Ardupilot2/libraries/AP_Baro/AP_Baro_MS5611.cpp
Pat Hickey f4aaa56b16 AP_Baro_MS5611: Asynchronous operation, plus c++ style changes.
Yeah, I know this was a big change to make all at once.
2011-12-11 15:21:10 -08:00

263 lines
6.9 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
APM_MS5611.cpp - Arduino Library for MS5611-01BA01 absolute pressure sensor
Code by Jose Julio, Pat Hickey and Jordi Muñoz. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Sensor is conected to standard SPI port
Chip Select pin: Analog2 (provisional until Jordi defines the pin)!!
Variables:
Temp : Calculated temperature (in Celsius degrees * 100)
Press : Calculated pressure (in mbar units * 100)
Methods:
init() : Initialization and sensor reset
read() : Read sensor data and _calculate Temperature, Pressure and Altitude
This function is optimized so the main host don´t need to wait
You can call this function in your main loop
Maximun data output frequency 100Hz
It returns a 1 if there are new data.
get_pressure() : return pressure in mbar*100 units
get_temperature() : return temperature in celsius degrees*100 units
get_altitude() : return altitude in meters
Internal functions:
_calculate() : Calculate Temperature and Pressure (temperature compensated) in real units
*/
#include <SPI.h>
#include "AP_Baro_MS5611.h"
/* on APM v.24 MS5661_CS is PG1 (Arduino pin 40) */
#define MS5611_CS 40
#define CMD_MS5611_RESET 0x1E
#define CMD_MS5611_PROM_Setup 0xA0
#define CMD_MS5611_PROM_C1 0xA2
#define CMD_MS5611_PROM_C2 0xA4
#define CMD_MS5611_PROM_C3 0xA6
#define CMD_MS5611_PROM_C4 0xA8
#define CMD_MS5611_PROM_C5 0xAA
#define CMD_MS5611_PROM_C6 0xAC
#define CMD_MS5611_PROM_CRC 0xAE
#define CMD_CONVERT_D1_OSR4096 0x48 // Maximun resolution
#define CMD_CONVERT_D2_OSR4096 0x58 // Maximun resolution
uint32_t AP_Baro_MS5611::_s_D1;
uint32_t AP_Baro_MS5611::_s_D2;
uint8_t AP_Baro_MS5611::_state;
long AP_Baro_MS5611::_timer;
bool AP_Baro_MS5611::_sync_access;
bool AP_Baro_MS5611::_updated;
uint8_t AP_Baro_MS5611::_spi_read(uint8_t reg)
{
uint8_t dump;
uint8_t return_value;
uint8_t addr = reg; // | 0x80; // Set most significant bit
digitalWrite(MS5611_CS, LOW);
dump = SPI.transfer(addr);
return_value = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return return_value;
}
uint16_t AP_Baro_MS5611::_spi_read_16bits(uint8_t reg)
{
uint8_t dump, byteH, byteL;
uint16_t return_value;
uint8_t addr = reg; // | 0x80; // Set most significant bit
digitalWrite(MS5611_CS, LOW);
dump = SPI.transfer(addr);
byteH = SPI.transfer(0);
byteL = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return_value = ((uint16_t)byteH<<8) | (byteL);
return return_value;
}
uint32_t AP_Baro_MS5611::_spi_read_adc()
{
uint8_t dump,byteH,byteM,byteL;
uint32_t return_value;
uint8_t addr = 0x00;
digitalWrite(MS5611_CS, LOW);
dump = SPI.transfer(addr);
byteH = SPI.transfer(0);
byteM = SPI.transfer(0);
byteL = SPI.transfer(0);
digitalWrite(MS5611_CS, HIGH);
return_value = (((uint32_t)byteH)<<16) | (((uint32_t)byteM)<<8) | (byteL);
return return_value;
}
void AP_Baro_MS5611::_spi_write(uint8_t reg)
{
uint8_t dump;
digitalWrite(MS5611_CS, LOW);
dump = SPI.transfer(reg);
digitalWrite(MS5611_CS, HIGH);
}
// The conversion proccess takes 8.2ms since the command
bool AP_Baro_MS5611::_ready()
{
