Ardupilot2/libraries/AP_HAL_ChibiOS/CanIface.cpp

1072 lines
32 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2014 Pavel Kirienko
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Siddharth Bharat Purohit
*/
#include "AP_HAL_ChibiOS.h"
#if HAL_NUM_CAN_IFACES
#include <cassert>
#include <cstring>
#include <AP_Math/AP_Math.h>
# include <hal.h>
#include <AP_CANManager/AP_CANManager.h>
#include <AP_Common/ExpandingString.h>
# if !defined(STM32H7XX) && !defined(STM32G4)
#include "CANIface.h"
/* STM32F3's only CAN inteface does not have a number. */
#if defined(STM32F3XX)
#define RCC_APB1ENR_CAN1EN RCC_APB1ENR_CANEN
#define RCC_APB1RSTR_CAN1RST RCC_APB1RSTR_CANRST
#define CAN1_TX_IRQn CAN_TX_IRQn
#define CAN1_RX0_IRQn CAN_RX0_IRQn
#define CAN1_RX1_IRQn CAN_RX1_IRQn
#define CAN1_TX_IRQ_Handler STM32_CAN1_TX_HANDLER
#define CAN1_RX0_IRQ_Handler STM32_CAN1_RX0_HANDLER
#define CAN1_RX1_IRQ_Handler STM32_CAN1_RX1_HANDLER
#else
#define CAN1_TX_IRQ_Handler STM32_CAN1_TX_HANDLER
#define CAN1_RX0_IRQ_Handler STM32_CAN1_RX0_HANDLER
#define CAN1_RX1_IRQ_Handler STM32_CAN1_RX1_HANDLER
#define CAN2_TX_IRQ_Handler STM32_CAN2_TX_HANDLER
#define CAN2_RX0_IRQ_Handler STM32_CAN2_RX0_HANDLER
#define CAN2_RX1_IRQ_Handler STM32_CAN2_RX1_HANDLER
#endif // #if defined(STM32F3XX)
#if HAL_CANMANAGER_ENABLED
#define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANIface", fmt, ##args); } while (0)
#else
#define Debug(fmt, args...)
#endif
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
#define PERF_STATS(x) (x++)
#else
#define PERF_STATS(x)
#endif
extern AP_HAL::HAL& hal;
using namespace ChibiOS;
constexpr bxcan::CanType* const CANIface::Can[];
static ChibiOS::CANIface* can_ifaces[HAL_NUM_CAN_IFACES];
uint8_t CANIface::next_interface;
// mapping from logical interface to physical. First physical is 0, first logical is 0
static constexpr uint8_t can_interfaces[HAL_NUM_CAN_IFACES] = { HAL_CAN_INTERFACE_LIST };
// mapping from physical interface back to logical. First physical is 0, first logical is 0
static constexpr int8_t can_iface_to_idx[3] = { HAL_CAN_INTERFACE_REV_LIST };
static inline void handleTxInterrupt(uint8_t phys_index)
{
const int8_t iface_index = can_iface_to_idx[phys_index];
if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) {
return;
}
uint64_t precise_time = AP_HAL::micros64();
if (precise_time > 0) {
precise_time--;
}
if (can_ifaces[iface_index] != nullptr) {
can_ifaces[iface_index]->handleTxInterrupt(precise_time);
}
}
static inline void handleRxInterrupt(uint8_t phys_index, uint8_t fifo_index)
{
const int8_t iface_index = can_iface_to_idx[phys_index];
if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) {
return;
}
uint64_t precise_time = AP_HAL::micros64();
if (precise_time > 0) {
precise_time--;
}
if (can_ifaces[iface_index] != nullptr) {
can_ifaces[iface_index]->handleRxInterrupt(fifo_index, precise_time);
}
}
/*
* CANIface
*/
const uint32_t CANIface::TSR_ABRQx[CANIface::NumTxMailboxes] = {
bxcan::TSR_ABRQ0,
bxcan::TSR_ABRQ1,
bxcan::TSR_ABRQ2
};
CANIface::CANIface(uint8_t index) :
self_index_(index),
rx_bytebuffer_((uint8_t*)rx_buffer, sizeof(rx_buffer)),
rx_queue_(&rx_bytebuffer_)
{
if (index >= HAL_NUM_CAN_IFACES) {
AP_HAL::panic("Bad CANIface index.");
} else {
can_ = Can[index];
}
}
// constructor suitable for array
CANIface::CANIface() :
CANIface(next_interface++)
{}
bool CANIface::computeTimings(uint32_t target_bitrate, Timings& out_timings)
{
if (target_bitrate < 1) {
return false;
}
/*
* Hardware configuration
*/
const uint32_t pclk = STM32_PCLK1;
static const int MaxBS1 = 16;
static const int MaxBS2 = 8;
/*
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG
* CAN in Automation, 2003
*
* According to the source, optimal quanta per bit are:
* Bitrate Optimal Maximum
* 1000 kbps 8 10
* 500 kbps 16 17
* 250 kbps 16 17
* 125 kbps 16 17
*/
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17;
static const int MaxSamplePointLocation = 900;
/*
* Computing (prescaler * BS):
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified
* let:
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit
* PRESCALER_BS = PRESCALER * BS
* ==>
* PRESCALER_BS = PCLK / BITRATE
*/
const uint32_t prescaler_bs = pclk / target_bitrate;
/*
* Searching for such prescaler value so that the number of quanta per bit is highest.
