Ardupilot2/libraries/AP_Logger/AP_Logger_Block.cpp
Andy Piper f666ed8ec7 AP_Logger: support W25N01GV flash chips
add separate driver for W25N01GV triggered via HAL_LOGGING_DATAFLASH_DRIVER
move flash_test() into AP_Logger_Block.
cleanup use of 4k sector commands to account for chips that only have block commands
2022-06-08 21:44:21 +10:00

977 lines
27 KiB
C++

/*
block based logging, for boards with flash logging
*/
#include "AP_Logger_Block.h"
#if HAL_LOGGING_BLOCK_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <stdio.h>
#include <AP_RTC/AP_RTC.h>
#include <GCS_MAVLink/GCS.h>
const extern AP_HAL::HAL& hal;
// the last page holds the log format in first 4 bytes. Please change
// this if (and only if!) the low level format changes
#define DF_LOGGING_FORMAT 0x1901201B
AP_Logger_Block::AP_Logger_Block(AP_Logger &front, LoggerMessageWriter_DFLogStart *writer) :
AP_Logger_Backend(front, writer),
writebuf(0)
{
df_stats_clear();
}
// Init() is called after driver Init(), it is the responsibility of the driver to make sure the
// device is ready to accept commands before Init() is called
void AP_Logger_Block::Init(void)
{
// buffer is used for both reads and writes so access must always be within the semaphore
buffer = (uint8_t *)hal.util->malloc_type(df_PageSize, AP_HAL::Util::MEM_DMA_SAFE);
if (buffer == nullptr) {
AP_HAL::panic("Out of DMA memory for logging");
}
//flash_test();
if (CardInserted()) {
// reserve space for version in last sector
df_NumPages -= df_PagePerBlock;
// determine and limit file backend buffersize
uint32_t bufsize = _front._params.file_bufsize;
if (bufsize > 64) {
bufsize = 64;
}
bufsize *= 1024;
// If we can't allocate the full size, try to reduce it until we can allocate it
while (!writebuf.set_size(bufsize) && bufsize >= df_PageSize * df_PagePerBlock) {
DEV_PRINTF("AP_Logger_Block: Couldn't set buffer size to=%u\n", (unsigned)bufsize);
bufsize >>= 1;
}
if (!writebuf.get_size()) {
DEV_PRINTF("Out of memory for logging\n");
return;
}
DEV_PRINTF("AP_Logger_Block: buffer size=%u\n", (unsigned)bufsize);
_initialised = true;
}
WITH_SEMAPHORE(sem);
if (NeedErase()) {
EraseAll();
} else {
validate_log_structure();
}
}
uint32_t AP_Logger_Block::bufferspace_available()
{
// because AP_Logger_Block devices are ring buffers, we *always*
// have room...
return df_NumPages * df_PageSize;
}
// *** LOGGER PUBLIC FUNCTIONS ***
void AP_Logger_Block::StartWrite(uint32_t PageAdr)
{
df_PageAdr = PageAdr;
}
void AP_Logger_Block::FinishWrite(void)
{
// Write Buffer to flash
BufferToPage(df_PageAdr);
df_PageAdr++;
// If we reach the end of the memory, start from the beginning
if (df_PageAdr > df_NumPages) {
df_PageAdr = 1;
}
// when starting a new sector, erase it
if ((df_PageAdr-1) % df_PagePerBlock == 0) {
// if we have wrapped over an existing log, force the oldest to be recalculated
if (_cached_oldest_log > 0) {
uint16_t log_num = StartRead(df_PageAdr);
if (log_num != 0xFFFF && log_num >= _cached_oldest_log) {
_cached_oldest_log = 0;
}
}
// are we about to erase a sector with our own headers in it?
