Ardupilot2/ArduCopterMega/ArduCopterMega.pde
jasonshort e6fe75c9aa fixed FBW bugs
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1560 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-01-26 07:14:54 +00:00

1026 lines
26 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/*
ArduCopterMega Version 0.1 Experimental
Authors: Jason Short
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier
This firmware is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <RC_Channel.h> // ArduPilot Mega RC Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <Wire.h> // Arduino I2C lib
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_Compass_HMC5843.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_IMU.h> // ArduPilot Mega IMU Library
#include <AP_DCM.h> // ArduPilot Mega DCM Library
#include <PID.h> // ArduPilot Mega RC Library
// Configuration
#include "config.h"
// Local modules
#include "defines.h"
// Serial ports
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port (except for GPS_PROTOCOL_IMU)
FastSerialPort3(Serial3); // Telemetry port (optional, Standard and ArduPilot protocols only)
// standard sensors for live flight
AP_ADC_ADS7844 adc;
APM_BMP085_Class APM_BMP085;
AP_Compass_HMC5843 compass;
// GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA GPS(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF GPS(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX GPS(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_IMU
AP_GPS_IMU GPS(&Serial); // note, console port
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK GPS(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_NONE GPS(NULL);
#else
# error Must define GPS_PROTOCOL in your configuration file.
#endif
AP_IMU_Oilpan imu(&adc, EE_IMU_OFFSET);
AP_DCM dcm(&imu, &GPS);
//AP_DCM dcm(&imu, &gps, &compass);
// GENERAL VARIABLE DECLARATIONS
// --------------------------------------------
byte control_mode = STABILIZE;
boolean failsafe = false; // did our throttle dip below the failsafe value?
boolean ch3_failsafe = false;
byte oldSwitchPosition; // for remembering the control mode switch
byte fbw_timer; // for limiting the execution of FBW input
const char *comma = ",";
byte flight_modes[6];
const char* flight_mode_strings[] = {
"ACRO",
"STABILIZE",
"ALT_HOLD",
"FBW",
"AUTO",
"POSITION_HOLD",
"RTL",
"TAKEOFF",
"LAND"};
/* Radio values
Channel assignments
1 Ailerons (rudder if no ailerons)
2 Elevator
3 Throttle
4 Rudder (if we have ailerons)
5 Mode - 3 position switch
6 Altitude for Hold, user assignable
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
8 TBD
*/
// Radio
// -----
RC_Channel rc_1(EE_RADIO_1);
RC_Channel rc_2(EE_RADIO_2);
RC_Channel rc_3(EE_RADIO_3);
RC_Channel rc_4(EE_RADIO_4);
RC_Channel rc_5(EE_RADIO_5);
RC_Channel rc_6(EE_RADIO_6);
RC_Channel rc_7(EE_RADIO_7);
RC_Channel rc_8(EE_RADIO_8);
RC_Channel rc_camera_pitch(EE_RADIO_9);
RC_Channel rc_camera_yaw(EE_RADIO_10);
int motor_out[4];
byte flight_mode_channel;
byte frame_type = PLUS_FRAME;
// PIDs and gains
// ---------------
//Acro
PID pid_acro_rate_roll (EE_GAIN_1);
PID pid_acro_rate_pitch (EE_GAIN_2);
PID pid_acro_rate_yaw (EE_GAIN_3);
//Stabilize
PID pid_stabilize_roll (EE_GAIN_4);
PID pid_stabilize_pitch (EE_GAIN_5);
PID pid_yaw (EE_GAIN_6);
Vector3f omega;
// roll pitch
float stabilize_dampener;
int max_stabilize_dampener;
// yaw
float hold_yaw_dampener;
int max_yaw_dampener;
// used to transition yaw control from Rate control to Yaw hold
boolean rate_yaw_flag;
// Nav
PID pid_nav_lat (EE_GAIN_7);
PID pid_nav_lon (EE_GAIN_8);
PID pid_baro_throttle (EE_GAIN_9);
PID pid_sonar_throttle (EE_GAIN_10);
boolean motor_light;
// GPS variables
// -------------
byte ground_start_count = 5; // have we achieved first lock and set Home?
