Ardupilot2/libraries/AP_NavEKF/Models/GimbalEstimatorExample/RunSimulation.m
Ricardo de Almeida Gonzaga 267a74ebb2 AP_NavEKF: Fix typos
2016-05-13 19:20:06 -03:00

203 lines
7.3 KiB
Matlab

%% Set initial conditions
clear all;
dtSlow = 1/50;
dtFast = 1/1000;
rateMult = round(dtSlow/dtFast);
duration = 60;
indexLimitSlow = round(duration/dtSlow);
indexLimitFast = indexLimitSlow*rateMult;
% create data logging variables
gimbal.time = zeros(1,indexLimitFast);
gimbal.euler = zeros(3,indexLimitFast);
gimbal.eulerTruth = zeros(3,indexLimitFast);
gimbal.eulerError = zeros(3,indexLimitFast);
% Use a random initial truth orientation
phiInit = 0.1*randn;
thetaInit = 0.1*randn;
psiInit = 2*pi*rand - pi;
quatTruth = EulToQuat([phiInit,thetaInit,psiInit]);% [1;0.05*randn;0.05*randn;2*(rand-0.5)];
quatLength = sqrt(quatTruth(1)^2 + quatTruth(2)^2 + quatTruth(3)^2 + quatTruth(4)^2);
quatTruth = quatTruth / quatLength;
TsnTruth = Quat2Tbn(quatTruth);
% define the earths truth magnetic field
declTruth = 10*pi/180;
magEarthTruth = [0.25*cos(declTruth);0.25*sin(declTruth);-0.5];
% define the declination parameter assuming 2deg RMS error - this would be
% obtained from the main EKF to take advantage of in-flight learning
declParam = declTruth + 2*pi/180*randn;
% define the magnetometer bias errors
magMeasBias = 0.02*[randn;randn;randn];
% Define IMU bias errors and noise
gyroBias = 1*pi/180*[randn;randn;randn];
accBias = 0.05*[randn;randn;randn];
gyroNoise = 0.01;
accNoise = 0.05;
% define the state covariances with the exception of the quaternion covariances
Sigma_velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components
Sigma_dAngBias = 1*pi/180*dtSlow; % 1 Sigma uncertainty in delta angle bias
Sigma_angErr = 1; % 1 Sigma uncertainty in angular misalignment (rad)
covariance = single(diag([Sigma_angErr*[1;1;1];Sigma_velNED*[1;1;1];Sigma_dAngBias*[1;1;1]]).^2);
% Initialise truth trajectory variables
% fly a CCW circle with constant gimbal angles
gPsiInit = 20*pi/180; % gimbal yaw
gThetaInit = 0; % gimbal pitch
gPhiInit = 0; % gimbal roll
psiTruth = psiInit;
radius = 20;
gndSpd = 5;
trackAngTruth = -pi;
centripAccelMag = gndSpd/radius*gndSpd;
gravAccel = [0;0;-9.81];
%% Main Loop
hdgAlignedEKF=0;
hdgAlignedGimbal=0;
slowIndex = 0;
delAngFast = [0;0;0];
delVelFast = [0;0;0];
delAngSlow = [0;0;0];
delVelSlow = [0;0;0];
prevAngRateMeas = [0;0;0];
prevAccelMeas = [0;0;0];
quatFast = [1;0;0;0];
quatFastSaved = quatFast;
angRateBiasEKF = [0;0;0];
quatEKF = [1;0;0;0];
for fastIndex = 1:indexLimitFast % 1000 Hz gimbal prediction loop
time = dtFast*fastIndex;
% Calculate Truth Data
% Need to replace this with a full kinematic model or test data
% calculate truth angular rates - we don't start manoeuvring until
% heading alignment is complete
psiRateTruth = gndSpd/radius*hdgAlignedEKF;
angRateTruth = [0;0;psiRateTruth]; % constant yaw rate
% calculate yaw and track angles
psiTruth = psiTruth + psiRateTruth*dtFast;
trackAngTruth = trackAngTruth + psiRateTruth*dtFast;
% Cacluate truth quternion
quatTruth = EulToQuat([phiInit,thetaInit,psiTruth]);
% Calculate truth rotaton from sensor to NED
TsnTruth = Quat2Tbn(quatTruth);
% calculate truth accel vector
centripAccel = centripAccelMag*[-sin(trackAngTruth);cos(trackAngTruth);0];
accelTruth = transpose(TsnTruth)*(gravAccel + centripAccel);
% calculate truth velocity vector
truthVel = gndSpd*[cos(trackAngTruth);sin(trackAngTruth);0];
% synthesise sensor measurements
% Synthesise IMU measurements, adding bias and noise