if (df_Write_FilePage > df_NumPages - df_PagePerBlock) {
chip_full = true;
return;
}
SectorErase(get_block(df_PageAdr));
}
}
bool AP_Logger_Block::WritesOK() const
{
if (!CardInserted() || erase_started) {
return false;
}
return true;
}
bool AP_Logger_Block::_WritePrioritisedBlock(const void *pBuffer, uint16_t size, bool is_critical)
{
// is_critical is ignored - we're a ring buffer and never run out
// of space. possibly if we do more complicated bandwidth
// limiting we can reserve bandwidth based on is_critical
if (!WritesOK()) {
return false;
}
if (!WriteBlockCheckStartupMessages()) {
_dropped++;
return false;
}
if (!write_sem.take(1)) {
_dropped++;
return false;
}
const uint32_t space = writebuf.space();
if (_writing_startup_messages &&
_startup_messagewriter->fmt_done()) {
// the state machine has called us, and it has finished
// writing format messages out. It can always get back to us
// with more messages later, so let's leave room for other
// things:
const uint32_t now = AP_HAL::millis();
const bool must_dribble = (now - last_messagewrite_message_sent) > 100;
if (!must_dribble &&
space < non_messagewriter_message_reserved_space(writebuf.get_size())) {
// this message isn't dropped, it will be sent again...
write_sem.give();
return false;
}
last_messagewrite_message_sent = now;
} else {
// we reserve some amount of space for critical messages:
if (!is_critical && space < critical_message_reserved_space(writebuf.get_size())) {
_dropped++;
write_sem.give();
return false;
}
}
// if no room for entire message - drop it:
if (space < size) {
_dropped++;
write_sem.give();
return false;
}
writebuf.write((uint8_t*)pBuffer, size);
df_stats_gather(size, writebuf.space());
write_sem.give();
return true;
}
// read from the page address and return the file number at that location
uint16_t AP_Logger_Block::StartRead(uint32_t PageAdr)
{
df_Read_PageAdr = PageAdr;
// copy flash page to buffer
if (erase_started) {
memset(buffer, 0xff, df_PageSize);
} else {
PageToBuffer(df_Read_PageAdr);
}
return ReadHeaders();
}
// read the headers at the current read point returning the file number
uint16_t AP_Logger_Block::ReadHeaders()
{
// We are starting a new page - read FileNumber and FilePage
struct PageHeader ph;
BlockRead(0, &ph, sizeof(ph));
df_FileNumber = ph.FileNumber;
df_FilePage = ph.FilePage;
#if BLOCK_LOG_VALIDATE
if (ph.crc != DF_LOGGING_FORMAT + df_FilePage && df_FileNumber != 0xFFFF) {
printf("ReadHeaders: invalid block read at %d\n", df_Read_PageAdr);
}
#endif
df_Read_BufferIdx = sizeof(ph);
// we are at the start of a file, read the file header
if (df_FilePage == 1) {
struct FileHeader fh;
BlockRead(0, &fh, sizeof(fh));
df_FileTime = fh.utc_secs;
df_Read_BufferIdx += sizeof(fh);
}
return df_FileNumber;
}
bool AP_Logger_Block::ReadBlock(void *pBuffer, uint16_t size)
{
if (erase_started) {
return false;
}
while (size > 0) {
uint16_t n = df_PageSize - df_Read_BufferIdx;
if (n > size) {
n = size;
}
if (!BlockRead(df_Read_BufferIdx, pBuffer, n)) {
return false;
}
size -= n;
pBuffer = (void *)(n + (uintptr_t)pBuffer);
df_Read_BufferIdx += n;
if (df_Read_BufferIdx == df_PageSize) {
df_Read_PageAdr++;
if (df_Read_PageAdr > df_NumPages) {
df_Read_PageAdr = 1;
}
if (erase_started) {