const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage
float scaleLongUp = 1; // used to reverse longtitude scaling
float scaleLongDown = 1; // used to reverse longtitude scaling
boolean GPS_light = false; // status of the GPS light
// Location & Navigation
// ---------------------
byte wp_radius = 3; // meters
long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate
long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target
int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate
byte loiter_radius; // meters
float x_track_gain;
int x_track_angle;
long alt_to_hold; // how high we should be for RTL
long nav_angle; // how much to pitch towards target
long pitch_max;
byte command_must_index; // current command memory location
byte command_may_index; // current command memory location
byte command_must_ID; // current command ID
byte command_may_ID; // current command ID
float altitude_gain; // in nav
float distance_gain; // in nav
// Airspeed
// --------
int airspeed; // m/s * 100
// Throttle Failsafe
// ------------------
boolean motor_armed = false;
boolean motor_auto_safe = false;
byte throttle_failsafe_enabled;
int throttle_failsafe_value;
byte throttle_failsafe_action;
uint16_t log_bitmask;
// Location Errors
// ---------------
long bearing_error; // deg * 100 : 0 to 36000
long altitude_error; // meters * 100 we are off in altitude
float airspeed_error; // m / s * 100
float crosstrack_error; // meters we are off trackline
long distance_error; // distance to the WP
long yaw_error; // how off are we pointed
// Sensors
// -------
float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter
float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
float current_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
float current_amps;
float current_total;
int milliamp_hours;
boolean current_enabled = false;
// Magnetometer variables
// ----------------------
int magnetom_x;
int magnetom_y;
int magnetom_z;
float MAG_Heading;
float mag_offset_x;
float mag_offset_y;
float mag_offset_z;
float mag_declination;
bool compass_enabled;
// Barometer Sensor variables
// --------------------------
int baro_offset; // used to correct drift of absolute pressue sensor
unsigned long abs_pressure;
unsigned long abs_pressure_ground;
int ground_temperature;
int temp_unfilt;
// From IMU
// --------
//long roll_sensor; // degrees * 100
//long pitch_sensor; // degrees * 100
//long yaw_sensor; // degrees * 100
float roll; // radians
float pitch; // radians
float yaw; // radians
byte altitude_sensor = BARO; // used to know whic sensor is active, BARO or SONAR
// flight mode specific
// --------------------
boolean takeoff_complete = false; // Flag for using take-off controls
boolean land_complete = false;
int landing_pitch; // pitch for landing set by commands
//int takeoff_pitch;
int takeoff_altitude;
int landing_distance; // meters;
// Loiter management
// -----------------
long old_target_bearing; // deg * 100
int loiter_total; // deg : how many times to loiter * 360
int loiter_delta; // deg : how far we just turned
int loiter_sum; // deg : how far we have turned around a waypoint
long loiter_time; // millis : when we started LOITER mode
int loiter_time_max; // millis : how long to stay in LOITER mode
// these are the values for navigation control functions
// ----------------------------------------------------
long nav_roll; // deg * 100 : target roll angle
long nav_pitch; // deg * 100 : target pitch angle
long nav_yaw; // deg * 100 : target yaw angle
long nav_lat; // for error calcs
long nav_lon; // for error calcs
int nav_throttle; // 0-1000 for throttle control
long command_yaw_start; // what angle were we to begin with
long command_yaw_start_time; // when did we start turning
int command_yaw_time; // how long we are turning
long command_yaw_end; // what angle are we trying to be
long command_yaw_delta; // how many degrees will we turn
int command_yaw_speed; // how fast to turn
byte command_yaw_dir;
long old_alt; // used for managing altitude rates
int velocity_land;
long altitude_estimate; // for smoothing GPS output
long distance_estimate; // for smoothing GPS output
int throttle_min; // 0 - 1000 : Min throttle output - copter should be 0
int throttle_cruise; // 0 - 1000 : what will make the copter hover
int throttle_max; // 0 - 1000 : Max throttle output
// Waypoints
// ---------
long GPS_wp_distance; // meters - distance between plane and next waypoint
long wp_distance; // meters - distance between plane and next waypoint
long wp_totalDistance; // meters - distance between old and next waypoint
byte wp_total; // # of Commands total including way
byte wp_index; // Current active command index
byte next_wp_index; // Current active command index
// repeating event control
// -----------------------
byte event_id; // what to do - see defines
long event_timer; // when the event was asked for in ms
int event_delay; // how long to delay the next firing of event in millis
int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice
int event_value; // per command value, such as PWM for servos
int event_undo_value; // the value used to undo commands
byte repeat_forever;
byte undo_event; // counter for timing the undo
// delay command
// --------------
int delay_timeout; // used to delay commands
