Ardupilot2/ArduCopterMega/Attitude.pde
tridge60@gmail.com df6a1b51f3 make a lot more functions and variables static
this saves about 1k of code space through better compiler optimisation

git-svn-id: https://arducopter.googlecode.com/svn/trunk@2889 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-07-17 10:32:00 +00:00

177 lines
4.3 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// XXX TODO: convert these PI rate controlers to a Class
static int
get_stabilize_roll(long target_angle)
{
long error;
long rate;
error = wrap_180(target_angle - dcm.roll_sensor);
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// desired Rate:
rate = g.pid_stabilize_roll.get_pi((float)error, delta_ms_fast_loop, 1.0);
//Serial.printf("%d\t%d\t%d ", (int)target_angle, (int)error, (int)rate);
// Rate P:
error = rate - (long)(degrees(omega.x) * 100.0);
rate = g.pid_rate_roll.get_pi((float)error, delta_ms_fast_loop, 1.0);
//Serial.printf("%d\t%d\n", (int)error, (int)rate);
// output control:
return (int)constrain(rate, -2500, 2500);
}
static int
get_stabilize_pitch(long target_angle)
{
long error;
long rate;
error = wrap_180(target_angle - dcm.pitch_sensor);
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// desired Rate:
rate = g.pid_stabilize_pitch.get_pi((float)error, delta_ms_fast_loop, 1.0);
//Serial.printf("%d\t%d\t%d ", (int)target_angle, (int)error, (int)rate);
// Rate P:
error = rate - (long)(degrees(omega.y) * 100.0);
rate = g.pid_rate_pitch.get_pi((float)error, delta_ms_fast_loop, 1.0);
//Serial.printf("%d\t%d\n", (int)error, (int)rate);
// output control:
return (int)constrain(rate, -2500, 2500);
}
static int
get_stabilize_yaw(long target_angle, float scaler)
{
long error;
long rate;
error = wrap_180(target_angle - dcm.yaw_sensor);
// limit the error we're feeding to the PID
error = constrain(error, -4500, 4500);
// desired Rate:
rate = g.pid_stabilize_yaw.get_pi((float)error, delta_ms_fast_loop, scaler);
//Serial.printf("%u\t%d\t%d\t", (int)target_angle, (int)error, (int)rate);
// Rate P:
error = rate - (long)(degrees(omega.z) * 100.0);
rate = g.pid_rate_yaw.get_pi((float)error, delta_ms_fast_loop, 1.0);
//Serial.printf("%d\t%d\n", (int)error, (int)rate);
// output control:
return (int)constrain(rate, -2500, 2500);
}
static int
get_rate_roll(long target_rate)
{
long error;
target_rate = constrain(target_rate, -2500, 2500);
error = (target_rate * 4.5) - (long)(degrees(omega.x) * 100.0);
target_rate = g.pid_rate_roll.get_pi((float)error, delta_ms_fast_loop, 1.0);
// output control:
return (int)constrain(target_rate, -2500, 2500);
}
static int
get_rate_pitch(long target_rate)
{
long error;
target_rate = constrain(target_rate, -2500, 2500);
error = (target_rate * 4.5) - (long)(degrees(omega.y) * 100.0);
target_rate = g.pid_rate_pitch.get_pi((float)error, delta_ms_fast_loop, 1.0);
// output control:
return (int)constrain(target_rate, -2500, 2500);
}
static int
get_rate_yaw(long target_rate)
{
long error;
error = (target_rate * 4.5) - (long)(degrees(omega.z) * 100.0);
target_rate = g.pid_rate_yaw.get_pi((float)error, delta_ms_fast_loop, 1.0);
// output control:
return (int)constrain(target_rate, -2500, 2500);
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
static void
reset_I(void)
{
// I removed these, they don't seem to be needed.
}
/*************************************************************
throttle control
****************************************************************/
// user input:
// -----------
static int
get_throttle(int throttle_input)
{
throttle_input = (float)throttle_input * angle_boost();
throttle_input += throttle_slew;
return max(throttle_input, 0);
}
static long
get_nav_yaw_offset(int yaw_input, int reset)
{
long _yaw;
if(reset == 0){
// we are on the ground
return dcm.yaw_sensor;
}else{
// re-define nav_yaw if we have stick input
if(yaw_input != 0){
// set nav_yaw + or - the current location
_yaw = (long)yaw_input + dcm.yaw_sensor;
// we need to wrap our value so we can be 0 to 360 (*100)
return wrap_360(_yaw);
}else{
return nav_yaw;
}
}
}
/*
static int alt_hold_velocity()
{
// subtract filtered Accel
float error = abs(next_WP.alt - current_loc.alt);
error = min(error, 200);
error = 1 - (error/ 200.0);
return (accels_rot.z + 9.81) * accel_gain * error;
}*/
static float angle_boost()
{
float temp = cos_pitch_x * cos_roll_x;
temp = 2.0 - constrain(temp, .5, 1.0);
return temp;
}