Ardupilot2/libraries/AP_Math/matrix3.h

140 lines
4.1 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
// Copyright 2010 Michael Smith, all rights reserved.
// This library is free software; you can redistribute it and / or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// Inspired by:
/****************************************
* 3D Vector Classes
* By Bill Perone (billperone@yahoo.com)
*/
//
// 3x3 matrix implementation.
//
// Note that the matrix is organised in row-normal form (the same as
// applies to array indexing).
//
// In addition to the template, this header defines the following types:
//
// Matrix3i 3x3 matrix of signed integers
// Matrix3ui 3x3 matrix of unsigned integers
// Matrix3l 3x3 matrix of signed longs
// Matrix3ul 3x3 matrix of unsigned longs
// Matrix3f 3x3 matrix of signed floats
//
#ifndef MATRIX3_H
#define MATRIX3_H
#include "vector3.h"
// 3x3 matrix with elements of type T
template <typename T>
class Matrix3 {
public:
// Vectors comprising the rows of the matrix
Vector3<T> a, b, c;
// trivial ctor
// note that the Vector3 ctor will zero the vector elements
Matrix3<T>() {}
// setting ctor
Matrix3<T>(const Vector3<T> a0, const Vector3<T> b0, const Vector3<T> c0): a(a0), b(b0), c(c0) {}
// setting ctor
Matrix3<T>(const T ax, const T ay, const T az, const T bx, const T by, const T bz, const T cx, const T cy, const T cz): a(ax,ay,az), b(bx,by,bz), c(cx,cy,cz) {}
// function call operator
void operator () (const Vector3<T> a0, const Vector3<T> b0, const Vector3<T> c0)
{ a = a0; b = b0; c = c0; }
// test for equality
bool operator == (const Matrix3<T> &m)
{ return (a==m.a && b==m.b && c==m.c); }
// test for inequality
bool operator != (const Matrix3<T> &m)
{ return (a!=m.a || b!=m.b || c!=m.c); }
// negation
Matrix3<T> operator - (void) const
{ return Matrix3<T>(-a,-b,-c); }
// addition
Matrix3<T> operator + (const Matrix3<T> &m) const
{ return Matrix3<T>(a+m.a, b+m.b, c+m.c); }
Matrix3<T> &operator += (const Matrix3<T> &m)
{ return *this = *this + m; }
// subtraction
Matrix3<T> operator - (const Matrix3<T> &m) const
{ return Matrix3<T>(a-m.a, b-m.b, c-m.c); }
Matrix3<T> &operator -= (const Matrix3<T> &m)
{ return *this = *this - m; }
// uniform scaling
Matrix3<T> operator * (const T num) const
{ return Matrix3<T>(a*num, b*num, c*num); }
Matrix3<T> &operator *= (const T num)
{ return *this = *this * num; }
Matrix3<T> operator / (const T num) const
{ return Matrix3<T>(a/num, b/num, c/num); }
Matrix3<T> &operator /= (const T num)
{ return *this = *this / num; }
// multiplication by a vector
Vector3<T> operator *(const Vector3<T> &v) const
{
return Vector3<T>(a.x * v.x + a.y * v.y + a.z * v.z,
b.x * v.x + b.y * v.y + b.z * v.z,
c.x * v.x + c.y * v.y + c.z * v.z);
}
// multiplication by another Matrix3<T>
Matrix3<T> operator *(const Matrix3<T> &m) const
{
Matrix3<T> temp (Vector3<T>(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x,
a.x * m.a.y + a.y * m.b.y + a.z * m.c.y,
a.x * m.a.z + a.y * m.b.z + a.z * m.c.z),
Vector3<T>(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x,
b.x * m.a.y + b.y * m.b.y + b.z * m.c.y,
b.x * m.a.z + b.y * m.b.z + b.z * m.c.z),
Vector3<T>(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x,
c.x * m.a.y + c.y * m.b.y + c.z * m.c.y,
c.x * m.a.z + c.y * m.b.z + c.z * m.c.z));
return temp;
}
Matrix3<T> &operator *=(const Matrix3<T> &m)
{ return *this = *this * m; }
// transpose the matrix
Matrix3<T> transposed(void) const
{
return Matrix3<T>(Vector3<T>(a.x, b.x, c.x),
Vector3<T>(a.y, b.y, c.y),
Vector3<T>(a.z, b.z, c.z));
}
Matrix3<T> transpose(void)
{ return *this = transposed(); }
// check if any elements are NAN
bool is_nan(void)
{ return a.is_nan() || b.is_nan() || c.is_nan(); }
};
typedef Matrix3<int16_t> Matrix3i;
typedef Matrix3<uint16_t> Matrix3ui;
typedef Matrix3<int32_t> Matrix3l;
typedef Matrix3<uint32_t> Matrix3ul;
typedef Matrix3<float> Matrix3f;
#endif // MATRIX3_H