memset(buffer, 0xff, df_PageSize);
} else {
PageToBuffer(df_Read_PageAdr);
}
// We are starting a new page - read FileNumber and FilePage
ReadHeaders();
}
}
return true;
}
// initialize the log data for the given file number
void AP_Logger_Block::StartLogFile(uint16_t FileNumber)
{
df_FileNumber = FileNumber;
df_Write_FileNumber = FileNumber;
df_FilePage = 1;
df_Write_FilePage = 1;
}
uint16_t AP_Logger_Block::GetFileNumber() const
{
return df_FileNumber;
}
void AP_Logger_Block::EraseAll()
{
if (hal.util->get_soft_armed()) {
// do not want to do any filesystem operations while we are e.g. flying
return;
}
// push out the message before stopping logging
if (!erase_started) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Chip erase started");
}
WITH_SEMAPHORE(sem);
if (erase_started) {
// already erasing
return;
}
erase_started = true;
// remember what we were doing
new_log_pending = log_write_started;
// throw away everything
log_write_started = false;
writebuf.clear();
// reset the format version and wrapped status so that any incomplete erase will be caught
Sector4kErase(get_sector(df_NumPages));
StartErase();
}
void AP_Logger_Block::periodic_1Hz()
{
AP_Logger_Backend::periodic_1Hz();
if (rate_limiter == nullptr && _front._params.blk_ratemax > 0) {
// setup rate limiting
rate_limiter = new AP_Logger_RateLimiter(_front, _front._params.blk_ratemax);
}
if (!io_thread_alive()) {
if (warning_decimation_counter == 0 && _initialised) {
// we don't print this error unless we did initialise. When _initialised is set to true
// we register the IO timer callback
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "AP_Logger: IO thread died");
}
if (warning_decimation_counter++ > 57) {
warning_decimation_counter = 0;
}
_initialised = false;
} else if (chip_full) {
if (warning_decimation_counter == 0) {
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Chip full, logging stopped");
}
if (warning_decimation_counter++ > 57) {
warning_decimation_counter = 0;
}
}
}
// EraseAll is asynchronous, but we must not start a new
// log in a child thread so this task picks up the hint from the io timer
// keeping locking to a minimum
void AP_Logger_Block::periodic_10Hz(const uint32_t now)
{
if (erase_started || InErase()) {
return;
}
// don't print status messages in io thread, do it here
switch (status_msg) {
case StatusMessage::ERASE_COMPLETE:
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Chip erase complete");
status_msg = StatusMessage::NONE;
break;
case StatusMessage::RECOVERY_COMPLETE:
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Log recovery complete");
status_msg = StatusMessage::NONE;
break;
case StatusMessage::NONE:
break;
}
// EraseAll should only set this in the main thread
if (new_log_pending) {
start_new_log();
}
}
/*
* we need to erase if the logging format has changed
*/
bool AP_Logger_Block::NeedErase(void)
{
uint32_t version = 0;
PageToBuffer(df_NumPages+1); // last page
BlockRead(0, &version, sizeof(version));
if (version == DF_LOGGING_FORMAT) {
// only leave the read point in a sane place if we are not about to destroy everything
StartRead(1);
return false;
}
return true;
}
/*
* iterate through all of the logs files looking for ones that are corrupted and correct.