*/
uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1);
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) {
if (bs1_bs2_sum <= 2) {
return false; // No solution
}
bs1_bs2_sum--;
}
const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum);
if ((prescaler < 1U) || (prescaler > 1024U)) {
return false; // No solution
}
/*
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum.
* We need to find the values so that the sample point is as close as possible to the optimal value.
*
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *)
* {{bs2 -> (1 + bs1)/7}}
*
* Hence:
* bs2 = (1 + bs1) / 7
* bs1 = (7 * bs1_bs2_sum - 1) / 8
*
* Sample point location can be computed as follows:
* Sample point location = (1 + bs1) / (1 + bs1 + bs2)
*
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one:
* - With rounding to nearest
* - With rounding to zero
*/
struct BsPair {
uint8_t bs1;
uint8_t bs2;
uint16_t sample_point_permill;
BsPair() :
bs1(0),
bs2(0),
sample_point_permill(0)
{ }
BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) :
bs1(arg_bs1),
bs2(uint8_t(bs1_bs2_sum - bs1)),
sample_point_permill(uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2)))
{}
bool isValid() const
{
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2);
}
};
// First attempt with rounding to nearest
BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8));
if (solution.sample_point_permill > MaxSamplePointLocation) {
// Second attempt with rounding to zero
solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8));
}
/*
* Final validation
* Helpful Python:
* def sample_point_from_btr(x):
* assert 0b0011110010000000111111000000000 & x == 0
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511
* return (1+ts1+1)/(1+ts1+1+ts2+1)
*
*/
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) {
return false;
}
Debug("Timings: quanta/bit: %d, sample point location: %.1f%%",
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F);
out_timings.prescaler = uint16_t(prescaler - 1U);
out_timings.sjw = 0; // Which means one
out_timings.bs1 = uint8_t(solution.bs1 - 1);
out_timings.bs2 = uint8_t(solution.bs2 - 1);
return true;
}
int16_t CANIface::send(const AP_HAL::CANFrame& frame, uint64_t tx_deadline,
CanIOFlags flags)
{
if (frame.isErrorFrame() || frame.dlc > 8) {
return -1;
}
/*
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because
* it is possible that the highest-priority frame between select() and send() could have been
* replaced with a lower priority one due to TX timeout. But we don't do this check because:
*
* - It is a highly unlikely scenario.
*
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new
* frame can only have higher priority, which doesn't break the logic.
*
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other
* issues to take care of before this one becomes relevant.
*
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive.
*/
CriticalSectionLocker lock;
/*
* Seeking for an empty slot
*/
uint8_t txmailbox = 0xFF;
if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) {
txmailbox = 0;
} else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) {
txmailbox = 1;
} else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) {
txmailbox = 2;
} else {
PERF_STATS(stats.tx_rejected);
return 0; // No transmission for you.
