Ardupilot2/libraries/AP_Baro/AP_Baro_MS5611.cpp
2015-12-20 17:55:39 +11:00

550 lines
15 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
originally written by Jose Julio, Pat Hickey and Jordi Muñoz
Heavily modified by Andrew Tridgell
*/
#include "AP_Baro_MS5611.h"
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
#define CMD_MS5611_RESET 0x1E
#define CMD_MS56XX_PROM 0xA0
#define ADDR_CMD_CONVERT_D1_OSR256 0x40 /* write to this address to start pressure conversion */
#define ADDR_CMD_CONVERT_D1_OSR512 0x42 /* write to this address to start pressure conversion */
#define ADDR_CMD_CONVERT_D1_OSR1024 0x44 /* write to this address to start pressure conversion */
#define ADDR_CMD_CONVERT_D1_OSR2048 0x46 /* write to this address to start pressure conversion */
#define ADDR_CMD_CONVERT_D1_OSR4096 0x48 /* write to this address to start pressure conversion */
#define ADDR_CMD_CONVERT_D2_OSR256 0x50 /* write to this address to start temperature conversion */
#define ADDR_CMD_CONVERT_D2_OSR512 0x52 /* write to this address to start temperature conversion */
#define ADDR_CMD_CONVERT_D2_OSR1024 0x54 /* write to this address to start temperature conversion */
#define ADDR_CMD_CONVERT_D2_OSR2048 0x56 /* write to this address to start temperature conversion */
#define ADDR_CMD_CONVERT_D2_OSR4096 0x58 /* write to this address to start temperature conversion */
/*
use an OSR of 1024 to reduce the self-heating effect of the
sensor. Information from MS tells us that some individual sensors
are quite sensitive to this effect and that reducing the OSR can
make a big difference
*/
#define ADDR_CMD_CONVERT_D1 ADDR_CMD_CONVERT_D1_OSR1024
#define ADDR_CMD_CONVERT_D2 ADDR_CMD_CONVERT_D2_OSR1024
// SPI Device //////////////////////////////////////////////////////////////////
AP_SerialBus_SPI::AP_SerialBus_SPI(enum AP_HAL::SPIDevice device, enum AP_HAL::SPIDeviceDriver::bus_speed speed) :
_device(device),
_speed(speed),
_spi(NULL),
_spi_sem(NULL)
{
}
void AP_SerialBus_SPI::init()
{
_spi = hal.spi->device(_device);
if (_spi == NULL) {
AP_HAL::panic("did not get valid SPI device driver!");
}
_spi_sem = _spi->get_semaphore();
if (_spi_sem == NULL) {
AP_HAL::panic("AP_SerialBus_SPI did not get valid SPI semaphroe!");
}
_spi->set_bus_speed(_speed);
}
uint16_t AP_SerialBus_SPI::read_16bits(uint8_t reg)
{
uint8_t tx[3] = { reg, 0, 0 };
uint8_t rx[3];
_spi->transaction(tx, rx, 3);
return ((uint16_t) rx[1] << 8 ) | ( rx[2] );
}
uint32_t AP_SerialBus_SPI::read_24bits(uint8_t reg)
{
uint8_t tx[4] = { reg, 0, 0, 0 };
uint8_t rx[4];
_spi->transaction(tx, rx, 4);
return (((uint32_t)rx[1])<<16) | (((uint32_t)rx[2])<<8) | ((uint32_t)rx[3]);
}
bool AP_SerialBus_SPI::write(uint8_t reg)
{
uint8_t tx[1] = { reg };
_spi->transaction(tx, NULL, 1);
return true;
}
bool AP_SerialBus_SPI::sem_take_blocking()
{
return _spi_sem->take(10);
}
bool AP_SerialBus_SPI::sem_take_nonblocking()
{
return _spi_sem->take_nonblocking();
}
void AP_SerialBus_SPI::sem_give()
{
_spi_sem->give();
}