*/
void AP_Logger_Block::validate_log_structure()
{
WITH_SEMAPHORE(sem);
bool wrapped = is_wrapped();
uint32_t page = 1;
uint32_t page_start = 1;
uint16_t file = StartRead(page);
uint16_t first_file = file;
uint16_t next_file = file;
uint16_t last_file = 0;
while (file != 0xFFFF && page <= df_NumPages && (file == next_file || (wrapped && file < next_file))) {
uint32_t end_page = find_last_page_of_log(file);
if (end_page == 0 || end_page < page) { // this can happen and may be responsible for corruption that we have seen
break;
}
page = end_page + 1;
file = StartRead(page);
next_file++;
// skip over the rest of an erased block
if (wrapped && file == 0xFFFF) {
file = StartRead((get_block(page) + 1) * df_PagePerBlock + 1);
}
if (wrapped && file < next_file) {
page_start = page;
next_file = file;
first_file = file;
} else if (last_file < next_file) {
last_file = file;
}
if (file == next_file) {
DEV_PRINTF("Found complete log %d at %X-%X\n", int(file), unsigned(page), unsigned(find_last_page_of_log(file)));
}
}
if (file != 0xFFFF && file != next_file && page <= df_NumPages && page > 0) {
DEV_PRINTF("Found corrupt log %d at 0x%04X, erasing", int(file), unsigned(page));
df_EraseFrom = page;
} else if (next_file != 0xFFFF && page > 0 && next_file > 1) { // chip is empty
DEV_PRINTF("Found %d complete logs at 0x%04X-0x%04X", int(next_file - first_file), unsigned(page_start), unsigned(page - 1));
}
}
/**
* get raw data from a log - page is the start page of the log, offset is the offset within the log starting at that page
*/
int16_t AP_Logger_Block::get_log_data_raw(uint16_t log_num, uint32_t page, uint32_t offset, uint16_t len, uint8_t *data)
{
WITH_SEMAPHORE(sem);
const uint16_t data_page_size = df_PageSize - sizeof(struct PageHeader);
const uint16_t first_page_size = data_page_size - sizeof(struct FileHeader);
// offset is the true offset in the file, so we have to calculate the offset accounting for page headers
if (offset >= first_page_size) {
offset -= first_page_size;
page = page + offset / data_page_size + 1;
offset %= data_page_size;
if (page > df_NumPages) {
page = page % df_NumPages;
}
}
// Sanity check we haven't been asked for an offset beyond the end of the log
if (StartRead(page) != log_num) {
return -1;
}
df_Read_BufferIdx += offset;
if (!ReadBlock(data, len)) {
return -1;
}
return (int16_t)len;
}
/**
get data from a log, accounting for adding FMT headers
*/
int16_t AP_Logger_Block::get_log_data(uint16_t list_entry, uint16_t page, uint32_t offset, uint16_t len, uint8_t *data)
{
const uint16_t log_num = log_num_from_list_entry(list_entry);
if (log_num == 0) {
// that failed - probably no logs
return -1;
}
//printf("get_log_data(%d, %d, %d, %d)\n", log_num, page, offset, len);
WITH_SEMAPHORE(sem);
uint16_t ret = 0;
if (len > 0) {