}
/*
* Setting up the mailbox
*/
bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox];
if (frame.isExtended()) {
mb.TIR = ((frame.id & AP_HAL::CANFrame::MaskExtID) << 3) | bxcan::TIR_IDE;
} else {
mb.TIR = ((frame.id & AP_HAL::CANFrame::MaskStdID) << 21);
}
if (frame.isRemoteTransmissionRequest()) {
mb.TIR |= bxcan::TIR_RTR;
}
mb.TDTR = frame.dlc;
mb.TDHR = (uint32_t(frame.data[7]) << 24) |
(uint32_t(frame.data[6]) << 16) |
(uint32_t(frame.data[5]) << 8) |
(uint32_t(frame.data[4]) << 0);
mb.TDLR = (uint32_t(frame.data[3]) << 24) |
(uint32_t(frame.data[2]) << 16) |
(uint32_t(frame.data[1]) << 8) |
(uint32_t(frame.data[0]) << 0);
mb.TIR |= bxcan::TIR_TXRQ; // Go.
/*
* Registering the pending transmission so we can track its deadline and loopback it as needed
*/
CanTxItem& txi = pending_tx_[txmailbox];
txi.deadline = tx_deadline;
txi.frame = frame;
txi.loopback = (flags & Loopback) != 0;
txi.abort_on_error = (flags & AbortOnError) != 0;
// setup frame initial state
txi.pushed = false;
return 1;
}
int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us, CanIOFlags& out_flags)
{
CriticalSectionLocker lock;
CanRxItem rx_item;
if (!rx_queue_.pop(rx_item)) {
return 0;
}
out_frame = rx_item.frame;
out_timestamp_us = rx_item.timestamp_us;
out_flags = rx_item.flags;
return 1;
}
#if !defined(HAL_BOOTLOADER_BUILD)
bool CANIface::configureFilters(const CanFilterConfig* filter_configs,
uint16_t num_configs)
{
if (mode_ != FilteredMode) {
return false;
}
if (num_configs <= NumFilters && filter_configs != nullptr) {
CriticalSectionLocker lock;
can_->FMR |= bxcan::FMR_FINIT;
// Slave (CAN2) gets half of the filters
can_->FMR &= ~0x00003F00UL;
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8;
can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters
can_->FM1R = 0; // Identifier Mask mode
can_->FS1R = 0x7ffffff; // Single 32-bit for all
const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters;
if (num_configs == 0) {
can_->FilterRegister[filter_start_index].FR1 = 0;
can_->FilterRegister[filter_start_index].FR2 = 0;
can_->FA1R = 1 << filter_start_index;
} else {
for (uint8_t i = 0; i < NumFilters; i++) {
if (i < num_configs) {
uint32_t id = 0;
uint32_t mask = 0;
const CanFilterConfig* const cfg = filter_configs + i;
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) {
id = (cfg->id & AP_HAL::CANFrame::MaskExtID) << 3;
mask = (cfg->mask & AP_HAL::CANFrame::MaskExtID) << 3;
id |= bxcan::RIR_IDE;
} else {
id = (cfg->id & AP_HAL::CANFrame::MaskStdID) << 21; // Regular std frames, nothing fancy.
mask = (cfg->mask & AP_HAL::CANFrame::MaskStdID) << 21; // Boring.