angRateMeas = angRateTruth + gyroBias + gyroNoise*[randn;randn;randn];
accelMeas = accelTruth + accBias + accNoise*[randn;randn;randn];
% synthesise velocity measurements
measVel = truthVel;
% synthesise gimbal angles
gPhi = 0;
gTheta = 0;
gPsi = gPsiInit;
% Define rotation from magnetometer to sensor using a 312 rotation sequence
TmsTruth = calcTms(gPhi,gPsi,gTheta);
% calculate rotation from NED to magnetometer axes Tnm = Tsm * Tns
TnmTruth = transpose(TmsTruth) * transpose(TsnTruth);
% synthesise magnetometer measurements adding sensor bias
magMeas = TnmTruth*magEarthTruth + magMeasBias;
% integrate the IMU measurements to produce delta angles and velocities
% using a trapezoidal integrator
if isempty(prevAngRateMeas)
prevAngRateMeas = angRateMeas;
end
if isempty(prevAccelMeas)
prevAccelMeas = accelMeas;
end
delAngFast = delAngFast + 0.5*(angRateMeas + prevAngRateMeas)*dtFast;
delVelFast = delVelFast + 0.5*(accelMeas + prevAccelMeas)*dtFast;
prevAngRateMeas = angRateMeas;
prevAccelMeas = accelMeas;
% Run an attitude prediction calculation at 1000Hz
% Convert the rotation vector to its equivalent quaternion
% using a first order approximation after applying the correction for
% gyro bias using bias estimates from the EKF
deltaQuat = [1;0.5*(angRateMeas - angRateBiasEKF)*dtFast];
% Update the quaternions by rotating from the previous attitude through
% the delta angle rotation quaternion
quatFast = QuatMult(quatFast,deltaQuat);
% Normalise the quaternions
quatFast = NormQuat(quatFast);
% log the high rate data
eulLogFast(:,fastIndex) = QuatToEul(quatFast);
% every 20msec we send them to the EKF computer and reset
% the total
% we also save a copy of the quaternion from our high rate prediction
if (rem(fastIndex,rateMult) == 0)
delAngSlow = delAngFast;
delVelSlow = delVelFast;
delAngFast = [0;0;0];
delVelFast = [0;0;0];
quatFastSaved = quatFast;
end
% run the 50Hz EKF loop but do so 5 msec behind the
% data transmission to simulate the effect of transmission and
% computational delays
if (rem(fastIndex,rateMult) == 5)
slowIndex = slowIndex + 1;
[quatEKF,angRateBiasEKF,EKFlogs,hdgAlignedEKF] = calcEKF(delAngSlow,delVelSlow,measVel,gPhi,gPsi,gTheta,magMeas,declParam,time,dtSlow,slowIndex,indexLimitSlow);
end
% Correct Gimbal attitude usng EKF data
% Assume the gimbal controller receive the EKF solution 10 msec after
% it sent the sensor data
if (rem(fastIndex,rateMult) == 10)
% calculate the quaternion from the EKF corrected attitude to the
% attitude calculated using the local fast prediction algorithm
deltaQuatFast = QuatDivide(quatEKF,quatFastSaved);
% apply this correction to the fast solution at the current time
% step (this can be applied across several steps to smooth the
% output if required)
quatFast = QuatMult(quatFast,deltaQuatFast);
% normalise the resultant quaternion
quatFast = NormQuat(quatFast);
% flag when the gimbals own heading is aligned
hdgAlignedGimbal = hdgAlignedEKF;
end
% Log gimbal data
gimbal.time(fastIndex) = time;
gimbal.euler(:,fastIndex) = QuatToEul(quatFast);
gimbal.eulerTruth(:,fastIndex) = QuatToEul(quatTruth);
if (hdgAlignedGimbal)
gimbal.eulerError(:,fastIndex) = gimbal.euler(:,fastIndex) - gimbal.eulerTruth(:,fastIndex);
if (gimbal.eulerError(3,fastIndex) > pi)
gimbal.eulerError(3,fastIndex) = gimbal.eulerError(3,fastIndex) - 2*pi;
elseif (gimbal.eulerError(3,fastIndex) < -pi)
gimbal.eulerError(3,fastIndex) = gimbal.eulerError(3,fastIndex) + 2*pi;
end
else
gimbal.eulerError(:,fastIndex) = [NaN;NaN;NaN];
end
end
%% Generate Plots
close all;
PlotData;