const int16_t bytes = get_log_data_raw(log_num, page, offset, len, data);
if (bytes == -1) {
return -1;
}
ret += bytes;
}
return ret;
}
// This function determines the number of whole log files in the AP_Logger
// partial logs are rejected as without the headers they are relatively useless
uint16_t AP_Logger_Block::get_num_logs(void)
{
WITH_SEMAPHORE(sem);
uint32_t lastpage;
uint32_t last;
if (!CardInserted() || find_last_page() == 1) {
return 0;
}
uint32_t first = StartRead(1);
if (first == 0xFFFF) {
return 0;
}
lastpage = find_last_page();
last = StartRead(lastpage);
if (is_wrapped()) {
// if we wrapped then the rest of the block will be filled with 0xFFFF because we always erase
// a block before writing to it, in order to find the first page we therefore have to read after the
// next block boundary
first = StartRead((get_block(lastpage) + 1) * df_PagePerBlock + 1);
// unless we happen to land on the first page of the file that is being overwritten we skip to the next file
if (df_FilePage > 1) {
first++;
}
}
if (last == first) {
return 1;
}
return (last - first + 1);
}
// stop logging immediately
void AP_Logger_Block::stop_logging(void)
{
WITH_SEMAPHORE(sem);
log_write_started = false;
// nuke writing any previous log
writebuf.clear();
}
// stop logging and flush any remaining data
void AP_Logger_Block::stop_logging_async(void)
{
stop_log_pending = true;
}
// This function starts a new log file in the AP_Logger
// no actual data should be written to the storage here
// that should all be handled by the IO thread
void AP_Logger_Block::start_new_log(void)
{
if (erase_started) {
// already erasing
return;
}
WITH_SEMAPHORE(sem);
if (logging_started()) {
stop_logging();
}
// no need to schedule this anymore
new_log_pending = false;
uint32_t last_page = find_last_page();
StartRead(last_page);
log_write_started = true;
uint16_t new_log_num = 1;
if (find_last_log() == 0 || GetFileNumber() == 0xFFFF) {
StartLogFile(new_log_num);
StartWrite(1);
// Check for log of length 1 page and suppress
} else if (df_FilePage <= 1) {
new_log_num = GetFileNumber();
// Last log too short, reuse its number
// and overwrite it
StartLogFile(new_log_num);
StartWrite(last_page);
} else {
new_log_num = GetFileNumber()+1;
if (last_page == 0xFFFF) {
last_page=0;
}
StartLogFile(new_log_num);
StartWrite(last_page + 1);
}
// save UTC time in the first 4 bytes so that we can retrieve it later
uint64_t utc_usec;
FileHeader hdr {};
if (AP::rtc().get_utc_usec(utc_usec)) {
hdr.utc_secs = utc_usec / 1000000U;
}
writebuf.write((uint8_t*)&hdr, sizeof(FileHeader));
start_new_log_reset_variables();
return;
}
// This function finds the first and last pages of a log file
// The first page may be greater than the last page if the AP_Logger has been filled and partially overwritten.
