Ardupilot2/ArduCopter/GCS_Mavlink.pde
2012-06-04 13:14:52 +10:00

2240 lines
61 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Mavlink_compat.h"
// use this to prevent recursion during sensor init
static bool in_mavlink_delay;
// this costs us 51 bytes, but means that low priority
// messages don't block the CPU
static mavlink_statustext_t pending_status;
// true when we have received at least 1 MAVLink packet
static bool mavlink_active;
// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_## id ##_LEN) return false
/*
!!NOTE!!
the use of NOINLINE separate functions for each message type avoids
a compiler bug in gcc that would cause it to use far more stack
space than is needed. Without the NOINLINE we use the sum of the
stack needed for each message type. Please be careful to follow the
pattern below when adding any new messages
*/
static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
#if MAVLINK10 == ENABLED
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
switch (control_mode) {
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
}
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (motors.armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
mavlink_msg_heartbeat_send(
chan,
MAV_TYPE_QUADROTOR,
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode,
custom_mode,
system_status);
#else // MAVLINK10
mavlink_msg_heartbeat_send(
chan,
MAV_QUADROTOR,
MAV_AUTOPILOT_ARDUPILOTMEGA);
#endif // MAVLINK10
}
static NOINLINE void send_attitude(mavlink_channel_t chan)
{
mavlink_msg_attitude_send(
chan,
micros(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t packet_drops)
{
#if MAVLINK10 == ENABLED
uint32_t control_sensors_present = 0;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// first what sensors/controllers we have
control_sensors_present |= (1<<0); // 3D gyro present
control_sensors_present |= (1<<1); // 3D accelerometer present
if (g.compass_enabled) {
control_sensors_present |= (1<<2); // compass present
}
control_sensors_present |= (1<<3); // absolute pressure sensor present
if (g_gps != NULL && g_gps->status() == GPS::GPS_OK) {
control_sensors_present |= (1<<5); // GPS present
}
control_sensors_present |= (1<<10); // 3D angular rate control
control_sensors_present |= (1<<11); // attitude stabilisation
control_sensors_present |= (1<<12); // yaw position
control_sensors_present |= (1<<13); // altitude control
control_sensors_present |= (1<<14); // X/Y position control
control_sensors_present |= (1<<15); // motor control
// now what sensors/controllers are enabled
// first the sensors
control_sensors_enabled = control_sensors_present & 0x1FF;
// now the controllers
control_sensors_enabled = control_sensors_present & 0x1FF;
control_sensors_enabled |= (1<<10); // 3D angular rate control
control_sensors_enabled |= (1<<11); // attitude stabilisation
control_sensors_enabled |= (1<<13); // altitude control
control_sensors_enabled |= (1<<15); // motor control
switch (control_mode) {
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
case POSITION:
control_sensors_enabled |= (1<<12); // yaw position
control_sensors_enabled |= (1<<14); // X/Y position control
break;
}
// at the moment all sensors/controllers are assumed healthy
control_sensors_health = control_sensors_present;
uint16_t battery_remaining = 1000.0 * (float)(g.pack_capacity - current_total1)/(float)g.pack_capacity; //Mavlink scaling 100% = 1000
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
0,
battery_voltage1 * 1000, // mV
0,
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
#else // MAVLINK10
uint8_t mode = MAV_MODE_UNINIT;
uint8_t nav_mode = MAV_NAV_VECTOR;
switch(control_mode) {
case LOITER:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_HOLD;
break;
case AUTO:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_WAYPOINT;
break;
case RTL:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_RETURNING;
break;
case GUIDED:
mode = MAV_MODE_GUIDED;
nav_mode = MAV_NAV_WAYPOINT;
break;
default:
mode = control_mode + 100;
}
uint8_t status = MAV_STATE_ACTIVE;
if (!motors.armed()) {
status = MAV_STATE_STANDBY;
}