}
if (cfg->id & AP_HAL::CANFrame::FlagRTR) {
id |= bxcan::RIR_RTR;
}
if (cfg->mask & AP_HAL::CANFrame::FlagEFF) {
mask |= bxcan::RIR_IDE;
}
if (cfg->mask & AP_HAL::CANFrame::FlagRTR) {
mask |= bxcan::RIR_RTR;
}
can_->FilterRegister[filter_start_index + i].FR1 = id;
can_->FilterRegister[filter_start_index + i].FR2 = mask;
can_->FA1R |= (1 << (filter_start_index + i));
} else {
can_->FA1R &= ~(1 << (filter_start_index + i));
}
}
}
can_->FMR &= ~bxcan::FMR_FINIT;
return true;
}
return false;
}
#endif
bool CANIface::waitMsrINakBitStateChange(bool target_state)
{
const unsigned Timeout = 1000;
for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) {
const bool state = (can_->MSR & bxcan::MSR_INAK) != 0;
if (state == target_state) {
return true;
}
chThdSleep(chTimeMS2I(1));
}
return false;
}
void CANIface::handleTxMailboxInterrupt(uint8_t mailbox_index, bool txok, const uint64_t timestamp_us)
{
if (mailbox_index > NumTxMailboxes) {
return;
}
had_activity_ = had_activity_ || txok;
CanTxItem& txi = pending_tx_[mailbox_index];
if (txi.loopback && txok && !txi.pushed) {
CanRxItem rx_item;
rx_item.frame = txi.frame;
rx_item.timestamp_us = timestamp_us;
rx_item.flags = AP_HAL::CANIface::Loopback;
PERF_STATS(stats.tx_loopback);
rx_queue_.push(rx_item);
}
if (txok && !txi.pushed) {
txi.pushed = true;
PERF_STATS(stats.tx_success);
}
}
void CANIface::handleTxInterrupt(const uint64_t utc_usec)
{
// TXOK == false means that there was a hardware failure
if (can_->TSR & bxcan::TSR_RQCP0) {
const bool txok = can_->TSR & bxcan::TSR_TXOK0;
can_->TSR = bxcan::TSR_RQCP0;
handleTxMailboxInterrupt(0, txok, utc_usec);
}
if (can_->TSR & bxcan::TSR_RQCP1) {
const bool txok = can_->TSR & bxcan::TSR_TXOK1;
can_->TSR = bxcan::TSR_RQCP1;
handleTxMailboxInterrupt(1, txok, utc_usec);
}
if (can_->TSR & bxcan::TSR_RQCP2) {
const bool txok = can_->TSR & bxcan::TSR_TXOK2;
can_->TSR = bxcan::TSR_RQCP2;
handleTxMailboxInterrupt(2, txok, utc_usec);
}
#if CH_CFG_USE_EVENTS == TRUE
if (event_handle_ != nullptr) {
PERF_STATS(stats.num_events);
evt_src_.signalI(1 << self_index_);
}
#endif
pollErrorFlagsFromISR();
}
void CANIface::handleRxInterrupt(uint8_t fifo_index, uint64_t timestamp_us)
{
volatile uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R;
if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) {
return;
}
/*
* Register overflow as a hardware error
*/
if ((*rfr_reg & bxcan::RFR_FOVR) != 0) {
PERF_STATS(stats.rx_errors);
}
/*
* Read the frame contents
*/
AP_HAL::CANFrame &frame = isr_rx_frame;
const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index];
if ((rf.RIR & bxcan::RIR_IDE) == 0) {
frame.id = AP_HAL::CANFrame::MaskStdID & (rf.RIR >> 21);
} else {
frame.id = AP_HAL::CANFrame::MaskExtID & (rf.RIR >> 3);
frame.id |= AP_HAL::CANFrame::FlagEFF;
}
if ((rf.RIR & bxcan::RIR_RTR) != 0) {
frame.id |= AP_HAL::CANFrame::FlagRTR;
}
frame.dlc = rf.RDTR & 15;
frame.data[0] = uint8_t(0xFF & (rf.RDLR >> 0));
frame.data[1] = uint8_t(0xFF & (rf.RDLR >> 8));
frame.data[2] = uint8_t(0xFF & (rf.RDLR >> 16));
frame.data[3] = uint8_t(0xFF & (rf.RDLR >> 24));
frame.data[4] = uint8_t(0xFF & (rf.RDHR >> 0));
frame.data[5] = uint8_t(0xFF & (rf.RDHR >> 8));
frame.data[6] = uint8_t(0xFF & (rf.RDHR >> 16));
frame.data[7] = uint8_t(0xFF & (rf.RDHR >> 24));
*rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read
/*
* Store with timeout into the FIFO buffer and signal update event
*/
CanRxItem &rx_item = isr_rx_item;
rx_item.frame = frame;
rx_item.timestamp_us = timestamp_us;