void AP_Logger_Block::get_log_boundaries(uint16_t list_entry, uint32_t & start_page, uint32_t & end_page)
{
const uint16_t log_num = log_num_from_list_entry(list_entry);
if (log_num == 0) {
// that failed - probably no logs
start_page = 0;
end_page = 0;
return;
}
WITH_SEMAPHORE(sem);
uint16_t num = get_num_logs();
uint32_t look;
end_page = find_last_page_of_log(log_num);
if (num == 1 || log_num == 1) {
if (!is_wrapped()) {
start_page = 1;
} else {
StartRead(end_page);
start_page = (end_page + df_NumPages - df_FilePage) % df_NumPages + 1;
}
} else {
// looking for the first log which might have a gap in front of it
if (list_entry == 1) {
StartRead(end_page);
if (end_page > df_FilePage) { // log is not wrapped
start_page = end_page - df_FilePage + 1;
} else { // log is wrapped
start_page = (end_page + df_NumPages - df_FilePage) % df_NumPages + 1;
}
} else {
look = log_num-1;
do {
start_page = find_last_page_of_log(look) + 1;
look--;
} while (start_page <= 0 && look >=1);
}
}
if (start_page == df_NumPages + 1 || start_page == 0) {
start_page = 1;
}
if (end_page == 0) {
end_page = start_page;
}
}
// return true if logging has wrapped around to the beginning of the chip
bool AP_Logger_Block::is_wrapped(void)
{
return StartRead(df_NumPages) != 0xFFFF;
}
// This function finds the last log number
uint16_t AP_Logger_Block::find_last_log(void)
{
WITH_SEMAPHORE(sem);
uint32_t last_page = find_last_page();
return StartRead(last_page);
}
// This function finds the last page of the last file
uint32_t AP_Logger_Block::find_last_page(void)
{
uint32_t look;
uint32_t bottom = 1;
uint32_t top = df_NumPages;
uint64_t look_hash;
uint64_t bottom_hash;
uint64_t top_hash;
WITH_SEMAPHORE(sem);
StartRead(bottom);
bottom_hash = ((int64_t)GetFileNumber()<<32) | df_FilePage;
while (top-bottom > 1) {
look = (top+bottom)/2;
StartRead(look);
look_hash = (int64_t)GetFileNumber()<<32 | df_FilePage;
// erased sector so can discount everything above
if (look_hash >= 0xFFFF00000000) {
look_hash = 0;
}
if (look_hash < bottom_hash) {
// move down
top = look;
} else {
// move up
bottom = look;
bottom_hash = look_hash;
}
}
StartRead(top);
top_hash = ((int64_t)GetFileNumber()<<32) | df_FilePage;
if (top_hash >= 0xFFFF00000000) {
top_hash = 0;
}
if (top_hash > bottom_hash) {
return top;
}
return bottom;
}
// This function finds the last page of a particular log file
uint32_t AP_Logger_Block::find_last_page_of_log(uint16_t log_number)
{
uint32_t look;
uint32_t bottom;
uint32_t top;
uint64_t look_hash;
uint64_t check_hash;
WITH_SEMAPHORE(sem);
if (is_wrapped()) {
bottom = StartRead(1);
if (bottom > log_number) {
bottom = find_last_page();
top = df_NumPages;
} else {
bottom = 1;
top = find_last_page();
}
} else {
bottom = 1;
top = find_last_page();
}
check_hash = (int64_t)log_number<<32 | 0xFFFFFFFF;
while (top-bottom > 1) {
look = (top+bottom)/2;
StartRead(look);
look_hash = (int64_t)GetFileNumber()<<32 | df_FilePage;
if (look_hash >= 0xFFFF00000000) {
look_hash = 0;
}
if (look_hash > check_hash) {
// move down
top = look;
} else {
// move up
bottom = look;
}
}
if (StartRead(top) == log_number) {
return top;
}
if (StartRead(bottom) == log_number) {
return bottom;
}
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "No last page of log %d at top=%X or bot=%X", int(log_number), unsigned(top), unsigned(bottom));
return 0;
}
void AP_Logger_Block::get_log_info(uint16_t list_entry, uint32_t &size, uint32_t &time_utc)
{
uint32_t start, end;
WITH_SEMAPHORE(sem);
get_log_boundaries(list_entry, start, end);
if (end >= start) {
size = (end + 1 - start) * (uint32_t)(df_PageSize - sizeof(PageHeader));
} else {
size = (df_NumPages + end + 1 - start) * (uint32_t)(df_PageSize - sizeof(PageHeader));
}
size -= sizeof(FileHeader);
//printf("LOG %d(%d), %d-%d, size %d\n", log_num_from_list_entry(list_entry), list_entry, start, end, size);
StartRead(start);
// the log we are currently writing
if (df_FileTime == 0 && df_FileNumber == df_Write_FileNumber) {
uint64_t utc_usec;
if (AP::rtc().get_utc_usec(utc_usec)) {
df_FileTime = utc_usec / 1000000U;
}
}
time_utc = df_FileTime;
}
// read size bytes of data from the buffer
bool AP_Logger_Block::BlockRead(uint16_t IntPageAdr, void *pBuffer, uint16_t size)
{
memcpy(pBuffer, &buffer[IntPageAdr], size);
return true;
}
bool AP_Logger_Block::logging_failed() const
{
if (!_initialised) {
return true;
}
if (!io_thread_alive()) {
return true;
}
if (chip_full) {
return true;
}
return false;
}
// detect whether the IO thread is running, since this is considered a catastrophic failure for the logging system
// better be really, really sure
bool AP_Logger_Block::io_thread_alive() const
{
// if the io thread hasn't had a heartbeat in 3s it is dead
return (AP_HAL::millis() - io_timer_heartbeat) < 3000U || !hal.scheduler->is_system_initialized();
}
/*
IO timer running on IO thread
The IO timer runs every 1ms or at 1Khz. The standard flash chip can write rougly 130Kb/s
so there is little point in trying to write more than 130 bytes - or 1 page (256 bytes).
The W25Q128FV datasheet gives tpp as typically 0.7ms yielding an absolute maximum rate of
365Kb/s or just over a page per cycle.
