_DEVO_Telem devo_telemetry;
#endif
// install an alternative protocol handler
bool install_alternative_protocol(mavlink_channel_t chan, GCS_MAVLINK::protocol_handler_fn_t handler);
// get the VFR_HUD throttle
int16_t get_hud_throttle(void) const {
const GCS_MAVLINK *link = chan(0);
if (link == nullptr) {
return 0;
}
return link->vfr_hud_throttle();
}
// update uart pass-thru
void update_passthru();
void get_sensor_status_flags(uint32_t &present, uint32_t &enabled, uint32_t &health);
virtual bool vehicle_initialised() const { return true; }
virtual bool simple_input_active() const { return false; }
virtual bool supersimple_input_active() const { return false; }
// set message interval for a given serial port and message id
// this function is for use by lua scripts, most consumers should use the channel level function
MAV_RESULT set_message_interval(uint8_t port_num, uint32_t msg_id, int32_t interval_us);
uint8_t get_channel_from_port_number(uint8_t port_num);
#if HAL_HIGH_LATENCY2_ENABLED
bool high_latency_link_enabled;
void enable_high_latency_connections(bool enabled);
bool get_high_latency_status();
#endif // HAL_HIGH_LATENCY2_ENABLED
virtual uint8_t sysid_this_mav() const = 0;
#if AP_SCRIPTING_ENABLED
// lua access to command_int
MAV_RESULT lua_command_int_packet(const mavlink_command_int_t &packet);
#endif
// Sequence number should be incremented when available modes changes
// Sent in AVAILABLE_MODES_MONITOR msg
uint8_t get_available_modes_sequence() const { return available_modes_sequence; }
void available_modes_changed() { available_modes_sequence += 1; }
protected:
virtual GCS_MAVLINK *new_gcs_mavlink_backend(GCS_MAVLINK_Parameters &params,
AP_HAL::UARTDriver &uart) = 0;
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
virtual void update_vehicle_sensor_status_flags() {}
GCS_MAVLINK_Parameters chan_parameters[MAVLINK_COMM_NUM_BUFFERS];
uint8_t _num_gcs;
GCS_MAVLINK *_chan[MAVLINK_COMM_NUM_BUFFERS];
private:
static GCS *_singleton;
void create_gcs_mavlink_backend(GCS_MAVLINK_Parameters &params,
AP_HAL::UARTDriver &uart);
char statustext_printf_buffer[256+1];
#if AP_GPS_ENABLED
virtual AP_GPS::GPS_Status min_status_for_gps_healthy() const {
// NO_FIX simply excludes NO_GPS
return AP_GPS::GPS_Status::NO_FIX;
}
#endif
void update_sensor_status_flags();
// time we last saw traffic from our GCS
uint32_t _sysid_mygcs_last_seen_time_ms;
void service_statustext(void);
#if HAL_MEM_CLASS <= HAL_MEM_CLASS_192 || CONFIG_HAL_BOARD == HAL_BOARD_SITL
static const uint8_t _status_capacity = 7;
#else
static const uint8_t _status_capacity = 30;
#endif
// queue of outgoing statustext messages. Each entry consumes 58
// bytes of RAM on stm32
StatusTextQueue _statustext_queue{_status_capacity};
// true if we have already allocated protocol objects:
bool initialised_missionitemprotocol_objects;
// true if update_send has ever been called:
bool update_send_has_been_called;
// handle passthru between two UARTs
struct {
bool enabled;
bool timer_installed;
AP_HAL::UARTDriver *port1;
AP_HAL::UARTDriver *port2;
uint32_t start_ms;
uint32_t last_ms;
uint32_t last_port1_data_ms;
uint32_t baud1;
uint32_t baud2;
uint8_t parity1;
uint8_t parity2;
uint8_t timeout_s;
HAL_Semaphore sem;
} _passthru;
// timer called to implement pass-thru
void passthru_timer();
// this contains the index of the GCS_MAVLINK backend we will
// first call update_send on. It is incremented each time
// GCS::update_send is called so we don't starve later links of
// time in which they are permitted to send messages.
uint8_t first_backend_to_send;
// Sequence number should be incremented when available modes changes
// Sent in AVAILABLE_MODES_MONITOR msg
uint8_t available_modes_sequence;
};
GCS &gcs();
// send text when we do have a GCS
#if !defined(HAL_BUILD_AP_PERIPH)
#define GCS_SEND_TEXT(severity, format, args...) gcs().send_text(severity, format, ##args)
#define AP_HAVE_GCS_SEND_TEXT 1
#else
extern "C" {
void can_printf_severity(uint8_t severity, const char *fmt, ...);
}
#define GCS_SEND_TEXT(severity, format, args...) can_printf_severity(severity, format, ##args)
#define AP_HAVE_GCS_SEND_TEXT 1
#endif
#define GCS_SEND_MESSAGE(msg) gcs().send_message(msg)
#elif defined(HAL_BUILD_AP_PERIPH) && !defined(STM32F1)
// map send text to can_printf() on larger AP_Periph boards
extern "C" {
void can_printf_severity(uint8_t severity, const char *fmt, ...);
}
#define GCS_SEND_TEXT(severity, format, args...) can_printf_severity(severity, format, ##args)
#define GCS_SEND_MESSAGE(msg)
#define AP_HAVE_GCS_SEND_TEXT 1
/*
we need a severity enum for the can_printf_severity function with no GCS present
*/
#ifndef HAVE_ENUM_MAV_SEVERITY
enum MAV_SEVERITY
{
MAV_SEVERITY_EMERGENCY=0,
MAV_SEVERITY_ALERT=1,
MAV_SEVERITY_CRITICAL=2,
MAV_SEVERITY_ERROR=3,
MAV_SEVERITY_WARNING=4,
MAV_SEVERITY_NOTICE=5,
MAV_SEVERITY_INFO=6,
MAV_SEVERITY_DEBUG=7,
MAV_SEVERITY_ENUM_END=8,
};
#define HAVE_ENUM_MAV_SEVERITY
#endif
#else // HAL_GCS_ENABLED
// empty send text when we have no GCS
#define GCS_SEND_TEXT(severity, format, args...)
#define GCS_SEND_MESSAGE(msg)
#define AP_HAVE_GCS_SEND_TEXT 0
#endif // HAL_GCS_ENABLED