rx_item.flags = 0;
if (rx_queue_.push(rx_item)) {
PERF_STATS(stats.rx_received);
} else {
PERF_STATS(stats.rx_overflow);
}
had_activity_ = true;
#if CH_CFG_USE_EVENTS == TRUE
if (event_handle_ != nullptr) {
PERF_STATS(stats.num_events);
evt_src_.signalI(1 << self_index_);
}
#endif
pollErrorFlagsFromISR();
}
void CANIface::pollErrorFlagsFromISR()
{
const uint8_t lec = uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT);
if (lec != 0) {
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
stats.esr = can_->ESR; // Record error status
#endif
can_->ESR = 0;
// Serving abort requests
for (int i = 0; i < NumTxMailboxes; i++) {
CanTxItem& txi = pending_tx_[i];
if (txi.aborted && txi.abort_on_error) {
can_->TSR = TSR_ABRQx[i];
txi.aborted = true;
PERF_STATS(stats.tx_abort);
}
}
}
}
void CANIface::discardTimedOutTxMailboxes(uint64_t current_time)
{
CriticalSectionLocker lock;
for (int i = 0; i < NumTxMailboxes; i++) {
CanTxItem& txi = pending_tx_[i];
if (txi.aborted || !txi.setup) {
continue;
}
if (txi.deadline < current_time) {
can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission
pending_tx_[i].aborted = true;
PERF_STATS(stats.tx_timedout);
}
}
}
void CANIface::clear_rx()
{
CriticalSectionLocker lock;
rx_queue_.clear();
}
void CANIface::pollErrorFlags()
{
CriticalSectionLocker cs_locker;
pollErrorFlagsFromISR();
}
bool CANIface::canAcceptNewTxFrame(const AP_HAL::CANFrame& frame) const
{
/*
* We can accept more frames only if the following conditions are satisfied:
* - There is at least one TX mailbox free (obvious enough);
* - The priority of the new frame is higher than priority of all TX mailboxes.
*/
{
static const uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2;
const uint32_t tme = can_->TSR & TME;
if (tme == TME) { // All TX mailboxes are free (as in freedom).
return true;
}
if (tme == 0) { // All TX mailboxes are busy transmitting.
return false;
}
}
/*
* The second condition requires a critical section.
*/
CriticalSectionLocker lock;
for (int mbx = 0; mbx < NumTxMailboxes; mbx++) {
if (!(pending_tx_[mbx].pushed || pending_tx_[mbx].aborted) && !frame.priorityHigherThan(pending_tx_[mbx].frame)) {
return false; // There's a mailbox whose priority is higher or equal the priority of the new frame.
}
}
return true; // This new frame will be added to a free TX mailbox in the next @ref send().
}
bool CANIface::isRxBufferEmpty() const
{
CriticalSectionLocker lock;
return rx_queue_.available() == 0;
}
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
uint32_t CANIface::getErrorCount() const
{
CriticalSectionLocker lock;
return stats.num_busoff_err +
stats.rx_errors +
stats.rx_overflow +
stats.tx_rejected +
stats.tx_abort +
stats.tx_timedout;
}
#endif // #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
#if CH_CFG_USE_EVENTS == TRUE
ChibiOS::EventSource CANIface::evt_src_;
bool CANIface::set_event_handle(AP_HAL::EventHandle* handle)
{
CriticalSectionLocker lock;
event_handle_ = handle;
event_handle_->set_source(&evt_src_);
return event_handle_->register_event(1 << self_index_);
}
#endif // #if CH_CFG_USE_EVENTS == TRUE
void CANIface::checkAvailable(bool& read, bool& write, const AP_HAL::CANFrame* pending_tx) const
{
write = false;
read = !isRxBufferEmpty();
if (pending_tx != nullptr) {
write = canAcceptNewTxFrame(*pending_tx);
}
}
bool CANIface::select(bool &read, bool &write,
const AP_HAL::CANFrame* pending_tx,
uint64_t blocking_deadline)
{
const bool in_read = read;
const bool in_write= write;
uint64_t time = AP_HAL::micros64();