long delay_start; // used to delay commands
// 3D Location vectors
// -------------------
struct Location home; // home location
struct Location prev_WP; // last waypoint
struct Location current_loc; // current location
struct Location next_WP; // next waypoint
struct Location tell_command; // command for telemetry
struct Location next_command; // command preloaded
long target_altitude; // used for
long offset_altitude; // used for
boolean home_is_set = false; // Flag for if we have gps lock and have set the home location
// IMU variables
// -------------
float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
float COGX; // Course overground X axis
float COGY = 1; // Course overground Y axis
// Performance monitoring
// ----------------------
long perf_mon_timer;
//float imu_health; // Metric based on accel gain deweighting
int G_Dt_max; // Max main loop cycle time in milliseconds
byte gyro_sat_count;
byte adc_constraints;
byte renorm_sqrt_count;
byte renorm_blowup_count;
int gps_fix_count;
byte gcs_messages_sent;
// GCS
// ---
char GCS_buffer[53];
char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed
// System Timers
// --------------
unsigned long fast_loopTimer; // Time in miliseconds of main control loop
unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete
int mainLoop_count;
unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop
byte medium_loopCounter; // Counters for branching from main control loop to slower loops
byte medium_count;
byte slow_loopCounter;
byte superslow_loopCounter;
unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav
uint8_t delta_ms_medium_loop;
uint8_t delta_ms_fast_loop; // Delta Time in miliseconds
unsigned long dTnav; // Delta Time in milliseconds for navigation computations
unsigned long elapsedTime; // for doing custom events
float load; // % MCU cycles used
byte FastLoopGate = 9;
// AC generic variables for future use
byte gled_status = HIGH;
long gled_timer;
int gled_speed = 200;
long cli_timer;
byte cli_status = LOW;
byte cli_step;
byte fled_status;
byte res1;
byte res2;
byte res3;
byte res4;
byte res5;
byte cam_mode;
byte cam1;
byte cam2;
byte cam3;
int ires1;
int ires2;
int ires3;
int ires4;
boolean SW_DIP1; // closest to SW2 slider switch
boolean SW_DIP2;
boolean SW_DIP3;
boolean SW_DIP4; // closest to header pins
// Basic Initialization
//---------------------
void setup() {
init_ardupilot();
#if ENABLE_EXTRAINIT
init_extras();
#endif
}
void loop()
{
// We want this to execute at 100Hz
// --------------------------------
if (millis() - fast_loopTimer > 9) {
delta_ms_fast_loop = millis() - fast_loopTimer;
fast_loopTimer = millis();
load = float(fast_loopTimeStamp - fast_loopTimer) / delta_ms_fast_loop;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
fast_loopTimeStamp = millis();
}
if (millis() - medium_loopTimer > 19) {
delta_ms_medium_loop = millis() - medium_loopTimer;
medium_loopTimer = millis();
medium_loop();
/* commented out temporarily
if (millis() - perf_mon_timer > 20000) {
if (mainLoop_count != 0) {
GCS.send_message(MSG_PERF_REPORT);
if (log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
resetPerfData();
}
}*/
}
}
// Main loop 50-100Hz
void fast_loop()
{
// IMU DCM Algorithm
read_AHRS();
// This is the fast loop - we want it to execute at 200Hz if possible
// ------------------------------------------------------------------
if (delta_ms_fast_loop > G_Dt_max)
G_Dt_max = delta_ms_fast_loop;
// custom code/exceptions for flight modes
// ---------------------------------------
update_current_flight_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
}
void medium_loop()
{
// Read radio
// ----------
read_radio(); // read the radio first
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS
//-------------------------------
case 0:
medium_loopCounter++;
update_GPS();
readCommands();
if(compass_enabled){
compass.read(); // Read magnetometer
compass.calculate(roll, pitch); // Calculate heading
}
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
if(GPS.new_data){
GPS.new_data = false;
dTnav = millis() - nav_loopTimer;
nav_loopTimer = millis();
// calculate the plane's desired bearing
// -------------------------------------
navigate();
}
// calc pitch and roll to target
// -----------------------------
calc_nav();
break;
// command processing
//-------------------
case 2:
medium_loopCounter++;
// Read Baro pressure
// ------------------
read_barometer();
// altitude smoothing
// ------------------
calc_altitude_error();
// perform next command
// --------------------
update_commands();
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
if (log_bitmask & MASK_LOG_ATTITUDE_MED && (log_bitmask & MASK_LOG_ATTITUDE_FAST == 0))
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor);
if (log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
if (log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
if (log_bitmask & MASK_LOG_GPS)
Log_Write_GPS(GPS.time, current_loc.lat, current_loc.lng, GPS.altitude, current_loc.alt, (long) GPS.ground_speed, GPS.ground_course, GPS.fix, GPS.num_sats);
send_message(MSG_ATTITUDE); // Sends attitude data
break;
// This case controls the slow loop
//---------------------------------
case 4:
if (current_enabled){
read_current();
}
// shall we trim the copter?