uint16_t battery_remaining = 1000.0 * (float)(g.pack_capacity - current_total1)/(float)g.pack_capacity; //Mavlink scaling 100% = 1000
mavlink_msg_sys_status_send(
chan,
mode,
nav_mode,
status,
0,
battery_voltage1 * 1000,
battery_remaining,
packet_drops);
#endif // MAVLINK10
}
static void NOINLINE send_meminfo(mavlink_channel_t chan)
{
extern unsigned __brkval;
mavlink_msg_meminfo_send(chan, __brkval, memcheck_available_memory());
}
static void NOINLINE send_location(mavlink_channel_t chan)
{
Matrix3f rot = ahrs.get_dcm_matrix(); // neglecting angle of attack for now
mavlink_msg_global_position_int_send(
chan,
millis(),
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
g_gps->altitude*10, // millimeters above sea level
current_loc.alt * 10, // millimeters above ground
g_gps->ground_speed * rot.a.x, // X speed cm/s
g_gps->ground_speed * rot.b.x, // Y speed cm/s
g_gps->ground_speed * rot.c.x,
g_gps->ground_course); // course in 1/100 degree
}
static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
nav_roll / 1.0e2,
nav_pitch / 1.0e2,
nav_bearing / 1.0e2,
target_bearing / 1.0e2,
wp_distance / 1.0e2,
altitude_error / 1.0e2,
0,
crosstrack_error); // was 0
}
#if HIL_MODE != HIL_MODE_ATTITUDE
static void NOINLINE send_ahrs(mavlink_channel_t chan)
{
Vector3f omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
1,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
#endif // HIL_MODE != HIL_MODE_ATTITUDE
#ifdef DESKTOP_BUILD
void mavlink_simstate_send(uint8_t chan,
float roll,
float pitch,
float yaw,
float xAcc,
float yAcc,
float zAcc,
float p,
float q,
float r)
{
mavlink_msg_simstate_send((mavlink_channel_t)chan,
roll, pitch, yaw, xAcc, yAcc, zAcc, p, q, r);
}
// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
extern void sitl_simstate_send(uint8_t chan);
sitl_simstate_send((uint8_t)chan);
}
#endif
#ifndef DESKTOP_BUILD
static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
board_voltage(),
I2c.lockup_count());
}
#endif
static void NOINLINE send_gps_raw(mavlink_channel_t chan)
{
#if MAVLINK10 == ENABLED
uint8_t fix = g_gps->status();
if (fix == GPS::GPS_OK) {
fix = 3;
}
mavlink_msg_gps_raw_int_send(
chan,
g_gps->last_fix_time*(uint64_t)1000,
fix,
g_gps->latitude, // in 1E7 degrees
g_gps->longitude, // in 1E7 degrees
g_gps->altitude * 10, // in mm
g_gps->hdop,
65535,
g_gps->ground_speed, // cm/s
g_gps->ground_course, // 1/100 degrees,
g_gps->num_sats);
#else // MAVLINK10
mavlink_msg_gps_raw_send(
chan,
g_gps->last_fix_time*(uint64_t)1000,
g_gps->status(),
g_gps->latitude / 1.0e7,
g_gps->longitude / 1.0e7,
g_gps->altitude / 100.0,
g_gps->hdop,
current_loc.alt / 100.0, // was 0
g_gps->ground_speed / 100.0,
g_gps->ground_course / 100.0);
#endif // MAVLINK10
}
static void NOINLINE send_servo_out(mavlink_channel_t chan)
{
const uint8_t rssi = 1;
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with HIL maintainers
#if FRAME_CONFIG == HELI_FRAME
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
g.rc_3.radio_out,
g.rc_4.servo_out,
0,
0,
0,
0,
rssi);
#else
#if X_PLANE == ENABLED
/* update by JLN for X-Plane HIL */
if(motors.armed() && motors.auto_armed()){
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
10000 * g.rc_3.norm_output(),
g.rc_4.servo_out,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
rssi);
}else{
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
0,
0,
-10000,
0,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
rssi);
}
#else
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
g.rc_1.servo_out,
g.rc_2.servo_out,
g.rc_3.radio_out,
g.rc_4.servo_out,
10000 * g.rc_1.norm_output(),
10000 * g.rc_2.norm_output(),
10000 * g.rc_3.norm_output(),
10000 * g.rc_4.norm_output(),
rssi);
#endif
#endif
}
static void NOINLINE send_radio_in(mavlink_channel_t chan)
{
const uint8_t rssi = 1;
mavlink_msg_rc_channels_raw_send(
chan,
millis(),
0, // port
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in,
rssi);
}
static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
motors.motor_out[AP_MOTORS_MOT_1],
motors.motor_out[AP_MOTORS_MOT_2],
motors.motor_out[AP_MOTORS_MOT_3],
motors.motor_out[AP_MOTORS_MOT_4],
motors.motor_out[AP_MOTORS_MOT_5],
