Ardupilot2/ArduCopter/radio.pde
rmackay9 672fdfbf71 ArduCopter: added ERR dataflash message
Failsafe events changed to errors so they are more obvious.
Errors recorded to dataflash for failure to init compass and optical flow sensor.
Errors recorded for pwm failure.
Resolved a compile error when dataflash logging is disabled.
2013-01-02 09:55:37 +11:00

220 lines
6.3 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Function that will read the radio data, limit servos and trigger a failsafe
// ----------------------------------------------------------------------------
extern RC_Channel* rc_ch[8];
static void default_dead_zones()
{
g.rc_1.set_dead_zone(60);
g.rc_2.set_dead_zone(60);
#if FRAME_CONFIG == HELI_FRAME
g.rc_3.set_dead_zone(20);
g.rc_4.set_dead_zone(30);
#else
g.rc_3.set_dead_zone(60);
g.rc_4.set_dead_zone(80);
#endif
}
static void init_rc_in()
{
// set rc channel ranges
g.rc_1.set_angle(MAX_INPUT_ROLL_ANGLE);
g.rc_2.set_angle(MAX_INPUT_PITCH_ANGLE);
#if FRAME_CONFIG == HELI_FRAME
// we do not want to limit the movment of the heli's swash plate
g.rc_3.set_range(0, 1000);
#else
g.rc_3.set_range(g.throttle_min, g.throttle_max);
#endif
g.rc_4.set_angle(4500);
// reverse: CW = left
// normal: CW = left???
g.rc_1.set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
g.rc_2.set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
g.rc_4.set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
rc_ch[CH_1] = &g.rc_1;
rc_ch[CH_2] = &g.rc_2;
rc_ch[CH_3] = &g.rc_3;
rc_ch[CH_4] = &g.rc_4;
rc_ch[CH_5] = &g.rc_5;
rc_ch[CH_6] = &g.rc_6;
rc_ch[CH_7] = &g.rc_7;
rc_ch[CH_8] = &g.rc_8;
//set auxiliary ranges
g.rc_5.set_range(0,1000);
g.rc_6.set_range(0,1000);
g.rc_7.set_range(0,1000);
g.rc_8.set_range(0,1000);
#if MOUNT == ENABLED
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11);
#endif
}
static void init_rc_out()
{
motors.set_update_rate(g.rc_speed);
motors.set_frame_orientation(g.frame_orientation);
motors.Init(); // motor initialisation
motors.set_min_throttle(g.throttle_min);
motors.set_max_throttle(g.throttle_max);
for(uint8_t i = 0; i < 5; i++) {
delay(20);
read_radio();
}
// we want the input to be scaled correctly
g.rc_3.set_range_out(0,1000);
// sanity check - prevent unconfigured radios from outputting
if(g.rc_3.radio_min >= 1300) {
g.rc_3.radio_min = g.rc_3.radio_in;
}
// we are full throttle
if(g.rc_3.control_in >= (MAXIMUM_THROTTLE - 50)) {
if(g.esc_calibrate == 0) {
// we will enter esc_calibrate mode on next reboot
g.esc_calibrate.set_and_save(1);
// send miinimum throttle out to ESC
motors.output_min();
// display message on console
cliSerial->printf_P(PSTR("Entering ESC Calibration: please restart APM.\n"));
// block until we restart
while(1) {
delay(200);
dancing_light();
}
}else{
cliSerial->printf_P(PSTR("ESC Calibration active: passing throttle through to ESCs.\n"));
// clear esc flag
g.esc_calibrate.set_and_save(0);
// block until we restart
init_esc();
}
}else{
// did we abort the calibration?
if(g.esc_calibrate == 1)
g.esc_calibrate.set_and_save(0);
// send miinimum throttle out to ESC
output_min();
}
#if TOY_EDF == ENABLED
// add access to CH8 and CH6
APM_RC.enable_out(CH_8);
APM_RC.enable_out(CH_6);
#endif
}
void output_min()
{
// enable motors
motors.enable();
motors.output_min();
}
#define RADIO_FS_TIMEOUT_MS 2000 // 2 seconds
static void read_radio()
{
static uint32_t last_update = 0;
if (hal.rcin->valid() > 0) {
last_update = millis();
ap_system.new_radio_frame = true;
uint16_t periods[8];
hal.rcin->read(periods,8);
g.rc_1.set_pwm(periods[0]);
g.rc_2.set_pwm(periods[1]);
set_throttle_and_failsafe(periods[2]);
g.rc_4.set_pwm(periods[3]);
g.rc_5.set_pwm(periods[4]);
g.rc_6.set_pwm(periods[5]);
g.rc_7.set_pwm(periods[6]);
g.rc_8.set_pwm(periods[7]);
#if FRAME_CONFIG != HELI_FRAME
// limit our input to 800 so we can still pitch and roll
g.rc_3.control_in = min(g.rc_3.control_in, MAXIMUM_THROTTLE);
#endif
}else{
uint32_t elapsed = millis() - last_update;
// turn on throttle failsafe if no update from ppm encoder for 2 seconds
if ((elapsed >= RADIO_FS_TIMEOUT_MS)
&& g.failsafe_throttle && motors.armed() && !ap.failsafe) {
Log_Write_Error(ERROR_SUBSYSTEM_RADIO, ERROR_CODE_RADIO_LATE_FRAME);
set_failsafe(true);
}
}
}
#define FS_COUNTER 3
static void set_throttle_and_failsafe(uint16_t throttle_pwm)
{
static int8_t failsafe_counter = 0;
// if failsafe not enabled pass through throttle and exit
if(g.failsafe_throttle == FS_THR_DISABLED) {
g.rc_3.set_pwm(throttle_pwm);
return;
}
//check for low throttle value
if (throttle_pwm < (uint16_t)g.failsafe_throttle_value) {
// if we are already in failsafe or motors not armed pass through throttle and exit
if (ap.failsafe || !motors.armed()) {
g.rc_3.set_pwm(throttle_pwm);
return;
}
// check for 3 low throttle values
// Note: we do not pass through the low throttle until 3 low throttle values are recieved
failsafe_counter++;
if( failsafe_counter >= FS_COUNTER ) {
failsafe_counter = FS_COUNTER; // check to ensure we don't overflow the counter
set_failsafe(true);
g.rc_3.set_pwm(throttle_pwm); // pass through failsafe throttle
}
}else{
// we have a good throttle so reduce failsafe counter
failsafe_counter--;
if( failsafe_counter <= 0 ) {
failsafe_counter = 0; // check to ensure we don't underflow the counter
// disengage failsafe after three (nearly) consecutive valid throttle values
if (ap.failsafe) {
set_failsafe(false);
}
}
// pass through throttle
g.rc_3.set_pwm(throttle_pwm);
}
}
static void trim_radio()
{
for (uint8_t i = 0; i < 30; i++) {
read_radio();
}
g.rc_1.trim(); // roll
g.rc_2.trim(); // pitch
g.rc_4.trim(); // yaw
g.rc_1.save_eeprom();
g.rc_2.save_eeprom();
g.rc_4.save_eeprom();
}