// ------------------------
read_trim_switch();
// shall we check for engine start?
// --------------------------------
arm_motors();
medium_loopCounter = 0;
slow_loop();
break;
default:
medium_loopCounter = 0;
break;
}
// stuff that happens at 50 hz
// ---------------------------
// use Yaw to find our bearing error
calc_bearing_error();
// guess how close we are - fixed observer calc
calc_distance_error();
if (log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor);
if (log_bitmask & MASK_LOG_RAW)
Log_Write_Raw();
#if GCS_PROTOCOL == 6 // This is here for Benjamin Pelletier. Please do not remove without checking with me. Doug W
readgcsinput();
#endif
#if ENABLE_HIL
output_HIL();
#endif
#if ENABLE_CAM
camera_stabilization();
#endif
#if ENABLE_AM
flight_lights();
#endif
#if ENABLE_xx
do_something_usefull();
#endif
if (millis() - perf_mon_timer > 20000) {
if (mainLoop_count != 0) {
send_message(MSG_PERF_REPORT);
if (log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
resetPerfData();
}
}
}
void slow_loop()
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter){
case 0:
slow_loopCounter++;
superslow_loopCounter++;
if(superslow_loopCounter >=15) {
// keep track of what page is in use in the log
// *** We need to come up with a better scheme to handle this...
eeprom_write_word((uint16_t *) EE_LAST_LOG_PAGE, DataFlash.GetWritePage());
superslow_loopCounter = 0;
}
break;
case 1:
slow_loopCounter++;
//Serial.println(stabilize_rate_roll_pitch,3);
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
//Serial.print("I: ")
//Serial.println(rc_1.get_integrator(), 1);
// Read main battery voltage if hooked up - does not read the 5v from radio
// ------------------------------------------------------------------------
#if BATTERY_EVENT == 1
read_battery();
#endif
break;
case 2:
slow_loopCounter = 0;
update_events();
// save current data to the flash
if (log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
break;
default:
slow_loopCounter = 0;
break;
}
}
void update_GPS(void)
{
GPS.update();
update_GPS_light();
if (GPS.new_data && GPS.fix) {
send_message(MSG_LOCATION);
// for performance
// ---------------
gps_fix_count++;
if(ground_start_count > 1){
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
Serial.println("!! bad loc");
ground_start_count = 5;
} else {
if (log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
// reset our nav loop timer
nav_loopTimer = millis();
init_home();
// init altitude
current_loc.alt = GPS.altitude;
ground_start_count = 0;
}
}
/* disabled for now
// baro_offset is an integrator for the gps altitude error
baro_offset += altitude_gain * (float)(GPS.altitude - current_loc.alt);
*/
current_loc.lng = GPS.longitude; // Lon * 10 * *7
current_loc.lat = GPS.latitude; // Lat * 10 * *7
COGX = cos(ToRad(GPS.ground_course / 100.0));
COGY = sin(ToRad(GPS.ground_course / 100.0));
}
}
void update_current_flight_mode(void)
{
if(control_mode == AUTO){
//Serial.print("!");
//crash_checker();
switch(command_must_ID){
//case CMD_TAKEOFF:
// break;
//case CMD_LAND:
// break;
default:
// Intput Pitch, Roll, Yaw and Throttle
// ------------------------------------
//calc_nav_pid();
//calc_nav_roll();
//calc_nav_pitch();
// based on altitude error
// -----------------------
calc_nav_throttle();
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
auto_yaw();
// mix in user control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
// apply throttle control
output_auto_throttle();
break;
}
}else{
switch(control_mode){
case ACRO:
// Intput Pitch, Roll, Yaw and Throttle
// ------------------------------------
// clear any AP naviagtion values
nav_pitch = 0;