/// I2C SerialBus
AP_SerialBus_I2C::AP_SerialBus_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) :
_i2c(i2c),
_addr(addr),
_i2c_sem(NULL)
{
}
void AP_SerialBus_I2C::init()
{
_i2c_sem = _i2c->get_semaphore();
if (_i2c_sem == NULL) {
AP_HAL::panic("AP_SerialBus_I2C did not get valid I2C semaphore!");
}
}
uint16_t AP_SerialBus_I2C::read_16bits(uint8_t reg)
{
uint8_t buf[2];
if (_i2c->readRegisters(_addr, reg, sizeof(buf), buf) == 0) {
return (((uint16_t)(buf[0]) << 8) | buf[1]);
}
return 0;
}
uint32_t AP_SerialBus_I2C::read_24bits(uint8_t reg)
{
uint8_t buf[3];
if (_i2c->readRegisters(_addr, reg, sizeof(buf), buf) == 0) {
return (((uint32_t)buf[0]) << 16) | (((uint32_t)buf[1]) << 8) | buf[2];
}
return 0;
}
bool AP_SerialBus_I2C::write(uint8_t reg)
{
return _i2c->write(_addr, 1, &reg) == 0;
}
bool AP_SerialBus_I2C::sem_take_blocking()
{
return _i2c_sem->take(10);
}
bool AP_SerialBus_I2C::sem_take_nonblocking()
{
return _i2c_sem->take_nonblocking();
}
void AP_SerialBus_I2C::sem_give()
{
_i2c_sem->give();
}
/*
constructor
*/
AP_Baro_MS56XX::AP_Baro_MS56XX(AP_Baro &baro, AP_SerialBus *serial, bool use_timer) :
AP_Baro_Backend(baro),
_serial(serial),
_updated(false),
_state(0),
_last_timer(0),
_use_timer(use_timer),
_D1(0.0f),
_D2(0.0f)
{
}
void AP_Baro_MS56XX::_init()
{
_instance = _frontend.register_sensor();
_serial->init();
// we need to suspend timers to prevent other SPI drivers grabbing
// the bus while we do the long initialisation
hal.scheduler->suspend_timer_procs();
if (!_serial->sem_take_blocking()){
AP_HAL::panic("PANIC: AP_Baro_MS56XX: failed to take serial semaphore for init");
}
_serial->write(CMD_MS5611_RESET);
hal.scheduler->delay(4);
uint16_t prom[8];
if (!_read_prom(prom)) {
AP_HAL::panic("Can't read PROM");
}
// Save factory calibration coefficients
_c1 = prom[1];
_c2 = prom[2];
_c3 = prom[3];
_c4 = prom[4];
_c5 = prom[5];
_c6 = prom[6];
// Send a command to read Temp first
_serial->write(ADDR_CMD_CONVERT_D2);
_last_timer = AP_HAL::micros();
_state = 0;
_s_D1 = 0;
_s_D2 = 0;
_d1_count = 0;
_d2_count = 0;
_serial->sem_give();
hal.scheduler->resume_timer_procs();
if (_use_timer) {
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Baro_MS56XX::_timer, void));
}
}
/**
* MS56XX crc4 method from datasheet for 16 bytes (8 short values)
*/
static uint16_t crc4(uint16_t *data)
{
uint16_t n_rem = 0;
uint8_t n_bit;
for (uint8_t cnt = 0; cnt < 16; cnt++) {
/* uneven bytes */
if (cnt & 1) {
n_rem ^= (uint8_t)((data[cnt >> 1]) & 0x00FF);
} else {
n_rem ^= (uint8_t)(data[cnt >> 1] >> 8);
}
for (n_bit = 8; n_bit > 0; n_bit--) {
if (n_rem & 0x8000) {
n_rem = (n_rem << 1) ^ 0x3000;
} else {
n_rem = (n_rem << 1);
}
}
}
return (n_rem >> 12) & 0xF;
}
bool AP_Baro_MS56XX::_read_prom(uint16_t prom[8])
{
/*
* MS5611-01BA datasheet, CYCLIC REDUNDANCY CHECK (CRC): "MS5611-01BA
* contains a PROM memory with 128-Bit. A 4-bit CRC has been implemented
* to check the data validity in memory."
*
* CRC field must me removed for CRC-4 calculation.