motors.motor_out[AP_MOTORS_MOT_6],
motors.motor_out[AP_MOTORS_MOT_7],
motors.motor_out[AP_MOTORS_MOT_8]);
}
static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
mavlink_msg_vfr_hud_send(
chan,
(float)g_gps->ground_speed / 100.0,
(float)g_gps->ground_speed / 100.0,
(ahrs.yaw_sensor / 100) % 360,
g.rc_3.servo_out/10,
current_loc.alt / 100.0,
climb_rate);
}
#if HIL_MODE != HIL_MODE_ATTITUDE
static void NOINLINE send_raw_imu1(mavlink_channel_t chan)
{
Vector3f accel = imu.get_accel();
Vector3f gyro = imu.get_gyro();
mavlink_msg_raw_imu_send(
chan,
micros(),
accel.x * 1000.0 / gravity,
accel.y * 1000.0 / gravity,
accel.z * 1000.0 / gravity,
gyro.x * 1000.0,
gyro.y * 1000.0,
gyro.z * 1000.0,
compass.mag_x,
compass.mag_y,
compass.mag_z);
}
static void NOINLINE send_raw_imu2(mavlink_channel_t chan)
{
mavlink_msg_scaled_pressure_send(
chan,
micros(),
(float)barometer.get_pressure()/100.0,
(float)(barometer.get_pressure()-ground_pressure)/100.0,
(int)(barometer.get_temperature()*10));
}
static void NOINLINE send_raw_imu3(mavlink_channel_t chan)
{
Vector3f mag_offsets = compass.get_offsets();
mavlink_msg_sensor_offsets_send(chan,
mag_offsets.x,
mag_offsets.y,
mag_offsets.z,
compass.get_declination(),
barometer.get_raw_pressure(),
barometer.get_raw_temp(),
imu.gx(), imu.gy(), imu.gz(),
imu.ax(), imu.ay(), imu.az());
}
#endif // HIL_MODE != HIL_MODE_ATTITUDE
static void NOINLINE send_gps_status(mavlink_channel_t chan)
{
mavlink_msg_gps_status_send(
chan,
g_gps->num_sats,
NULL,
NULL,
NULL,
NULL,
NULL);
}
static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
mavlink_msg_waypoint_current_send(
chan,
(uint16_t)g.command_index);
}
static void NOINLINE send_statustext(mavlink_channel_t chan)
{
mavlink_msg_statustext_send(
chan,
pending_status.severity,
pending_status.text);
}
// try to send a message, return false if it won't fit in the serial tx buffer
static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
int payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES;
if (chan == MAVLINK_COMM_1 && millis() < MAVLINK_TELEMETRY_PORT_DELAY) {
// defer any messages on the telemetry port for 1 second after
// bootup, to try to prevent bricking of Xbees
return false;
}
switch(id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_extended_status1(chan, packet_drops);
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo(chan);
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_location(chan);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output(chan);
break;
case MSG_GPS_RAW:
#if MAVLINK10 == ENABLED
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
#else
CHECK_PAYLOAD_SIZE(GPS_RAW);
#endif
send_gps_raw(chan);
break;
case MSG_SERVO_OUT:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out(chan);
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in(chan);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud(chan);
break;
#if HIL_MODE != HIL_MODE_ATTITUDE
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu1(chan);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_raw_imu2(chan);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_raw_imu3(chan);
break;
#endif // HIL_MODE != HIL_MODE_ATTITUDE
case MSG_GPS_STATUS:
CHECK_PAYLOAD_SIZE(GPS_STATUS);
send_gps_status(chan);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(WAYPOINT_CURRENT);
send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
if (chan == MAVLINK_COMM_0) {
gcs0.queued_param_send();
} else if (gcs3.initialised) {
gcs3.queued_param_send();
}
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(WAYPOINT_REQUEST);
if (chan == MAVLINK_COMM_0) {
gcs0.queued_waypoint_send();
} else {
gcs3.queued_waypoint_send();
}
break;
case MSG_STATUSTEXT:
CHECK_PAYLOAD_SIZE(STATUSTEXT);
send_statustext(chan);
break;
case MSG_AHRS:
#if HIL_MODE != HIL_MODE_ATTITUDE
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(chan);
#endif
break;
case MSG_SIMSTATE:
#ifdef DESKTOP_BUILD
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate(chan);
#endif
break;
case MSG_HWSTATUS:
#ifndef DESKTOP_BUILD
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus(chan);
#endif