nav_roll = 0;
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// Yaw control
output_manual_yaw();
// apply throttle control
output_manual_throttle();
// mix in user control
control_nav_mixer();
// perform rate or stabilzation
// ----------------------------
// Roll control
if(abs(rc_1.control_in) >= ACRO_RATE_TRIGGER){
output_rate_roll(); // rate control yaw
}else{
output_stabilize_roll(); // hold yaw
}
// Roll control
if(abs(rc_2.control_in) >= ACRO_RATE_TRIGGER){
output_rate_pitch(); // rate control yaw
}else{
output_stabilize_pitch(); // hold yaw
}
break;
case STABILIZE:
// Intput Pitch, Roll, Yaw and Throttle
// ------------------------------------
// clear any AP naviagtion values
nav_pitch = 0;
nav_roll = 0;
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// Yaw control
output_manual_yaw();
// apply throttle control
output_manual_throttle();
// mix in user control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case FBW:
// we are currently using manual throttle during alpha testing.
fbw_timer++;
//call at 5 hz
if(fbw_timer > 20){
fbw_timer = 0;
if(home_is_set == false){
// we are not using GPS
// reset the location
// RTL won't function
current_loc.lat = home.lat = 0;
current_loc.lng = home.lng = 0;
// set dTnav manually
dTnav = 200;
}
next_WP.lat = home.lat + rc_1.control_in / 5; // 4500 / 5 = 900 = 10 meteres
next_WP.lng = home.lng - rc_2.control_in / 5; // 4500 / 5 = 900 = 10 meteres
}
// Yaw control
// -----------
output_manual_yaw();
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// apply throttle control
output_manual_throttle();
// apply nav_pitch and nav_roll to output
fbw_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case ALT_HOLD:
// Intput Pitch, Roll, Yaw and Throttle
// ------------------------------------
// clear any AP naviagtion values
nav_pitch = 0;
nav_roll = 0;
// get desired height from the throttle
next_WP.alt = home.alt + (rc_3.control_in * 4); // 0 - 1000 (40 meters)
// Yaw control
// -----------
output_manual_yaw();
// based on altitude error
// -----------------------
calc_nav_throttle();
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// apply throttle control
output_auto_throttle();
// mix in user control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case RTL:
// Intput Pitch, Roll, Yaw and Throttle
// ------------------------------------
//calc_nav_pid();
//calc_nav_roll();
//calc_nav_pitch();
// based on altitude error
// -----------------------
calc_nav_throttle();
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
auto_yaw();
// apply throttle control
output_auto_throttle();
// mix in user control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
case POSITION_HOLD:
// Intput Pitch, Roll, Yaw and Throttle
// ------------------------------------
//calc_nav_pid();
//calc_nav_roll();
//calc_nav_pitch();
// Yaw control
// -----------
output_manual_yaw();
// based on altitude error
// -----------------------
calc_nav_throttle();
// Output Pitch, Roll, Yaw and Throttle
// ------------------------------------
// apply throttle control
output_auto_throttle();
// mix in user control
control_nav_mixer();
// perform stabilzation
output_stabilize_roll();
output_stabilize_pitch();
break;
default:
//Serial.print("$");
break;
}
}
}
// called after a GPS read
void update_navigation()
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
// distance and bearing calcs only
if(control_mode == AUTO){
verify_must();
verify_may();
}else{
switch(control_mode){
case RTL:
update_crosstrack();
break;
}
}
}
void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
dcm.update_DCM(G_Dt);
omega = dcm.get_gyro();
}