if (!read && !write) {
//invalid request
return false;
}
discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots
pollErrorFlags();
checkAvailable(read, write, pending_tx); // Check if we already have some of the requested events
if ((read && in_read) || (write && in_write)) {
return true;
}
#if CH_CFG_USE_EVENTS == TRUE
// we don't support blocking select in AP_Periph and bootloader
while (time < blocking_deadline) {
if (event_handle_ == nullptr) {
break;
}
event_handle_->wait(blocking_deadline - time); // Block until timeout expires or any iface updates
checkAvailable(read, write, pending_tx); // Check what we got
if ((read && in_read) || (write && in_write)) {
return true;
}
time = AP_HAL::micros64();
}
#endif // #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
return true;
}
void CANIface::initOnce(bool enable_irq)
{
/*
* CAN1, CAN2
*/
{
CriticalSectionLocker lock;
switch (can_interfaces[self_index_]) {
case 0:
#if defined(RCC_APB1ENR1_CAN1EN)
RCC->APB1ENR1 |= RCC_APB1ENR1_CAN1EN;
RCC->APB1RSTR1 |= RCC_APB1RSTR1_CAN1RST;
RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_CAN1RST;
#else
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN;
RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST;
#endif
break;
#ifdef RCC_APB1ENR_CAN2EN
case 1:
RCC->APB1ENR |= RCC_APB1ENR_CAN2EN;
RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST;
break;
#endif
#ifdef RCC_APB1ENR_CAN3EN
case 2:
RCC->APB1ENR |= RCC_APB1ENR_CAN3EN;
RCC->APB1RSTR |= RCC_APB1RSTR_CAN3RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN3RST;
break;
#endif
}
}
/*
* IRQ
*/
if (!irq_init_ && enable_irq) {
CriticalSectionLocker lock;
switch (can_interfaces[self_index_]) {
case 0:
#ifdef HAL_CAN_IFACE1_ENABLE
nvicEnableVector(CAN1_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(CAN1_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(CAN1_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
#endif
break;
case 1:
#ifdef HAL_CAN_IFACE2_ENABLE
nvicEnableVector(CAN2_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(CAN2_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(CAN2_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
#endif
break;
case 2:
#ifdef HAL_CAN_IFACE3_ENABLE
nvicEnableVector(CAN3_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(CAN3_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(CAN3_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
#endif
break;
}
irq_init_ = true;
}
}
bool CANIface::init(const uint32_t bitrate, const CANIface::OperatingMode mode)
{
Debug("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode));
if (self_index_ > HAL_NUM_CAN_IFACES) {
Debug("CAN drv init failed");
return false;
}
if (can_ifaces[self_index_] == nullptr) {
can_ifaces[self_index_] = this;
#if !defined(HAL_BOOTLOADER_BUILD)
hal.can[self_index_] = this;
#endif
}
bitrate_ = bitrate;
mode_ = mode;
if (can_ifaces[0] == nullptr) {
can_ifaces[0] = new CANIface(0);
Debug("Failed to allocate CAN iface 0");
if (can_ifaces[0] == nullptr) {
return false;
}
}
if (self_index_ == 1 && !can_ifaces[0]->is_initialized()) {
Debug("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it");
Debug("Enabling CAN iface 0");
can_ifaces[0]->initOnce(false);
Debug("Initing iface 0...");
if (!can_ifaces[0]->init(bitrate, mode)) {
Debug("Iface 0 init failed");
return false;
}
Debug("Enabling CAN iface");
}
initOnce(true);
/*
* We need to silence the controller in the first order, otherwise it may interfere with the following operations.