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
}
return true;
}
#define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED
static struct mavlink_queue {
enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES];
uint8_t next_deferred_message;
uint8_t num_deferred_messages;
} mavlink_queue[2];
// send a message using mavlink
static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
uint8_t i, nextid;
struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan];
// see if we can send the deferred messages, if any
while (q->num_deferred_messages != 0) {
if (!mavlink_try_send_message(chan,
q->deferred_messages[q->next_deferred_message],
packet_drops)) {
break;
}
q->next_deferred_message++;
if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) {
q->next_deferred_message = 0;
}
q->num_deferred_messages--;
}
if (id == MSG_RETRY_DEFERRED) {
return;
}
// this message id might already be deferred
for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) {
if (q->deferred_messages[nextid] == id) {
// its already deferred, discard
return;
}
nextid++;
if (nextid == MAX_DEFERRED_MESSAGES) {
nextid = 0;
}
}
if (q->num_deferred_messages != 0 ||
!mavlink_try_send_message(chan, id, packet_drops)) {
// can't send it now, so defer it
if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) {
// the defer buffer is full, discard
return;
}
nextid = q->next_deferred_message + q->num_deferred_messages;
if (nextid >= MAX_DEFERRED_MESSAGES) {
nextid -= MAX_DEFERRED_MESSAGES;
}
q->deferred_messages[nextid] = id;
q->num_deferred_messages++;
}
}
void mavlink_send_text(mavlink_channel_t chan, gcs_severity severity, const char *str)
{
if (chan == MAVLINK_COMM_1 && millis() < MAVLINK_TELEMETRY_PORT_DELAY) {
// don't send status MAVLink messages for 2 seconds after
// bootup, to try to prevent Xbee bricking
return;
}
if (severity == SEVERITY_LOW) {
// send via the deferred queuing system
pending_status.severity = (uint8_t)severity;
strncpy((char *)pending_status.text, str, sizeof(pending_status.text));
mavlink_send_message(chan, MSG_STATUSTEXT, 0);
} else {
// send immediately
mavlink_msg_statustext_send(
chan,
severity,
str);
}
}
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRateRawSensors),
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRateExtendedStatus),
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRateRCChannels),
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRateRawController),
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRatePosition),
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRateExtra1),
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRateExtra2),
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRateExtra3),
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRateParams),
AP_GROUPEND
};
GCS_MAVLINK::GCS_MAVLINK() :
packet_drops(0),
waypoint_send_timeout(1000), // 1 second
waypoint_receive_timeout(1000) // 1 second
{
}
void
GCS_MAVLINK::init(FastSerial * port)
{
GCS_Class::init(port);
if (port == &Serial) {
mavlink_comm_0_port = port;
chan = MAVLINK_COMM_0;
}else{
mavlink_comm_1_port = port;
chan = MAVLINK_COMM_1;
}
_queued_parameter = NULL;
}
void
GCS_MAVLINK::update(void)
{
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
status.packet_rx_drop_count = 0;
// process received bytes
while(comm_get_available(chan))
{
uint8_t c = comm_receive_ch(chan);
#if CLI_ENABLED == ENABLED
/* allow CLI to be started by hitting enter 3 times, if no
heartbeat packets have been received */
if (mavlink_active == false) {
if (c == '\n' || c == '\r') {
crlf_count++;
} else {
crlf_count = 0;
}
if (crlf_count == 3) {
run_cli();
}
}
#endif
// Try to get a new message
if (mavlink_parse_char(chan, c, &msg, &status)) {
mavlink_active = true;
handleMessage(&msg);
}
}
// Update packet drops counter
packet_drops += status.packet_rx_drop_count;
if (!waypoint_receiving && !waypoint_sending) {
return;
}
uint32_t tnow = millis();
if (waypoint_receiving &&
waypoint_request_i <= (unsigned)g.command_total &&
tnow > waypoint_timelast_request + 500 + (stream_slowdown*20)) {
waypoint_timelast_request = tnow;
send_message(MSG_NEXT_WAYPOINT);
}