*/
void AP_Logger_Block::io_timer(void)
{
uint32_t tnow = AP_HAL::millis();
io_timer_heartbeat = tnow;
// don't write anything for the first 2s to give the dataflash chip a chance to be ready
if (!_initialised || tnow < 2000) {
return;
}
if (erase_started) {
WITH_SEMAPHORE(sem);
if (InErase()) {
return;
}
// write the logging format in the last page
StartWrite(df_NumPages+1);
uint32_t version = DF_LOGGING_FORMAT;
memset(buffer, 0, df_PageSize);
memcpy(buffer, &version, sizeof(version));
FinishWrite();
erase_started = false;
chip_full = false;
status_msg = StatusMessage::ERASE_COMPLETE;
return;
}
if (df_EraseFrom > 0) {
WITH_SEMAPHORE(sem);
const uint32_t sectors = df_NumPages / df_PagePerSector;
const uint32_t block_size = df_PagePerBlock * df_PageSize;
const uint32_t sectors_in_block = block_size / (df_PagePerSector * df_PageSize);
uint32_t next_sector = get_sector(df_EraseFrom);
const uint32_t aligned_sector = sectors - (((df_NumPages - df_EraseFrom + 1) / df_PagePerSector) / sectors_in_block) * sectors_in_block;
while (next_sector < aligned_sector) {
Sector4kErase(next_sector);
io_timer_heartbeat = AP_HAL::millis();
next_sector++;
}
uint16_t blocks_erased = 0;
while (next_sector < sectors) {
blocks_erased++;
SectorErase(next_sector / sectors_in_block);
io_timer_heartbeat = AP_HAL::millis();
next_sector += sectors_in_block;
}
status_msg = StatusMessage::RECOVERY_COMPLETE;
df_EraseFrom = 0;
}
if (!CardInserted() || new_log_pending || chip_full) {
return;
}
// we have been asked to stop logging, flush everything
if (stop_log_pending) {
WITH_SEMAPHORE(sem);
log_write_started = false;
// complete writing any previous log, a page at a time to avoid holding the lock for too long
if (writebuf.available()) {
write_log_page();
} else {
writebuf.clear();
stop_log_pending = false;
}
// write at most one page
} else if (writebuf.available() >= df_PageSize - sizeof(struct PageHeader)) {
WITH_SEMAPHORE(sem);
write_log_page();
}
}
// write out a page of log data
void AP_Logger_Block::write_log_page()
{
struct PageHeader ph;
ph.FileNumber = df_Write_FileNumber;
ph.FilePage = df_Write_FilePage;
#if BLOCK_LOG_VALIDATE
ph.crc = DF_LOGGING_FORMAT + df_Write_FilePage;
#endif
memcpy(buffer, &ph, sizeof(ph));
const uint32_t pagesize = df_PageSize - sizeof(ph);
uint32_t nbytes = writebuf.read(&buffer[sizeof(ph)], pagesize);
if (nbytes < pagesize) {
memset(&buffer[sizeof(ph) + nbytes], 0, pagesize - nbytes);
}
FinishWrite();
df_Write_FilePage++;
}
void AP_Logger_Block::flash_test()
{
const uint32_t pages_to_check = 128;
for (uint32_t i=1; i<=pages_to_check; i++) {
if ((i-1) % df_PagePerBlock == 0) {
printf("Block erase %u\n", get_block(i));
SectorErase(get_block(i));
}
memset(buffer, uint8_t(i), df_PageSize);
if (i<5) {
printf("Flash fill 0x%x\n", uint8_t(i));
} else if (i==5) {
printf("Flash fill pages 5-%u\n", pages_to_check);
}
BufferToPage(i);
}
for (uint32_t i=1; i<=pages_to_check; i++) {
if (i<5) {
printf("Flash check 0x%x\n", uint8_t(i));
} else if (i==5) {
printf("Flash check pages 5-%u\n", pages_to_check);
}
PageToBuffer(i);
uint32_t bad_bytes = 0;
uint32_t first_bad_byte = 0;
for (uint32_t j=0; j<df_PageSize; j++) {
if (buffer[j] != uint8_t(i)) {
bad_bytes++;
if (bad_bytes == 1) {
first_bad_byte = j;
}
}
}
if (bad_bytes > 0) {
printf("Test failed: page %u, %u of %u bad bytes, first=0x%x\n",
i, bad_bytes, df_PageSize, buffer[first_bad_byte]);
}
}
}
#endif // HAL_LOGGING_BLOCK_ENABLED