*/
for (uint8_t i = 0; i < 8; i++) {
prom[i] = _serial->read_16bits(CMD_MS56XX_PROM + (i << 1));
}
/* save the read crc */
const uint16_t crc_read = prom[7] & 0xf;
/* remove CRC byte */
prom[7] &= 0xff00;
return crc_read == crc4(prom);
}
bool AP_Baro_MS5637::_read_prom(uint16_t prom[8])
{
/*
* MS5637-02BA03 datasheet, CYCLIC REDUNDANCY CHECK (CRC): "MS5637
* contains a PROM memory with 112-Bit. A 4-bit CRC has been implemented
* to check the data validity in memory."
*
* 8th PROM word must be zeroed and CRC field removed for CRC-4
* calculation.
*/
for (uint8_t i = 0; i < 7; i++) {
prom[i] = _serial->read_16bits(CMD_MS56XX_PROM + (i << 1));
}
prom[7] = 0;
/* save the read crc */
const uint16_t crc_read = (prom[0] & 0xf000) >> 12;
/* remove CRC byte */
prom[0] &= ~0xf000;
return crc_read == crc4(prom);
}
/*
Read the sensor. This is a state machine
We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
temperature does not change so quickly...
*/
void AP_Baro_MS56XX::_timer(void)
{
// Throttle read rate to 100hz maximum.
if (AP_HAL::micros() - _last_timer < 10000) {
return;
}
if (!_serial->sem_take_nonblocking()) {
return;
}
if (_state == 0) {
// On state 0 we read temp
uint32_t d2 = _serial->read_24bits(0);
if (d2 != 0) {
_s_D2 += d2;
_d2_count++;
if (_d2_count == 32) {
// we have summed 32 values. This only happens
// when we stop reading the barometer for a long time
// (more than 1.2 seconds)
_s_D2 >>= 1;
_d2_count = 16;
}
if (_serial->write(ADDR_CMD_CONVERT_D1)) { // Command to read pressure
_state++;
}
} else {
/* if read fails, re-initiate a temperature read command or we are
* stuck */
_serial->write(ADDR_CMD_CONVERT_D2);
}
} else {
uint32_t d1 = _serial->read_24bits(0);
if (d1 != 0) {
// occasional zero values have been seen on the PXF
// board. These may be SPI errors, but safest to ignore
_s_D1 += d1;
_d1_count++;
if (_d1_count == 128) {
// we have summed 128 values. This only happens
// when we stop reading the barometer for a long time
// (more than 1.2 seconds)
_s_D1 >>= 1;
_d1_count = 64;
}
// Now a new reading exists
_updated = true;
if (_state == 4) {
if (_serial->write(ADDR_CMD_CONVERT_D2)) { // Command to read temperature
_state = 0;
}
} else {
if (_serial->write(ADDR_CMD_CONVERT_D1)) { // Command to read pressure
_state++;
}
}
} else {
/* if read fails, re-initiate a pressure read command or we are
* stuck */
_serial->write(ADDR_CMD_CONVERT_D1);
}
}
_last_timer = AP_HAL::micros();
_serial->sem_give();
}
void AP_Baro_MS56XX::update()
{
if (!_use_timer) {
// if we're not using the timer then accumulate one more time
// to cope with the calibration loop and minimise lag
accumulate();
}
if (!_updated) {
return;
}
uint32_t sD1, sD2;
uint8_t d1count, d2count;
// Suspend timer procs because these variables are written to
// in "_update".