// stop waypoint sending if timeout
if (waypoint_sending && (tnow - waypoint_timelast_send) > waypoint_send_timeout){
waypoint_sending = false;
}
// stop waypoint receiving if timeout
if (waypoint_receiving && (tnow - waypoint_timelast_receive) > waypoint_receive_timeout){
waypoint_receiving = false;
}
}
// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
AP_Int16 *stream_rates = &streamRateRawSensors;
uint8_t rate = (uint8_t)stream_rates[stream_num].get();
if (rate == 0) {
return false;
}
if (stream_ticks[stream_num] == 0) {
// we're triggering now, setup the next trigger point
if (rate > 50) {
rate = 50;
}
stream_ticks[stream_num] = (50 / rate) + stream_slowdown;
return true;
}
// count down at 50Hz
stream_ticks[stream_num]--;
return false;
}
void
GCS_MAVLINK::data_stream_send(void)
{
if (waypoint_receiving || waypoint_sending) {
// don't interfere with mission transfer
return;
}
if (_queued_parameter != NULL) {
if (streamRateParams.get() <= 0) {
streamRateParams.set(50);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
// don't send anything else at the same time as parameters
return;
}
if (in_mavlink_delay) {
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
//Serial.printf("mav1 %d\n", (int)streamRateRawSensors.get());
}
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW); // TODO - remove this message after location message is working
send_message(MSG_NAV_CONTROLLER_OUTPUT);
if (last_gps_satellites != g_gps->num_sats) {
// this message is mostly a huge waste of bandwidth,
// except it is the only message that gives the number
// of visible satellites. So only send it when that
// changes.
send_message(MSG_GPS_STATUS);
last_gps_satellites = g_gps->num_sats;
}
}
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
#if HIL_MODE == HIL_MODE_ATTITUDE
send_message(MSG_LOCATION);
#endif
//Serial.printf("mav3 %d\n", (int)streamRatePosition.get());
}
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
//Serial.printf("mav4 %d\n", (int)streamRateRawController.get());
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
//Serial.printf("mav5 %d\n", (int)streamRateRCChannels.get());
}
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
//Serial.printf("mav6 %d\n", (int)streamRateExtra1.get());
}
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
//Serial.printf("mav7 %d\n", (int)streamRateExtra2.get());
}
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
}
}
void
GCS_MAVLINK::send_message(enum ap_message id)
{
mavlink_send_message(chan,id, packet_drops);
}
void
GCS_MAVLINK::send_text(gcs_severity severity, const char *str)
{
mavlink_send_text(chan,severity,str);
}
void
GCS_MAVLINK::send_text(gcs_severity severity, const prog_char_t *str)
{
mavlink_statustext_t m;
uint8_t i;
for (i=0; i<sizeof(m.text); i++) {
m.text[i] = pgm_read_byte((const prog_char *)(str++));
}
if (i < sizeof(m.text)) m.text[i] = 0;
mavlink_send_text(chan, severity, (const char *)m.text);
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
struct Location tell_command = {}; // command for telemetry
static uint8_t mav_nav = 255; // For setting mode (some require receipt of 2 messages...)
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: //66
{
// decode
mavlink_request_data_stream_t packet;
mavlink_msg_request_data_stream_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
int freq = 0; // packet frequency
if (packet.start_stop == 0)
freq = 0; // stop sending
else if (packet.start_stop == 1)
freq = packet.req_message_rate; // start sending
else
break;
switch(packet.req_stream_id){
case MAV_DATA_STREAM_ALL:
streamRateRawSensors = freq;
streamRateExtendedStatus = freq;
streamRateRCChannels = freq;
streamRateRawController = freq;
streamRatePosition = freq;
streamRateExtra1 = freq;
streamRateExtra2 = freq;
//streamRateExtra3.set_and_save(freq); // We just do set and save on the last as it takes care of the whole group.
streamRateExtra3 = freq; // Don't save!!
break;
case MAV_DATA_STREAM_RAW_SENSORS:
streamRateRawSensors = freq; // We do not set and save this one so that if HIL is shut down incorrectly
// we will not continue to broadcast raw sensor data at 50Hz.