*/
{
CriticalSectionLocker lock;
can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode
can_->MCR |= bxcan::MCR_INRQ; // Request init
can_->IER = 0; // Disable interrupts while initialization is in progress
}
if (!waitMsrINakBitStateChange(true)) {
Debug("MSR INAK not set");
can_->MCR = bxcan::MCR_RESET;
return false;
}
/*
* Object state - interrupts are disabled, so it's safe to modify it now
*/
rx_queue_.clear();
for (uint32_t i=0; i < NumTxMailboxes; i++) {
pending_tx_[i] = CanTxItem();
}
had_activity_ = false;
/*
* CAN timings for this bitrate
*/
Timings timings;
if (!computeTimings(bitrate, timings)) {
can_->MCR = bxcan::MCR_RESET;
return false;
}
Debug("Timings: presc=%u sjw=%u bs1=%u bs2=%u",
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2));
/*
* Hardware initialization (the hardware has already confirmed initialization mode, see above)
*/
can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648
can_->BTR = ((timings.sjw & 3U) << 24) |
((timings.bs1 & 15U) << 16) |
((timings.bs2 & 7U) << 20) |
(timings.prescaler & 1023U) |
((mode == SilentMode) ? bxcan::BTR_SILM : 0);
can_->IER = bxcan::IER_TMEIE | // TX mailbox empty
bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty
bxcan::IER_FMPIE1; // RX FIFO 1 is not empty
can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode
if (!waitMsrINakBitStateChange(false)) {
Debug("MSR INAK not cleared");
can_->MCR = bxcan::MCR_RESET;
return false;
}
/*
* Default filter configuration
*/
if (self_index_ == 0) {
can_->FMR |= bxcan::FMR_FINIT;
can_->FMR &= 0xFFFFC0F1;
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8; // Slave (CAN2) gets half of the filters
can_->FFA1R = 0; // All assigned to FIFO0 by default
can_->FM1R = 0; // Indentifier Mask mode
#if HAL_NUM_CAN_IFACES > 1
can_->FS1R = 0x7ffffff; // Single 32-bit for all
can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything
can_->FilterRegister[0].FR2 = 0;
can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything
can_->FilterRegister[NumFilters].FR2 = 0;
can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface
#else
can_->FS1R = 0x1fff;
can_->FilterRegister[0].FR1 = 0;
can_->FilterRegister[0].FR2 = 0;
can_->FA1R = 1;
#endif
can_->FMR &= ~bxcan::FMR_FINIT;
}
initialised_ = true;
return true;
}
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD)
void CANIface::get_stats(ExpandingString &str)
{
CriticalSectionLocker lock;
str.printf("tx_requests: %lu\n"
"tx_rejected: %lu\n"
"tx_success: %lu\n"
"tx_timedout: %lu\n"
"tx_abort: %lu\n"
"rx_received: %lu\n"
"rx_overflow: %lu\n"
"rx_errors: %lu\n"
"num_busoff_err: %lu\n"
"num_events: %lu\n"
"ESR: %lx\n",
stats.tx_requests,
stats.tx_rejected,
stats.tx_success,
stats.tx_timedout,
stats.tx_abort,
stats.rx_received,
stats.rx_overflow,
stats.rx_errors,
stats.num_busoff_err,
stats.num_events,
stats.esr);
}
#endif
/*
* Interrupt handlers
*/
extern "C"
{
#ifdef HAL_CAN_IFACE1_ENABLE
// CAN1
CH_IRQ_HANDLER(CAN1_TX_IRQ_Handler);
CH_IRQ_HANDLER(CAN1_TX_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleTxInterrupt(0);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(CAN1_RX0_IRQ_Handler);
CH_IRQ_HANDLER(CAN1_RX0_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleRxInterrupt(0, 0);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(CAN1_RX1_IRQ_Handler);
CH_IRQ_HANDLER(CAN1_RX1_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleRxInterrupt(0, 1);
CH_IRQ_EPILOGUE();
}
#endif
#ifdef HAL_CAN_IFACE2_ENABLE
// CAN2
CH_IRQ_HANDLER(CAN2_TX_IRQ_Handler);
CH_IRQ_HANDLER(CAN2_TX_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleTxInterrupt(1);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(CAN2_RX0_IRQ_Handler);
CH_IRQ_HANDLER(CAN2_RX0_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleRxInterrupt(1, 0);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(CAN2_RX1_IRQ_Handler);
CH_IRQ_HANDLER(CAN2_RX1_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleRxInterrupt(1, 1);
CH_IRQ_EPILOGUE();
}
#endif
#ifdef HAL_CAN_IFACE3_ENABLE
// CAN3
CH_IRQ_HANDLER(CAN3_TX_IRQ_Handler);
CH_IRQ_HANDLER(CAN3_TX_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleTxInterrupt(2);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(CAN3_RX0_IRQ_Handler);
CH_IRQ_HANDLER(CAN3_RX0_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleRxInterrupt(2, 0);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(CAN3_RX1_IRQ_Handler);
CH_IRQ_HANDLER(CAN3_RX1_IRQ_Handler)
{
CH_IRQ_PROLOGUE();
handleRxInterrupt(2, 1);
CH_IRQ_EPILOGUE();
}
#endif
} // extern "C"
#endif //!defined(STM32H7XX)
#endif //HAL_NUM_CAN_IFACES