return ( ( millis() - _timer ) > 10 ); // wait for more than 10ms
}
// Public Methods //////////////////////////////////////////////////////////////
// SPI should be initialized externally
void AP_Baro_MS5611::init( AP_PeriodicProcess *scheduler )
{
pinMode(MS5611_CS, OUTPUT); // Chip select Pin
digitalWrite(MS5611_CS, HIGH);
delay(1);
_spi_write(CMD_MS5611_RESET);
delay(4);
// We read the factory calibration
C1 = _spi_read_16bits(CMD_MS5611_PROM_C1);
C2 = _spi_read_16bits(CMD_MS5611_PROM_C2);
C3 = _spi_read_16bits(CMD_MS5611_PROM_C3);
C4 = _spi_read_16bits(CMD_MS5611_PROM_C4);
C5 = _spi_read_16bits(CMD_MS5611_PROM_C5);
C6 = _spi_read_16bits(CMD_MS5611_PROM_C6);
//Send a command to read Temp first
_spi_write(CMD_CONVERT_D2_OSR4096);
_timer = millis();
_state = 1;
Temp=0;
Press=0;
scheduler->register_process( AP_Baro_MS5611::_update );
}
// Read the sensor. This is a state machine
// We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
// temperature does not change so quickly...
void AP_Baro_MS5611::_update(void)
{
if (_sync_access) return;
if (_state == 1){
if (_ready()){
_s_D2 = _spi_read_adc(); // On state 1 we read temp
_state++;
_spi_write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
_timer = millis();
}
}else{
if (_state == 5){
if (_ready()){
_s_D1 = _spi_read_adc();
_state = 1; // Start again from state = 1
_spi_write(CMD_CONVERT_D2_OSR4096); // Command to read temperature
_timer = millis();
_updated = true; // New pressure reading
}
}else{
if (_ready()){
_s_D1 = _spi_read_adc();
_state++;
_spi_write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
_timer = millis();
_updated = true; // New pressure reading
}
}
}
}
uint8_t AP_Baro_MS5611::read()
{
_sync_access = true;
bool updated = _updated;
_updated = 0;
if (updated > 0) {
D1 = _s_D1;
D2 = _s_D2;
_raw_press = D1;
_raw_temp = D2;
}
_sync_access = false;
_calculate();
return updated ? 1 : 0;
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS5611::_calculate()
{
int32_t dT;
long long TEMP; // 64 bits
long long OFF;
long long SENS;
long long P;
// Formulas from manufacturer datasheet
// TODO: optimization with shift operations... (shift operations works well on 64 bits variables?)
// We define parameters as 64 bits to prevent overflow on operations
dT = D2-((long)C5*256);
TEMP = 2000 + ((long long)dT * C6)/8388608;
OFF = (long long)C2 * 65536 + ((long long)C4 * dT ) / 128;
SENS = (long long)C1 * 32768 + ((long long)C3 * dT) / 256;
/*
if (TEMP < 2000){ // second order temperature compensation
long long T2 = (long long)dT*dT / 2147483648;
long long Aux_64 = (TEMP-2000)*(TEMP-2000);
long long OFF2 = 5*Aux_64/2;
long long SENS2 = 5*Aux_64/4;
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
*/
P = (D1*SENS/2097152 - OFF)/32768;
Temp = TEMP;
Press = P;
}
int32_t AP_Baro_MS5611::get_pressure()
{
return(Press);
}
int16_t AP_Baro_MS5611::get_temperature()
{
return(Temp);
}
// Return altitude using the standard 1013.25 mbar at sea level reference
float AP_Baro_MS5611::get_altitude()
{
float tmp_float;
float Altitude;
tmp_float = (Press / 101325.0);
tmp_float = pow(tmp_float, 0.190295);
Altitude = 44330 * (1.0 - tmp_float);
return (Altitude);
}
int32_t AP_Baro_MS5611::get_raw_pressure() {
return _raw_press;
}
int32_t AP_Baro_MS5611::get_raw_temp() {
return _raw_temp;
}