break;
case MAV_DATA_STREAM_EXTENDED_STATUS:
//streamRateExtendedStatus.set_and_save(freq);
streamRateExtendedStatus = freq;
break;
case MAV_DATA_STREAM_RC_CHANNELS:
streamRateRCChannels = freq;
break;
case MAV_DATA_STREAM_RAW_CONTROLLER:
streamRateRawController = freq;
break;
//case MAV_DATA_STREAM_RAW_SENSOR_FUSION:
// streamRateRawSensorFusion.set_and_save(freq);
// break;
case MAV_DATA_STREAM_POSITION:
streamRatePosition = freq;
break;
case MAV_DATA_STREAM_EXTRA1:
streamRateExtra1 = freq;
break;
case MAV_DATA_STREAM_EXTRA2:
streamRateExtra2 = freq;
break;
case MAV_DATA_STREAM_EXTRA3:
streamRateExtra3 = freq;
break;
default:
break;
}
break;
}
#if MAVLINK10 == ENABLED
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
uint8_t result;
// do command
send_text(SEVERITY_LOW,PSTR("command received: "));
switch(packet.command) {
case MAV_CMD_NAV_LOITER_UNLIM:
set_mode(LOITER);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_LAND:
set_mode(LAND);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_MISSION_START:
set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
if (packet.param1 == 1 ||
packet.param2 == 1 ||
packet.param3 == 1) {
imu.init_accel(mavlink_delay, flash_leds);
}
if (packet.param4 == 1) {
trim_radio();
}
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
mavlink_msg_command_ack_send(
chan,
packet.command,
result);
break;
}
#else // !MAVLINK10
case MAVLINK_MSG_ID_ACTION: //10
{
// decode
mavlink_action_t packet;
mavlink_msg_action_decode(msg, &packet);
if (mavlink_check_target(packet.target,packet.target_component)) break;
if (in_mavlink_delay) {
// don't execute action commands while in sensor
// initialisation
break;
}
uint8_t result = 0;
// do action
send_text(SEVERITY_LOW,PSTR("action received: "));
//Serial.println(packet.action);
switch(packet.action){
case MAV_ACTION_LAUNCH:
//set_mode(TAKEOFF);
break;
case MAV_ACTION_RETURN:
set_mode(RTL);
result=1;
break;
case MAV_ACTION_EMCY_LAND:
set_mode(LAND);
break;
case MAV_ACTION_HALT:
do_loiter_at_location();
result=1;
break;
/* No mappable implementation in APM 2.0
case MAV_ACTION_MOTORS_START:
case MAV_ACTION_CONFIRM_KILL:
case MAV_ACTION_EMCY_KILL:
case MAV_ACTION_MOTORS_STOP:
case MAV_ACTION_SHUTDOWN:
break;
*/
case MAV_ACTION_CONTINUE:
//process_command_queue();
result=1;
break;
case MAV_ACTION_SET_MANUAL:
set_mode(STABILIZE);
result=1;
break;
case MAV_ACTION_SET_AUTO:
set_mode(AUTO);
result=1;
break;
case MAV_ACTION_STORAGE_READ:
// we load all variables at startup, and
// save on each mavlink set
result=1;
break;
case MAV_ACTION_STORAGE_WRITE:
// this doesn't make any sense, as we save
// all settings as they come in
result=1;
break;
case MAV_ACTION_CALIBRATE_RC: break;
trim_radio();
result=1;
break;
case MAV_ACTION_CALIBRATE_GYRO:
case MAV_ACTION_CALIBRATE_MAG:
case MAV_ACTION_CALIBRATE_PRESSURE:
break;
case MAV_ACTION_CALIBRATE_ACC:
imu.init_accel(mavlink_delay, flash_leds);
result=1;
break;
//case MAV_ACTION_REBOOT: // this is a rough interpretation
//startup_IMU_ground();
//result=1;
// break;
/* For future implemtation
case MAV_ACTION_REC_START: break;
case MAV_ACTION_REC_PAUSE: break;
case MAV_ACTION_REC_STOP: break;
*/
/* Takeoff is not an implemented flight mode in APM 2.0
case MAV_ACTION_TAKEOFF:
set_mode(TAKEOFF);
break;
*/
case MAV_ACTION_NAVIGATE:
set_mode(AUTO);
result=1;
break;
case MAV_ACTION_LAND:
set_mode(LAND);
break;
case MAV_ACTION_LOITER:
set_mode(LOITER);
result=1;
break;
default: break;
}
mavlink_msg_action_ack_send(
chan,
packet.action,
result
);
break;
}
#endif // MAVLINK10
case MAVLINK_MSG_ID_SET_MODE: //11
{
// decode
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(msg, &packet);
#if MAVLINK10 == ENABLED
if (!(packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED)) {
// we ignore base_mode as there is no sane way to map
// from that bitmap to a APM flight mode. We rely on
// custom_mode instead.