hal.scheduler->suspend_timer_procs();
sD1 = _s_D1; _s_D1 = 0;
sD2 = _s_D2; _s_D2 = 0;
d1count = _d1_count; _d1_count = 0;
d2count = _d2_count; _d2_count = 0;
_updated = false;
hal.scheduler->resume_timer_procs();
if (d1count != 0) {
_D1 = ((float)sD1) / d1count;
}
if (d2count != 0) {
_D2 = ((float)sD2) / d2count;
}
_calculate();
}
/* MS5611 class */
AP_Baro_MS5611::AP_Baro_MS5611(AP_Baro &baro, AP_SerialBus *serial, bool use_timer)
: AP_Baro_MS56XX(baro, serial, use_timer)
{
_init();
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS5611::_calculate()
{
float dT;
float TEMP;
float OFF;
float SENS;
// Formulas from manufacturer datasheet
// sub -15c temperature compensation is not included
// we do the calculations using floating point allows us to take advantage
// of the averaging of D1 and D1 over multiple samples, giving us more
// precision
dT = _D2-(((uint32_t)_c5)<<8);
TEMP = (dT * _c6)/8388608;
OFF = _c2 * 65536.0f + (_c4 * dT) / 128;
SENS = _c1 * 32768.0f + (_c3 * dT) / 256;
if (TEMP < 0) {
// second order temperature compensation when under 20 degrees C
float T2 = (dT*dT) / 0x80000000;
float Aux = TEMP*TEMP;
float OFF2 = 2.5f*Aux;
float SENS2 = 1.25f*Aux;
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
float pressure = (_D1*SENS/2097152 - OFF)/32768;
float temperature = (TEMP + 2000) * 0.01f;
_copy_to_frontend(_instance, pressure, temperature);
}
/* MS5607 Class */
AP_Baro_MS5607::AP_Baro_MS5607(AP_Baro &baro, AP_SerialBus *serial, bool use_timer)
: AP_Baro_MS56XX(baro, serial, use_timer)
{
_init();
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS5607::_calculate()
{
float dT;
float TEMP;
float OFF;
float SENS;
// Formulas from manufacturer datasheet
// sub -15c temperature compensation is not included
// we do the calculations using floating point allows us to take advantage
// of the averaging of D1 and D1 over multiple samples, giving us more
// precision
dT = _D2-(((uint32_t)_c5)<<8);
TEMP = (dT * _c6)/8388608;
OFF = _c2 * 131072.0f + (_c4 * dT) / 64;
SENS = _c1 * 65536.0f + (_c3 * dT) / 128;
if (TEMP < 0) {
// second order temperature compensation when under 20 degrees C
float T2 = (dT*dT) / 0x80000000;
float Aux = TEMP*TEMP;
float OFF2 = 61.0f*Aux/16.0f;
float SENS2 = 2.0f*Aux;
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
float pressure = (_D1*SENS/2097152 - OFF)/32768;
float temperature = (TEMP + 2000) * 0.01f;
_copy_to_frontend(_instance, pressure, temperature);
}
/* MS563 Class */
AP_Baro_MS5637::AP_Baro_MS5637(AP_Baro &baro, AP_SerialBus *serial, bool use_timer)
: AP_Baro_MS56XX(baro, serial, use_timer)
{
_init();
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS5637::_calculate()
{
int32_t dT, TEMP;
int64_t OFF, SENS;
int32_t raw_pressure = _D1;
int32_t raw_temperature = _D2;
// Formulas from manufacturer datasheet
// sub -15c temperature compensation is not included
dT = raw_temperature - (((uint32_t)_c5) << 8);
TEMP = 2000 + ((int64_t)dT * (int64_t)_c6) / 8388608;
OFF = (int64_t)_c2 * (int64_t)131072 + ((int64_t)_c4 * (int64_t)dT) / (int64_t)64;
SENS = (int64_t)_c1 * (int64_t)65536 + ((int64_t)_c3 * (int64_t)dT) / (int64_t)128;
if (TEMP < 2000) {
// second order temperature compensation when under 20 degrees C
int32_t T2 = ((int64_t)3 * ((int64_t)dT * (int64_t)dT) / (int64_t)8589934592);
int64_t aux = (TEMP - 2000) * (TEMP - 2000);
int64_t OFF2 = 61 * aux / 16;
int64_t SENS2 = 29 * aux / 16;
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
int32_t pressure = ((int64_t)raw_pressure * SENS / (int64_t)2097152 - OFF) / (int64_t)32768;
float temperature = TEMP * 0.01f;
_copy_to_frontend(_instance, (float)pressure, temperature);
}
/*
Read the sensor from main code. This is only used for I2C MS5611 to
avoid conflicts on the semaphore from calling it in a timer, which
conflicts with the compass driver use of I2C
*/
void AP_Baro_MS56XX::accumulate(void)
{
if (!_use_timer) {
// the timer isn't being called as a timer, so we need to call
// it in accumulate()
_timer();
}
}