break;
}
switch (packet.custom_mode) {
case STABILIZE:
case ACRO:
case ALT_HOLD:
case AUTO:
case GUIDED:
case LOITER:
case RTL:
case CIRCLE:
case POSITION:
case LAND:
case OF_LOITER:
case APPROACH:
set_mode(packet.custom_mode);
break;
}
#else // MAVLINK10
switch (packet.mode) {
case MAV_MODE_MANUAL:
set_mode(STABILIZE);
break;
case MAV_MODE_GUIDED:
set_mode(GUIDED);
break;
case MAV_MODE_AUTO:
if(mav_nav == 255 || mav_nav == MAV_NAV_WAYPOINT) set_mode(AUTO);
if(mav_nav == MAV_NAV_RETURNING) set_mode(RTL);
if(mav_nav == MAV_NAV_LOITER) set_mode(LOITER);
mav_nav = 255;
break;
case MAV_MODE_TEST1:
set_mode(STABILIZE);
break;
}
#endif // MAVLINK10
break;
}
/*case MAVLINK_MSG_ID_SET_NAV_MODE:
{
// decode
mavlink_set_nav_mode_t packet;
mavlink_msg_set_nav_mode_decode(msg, &packet);
// To set some flight modes we must first receive a "set nav mode" message and then a "set mode" message
mav_nav = packet.nav_mode;
break;
}
*/
case MAVLINK_MSG_ID_WAYPOINT_REQUEST_LIST: //43
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint request list"));
// decode
mavlink_waypoint_request_list_t packet;
mavlink_msg_waypoint_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// Start sending waypoints
mavlink_msg_waypoint_count_send(
chan,msg->sysid,
msg->compid,
g.command_total); // includes home
waypoint_timelast_send = millis();
waypoint_sending = true;
waypoint_receiving = false;
waypoint_dest_sysid = msg->sysid;
waypoint_dest_compid = msg->compid;
break;
}
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_WAYPOINT_REQUEST: // 40
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint request"));
// Check if sending waypiont
//if (!waypoint_sending) break;
// 5/10/11 - We are trying out relaxing the requirement that we be in waypoint sending mode to respond to a waypoint request. DEW
// decode
mavlink_waypoint_request_t packet;
mavlink_msg_waypoint_request_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// send waypoint
tell_command = get_cmd_with_index(packet.seq);
// set frame of waypoint
uint8_t frame;
if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
frame = MAV_FRAME_GLOBAL_RELATIVE_ALT; // reference frame
} else {
frame = MAV_FRAME_GLOBAL; // reference frame
}
float param1 = 0, param2 = 0 , param3 = 0, param4 = 0;
// time that the mav should loiter in milliseconds
uint8_t current = 0; // 1 (true), 0 (false)
if (packet.seq == (uint16_t)g.command_index)
current = 1;
uint8_t autocontinue = 1; // 1 (true), 0 (false)
float x = 0, y = 0, z = 0;
if (tell_command.id < MAV_CMD_NAV_LAST) {
// command needs scaling
x = tell_command.lat/1.0e7; // local (x), global (latitude)
y = tell_command.lng/1.0e7; // local (y), global (longitude)
// ACM is processing alt inside each command. so we save and load raw values. - this is diffrent to APM
z = tell_command.alt/1.0e2; // local (z), global/relative (altitude)
}
// Switch to map APM command fields inot MAVLink command fields
switch (tell_command.id) {
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_CONDITION_CHANGE_ALT:
case MAV_CMD_DO_SET_HOME:
param1 = tell_command.p1;
break;
case MAV_CMD_CONDITION_YAW:
param3 = tell_command.p1;
param1 = tell_command.alt;
param2 = tell_command.lat;
param4 = tell_command.lng;
break;
case MAV_CMD_NAV_TAKEOFF:
param1 = 0;
break;
case MAV_CMD_NAV_LOITER_TIME:
param1 = tell_command.p1; // ACM loiter time is in 1 second increments
break;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
param1 = tell_command.lat;
break;
case MAV_CMD_DO_JUMP:
param2 = tell_command.lat;
param1 = tell_command.p1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
param4 = tell_command.lng;
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CHANGE_SPEED:
param3 = tell_command.lat;
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
case MAV_CMD_NAV_WAYPOINT:
param1 = tell_command.p1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
param2 = tell_command.alt;
param1 = tell_command.p1;
break;
}
mavlink_msg_waypoint_send(chan,msg->sysid,
msg->compid,
packet.seq,
frame,
tell_command.id,
current,
autocontinue,
param1,
param2,
param3,
param4,
x,
y,
z);
// update last waypoint comm stamp
waypoint_timelast_send = millis();
break;
}
case MAVLINK_MSG_ID_WAYPOINT_ACK: //47
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint ack"));
// decode
mavlink_waypoint_ack_t packet;
mavlink_msg_waypoint_ack_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// turn off waypoint send
waypoint_sending = false;
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: // 21
{
// gcs_send_text_P(SEVERITY_LOW,PSTR("param request list"));
// decode
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// Start sending parameters - next call to ::update will kick the first one out
_queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index = 0;
_queued_parameter_count = _count_parameters();
break;
}
case MAVLINK_MSG_ID_WAYPOINT_CLEAR_ALL: // 45
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint clear all"));
// decode
mavlink_waypoint_clear_all_t packet;
mavlink_msg_waypoint_clear_all_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) break;
// clear all waypoints
uint8_t type = 0; // ok (0), error(1)
g.command_total.set_and_save(1);
// send acknowledgement 3 times to makes sure it is received
for (int i=0;i<3;i++)
mavlink_msg_waypoint_ack_send(chan, msg->sysid, msg->compid, type);
break;
}
case MAVLINK_MSG_ID_WAYPOINT_SET_CURRENT: // 41
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint set current"));
// decode
mavlink_waypoint_set_current_t packet;
mavlink_msg_waypoint_set_current_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// set current command
change_command(packet.seq);
mavlink_msg_waypoint_current_send(chan, g.command_index);
break;
}
case MAVLINK_MSG_ID_WAYPOINT_COUNT: // 44
{
//send_text_P(SEVERITY_LOW,PSTR("waypoint count"));
// decode
mavlink_waypoint_count_t packet;
mavlink_msg_waypoint_count_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// start waypoint receiving
if (packet.count > MAX_WAYPOINTS) {
packet.count = MAX_WAYPOINTS;
}
g.command_total.set_and_save(packet.count);
waypoint_timelast_receive = millis();
waypoint_receiving = true;
waypoint_sending = false;
waypoint_request_i = 0;
waypoint_timelast_request = 0;
break;
}
#ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS
case MAVLINK_MSG_ID_SET_MAG_OFFSETS:
{
mavlink_set_mag_offsets_t packet;
mavlink_msg_set_mag_offsets_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z));
break;
}
#endif
// XXX receive a WP from GCS and store in EEPROM
case MAVLINK_MSG_ID_WAYPOINT: //39
{
// decode
mavlink_waypoint_t packet;
mavlink_msg_waypoint_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component)) break;
// defaults
tell_command.id = packet.command;
/*
switch (packet.frame){
case MAV_FRAME_MISSION:
case MAV_FRAME_GLOBAL:
{
tell_command.lat = 1.0e7*packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7*packet.y; // in as DD converted to * t7
tell_command.alt = packet.z*1.0e2; // in as m converted to cm
tell_command.options = 0; // absolute altitude
break;
}
case MAV_FRAME_LOCAL: // local (relative to home position)
{
tell_command.lat = 1.0e7*ToDeg(packet.x/
(radius_of_earth*cos(ToRad(home.lat/1.0e7)))) + home.lat;
tell_command.lng = 1.0e7*ToDeg(packet.y/radius_of_earth) + home.lng;
tell_command.alt = packet.z*1.0e2;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
break;
}
//case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude
default:
{
tell_command.lat = 1.0e7 * packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7 * packet.y; // in as DD converted to * t7
tell_command.alt = packet.z * 1.0e2;
tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!!
break;
}
}
*/
// we only are supporting Abs position, relative Alt
tell_command.lat = 1.0e7 * packet.x; // in as DD converted to * t7
tell_command.lng = 1.0e7 * packet.y; // in as DD converted to * t7
tell_command.alt = packet.z * 1.0e2;
tell_command.options = 1; // store altitude relative!! Always!!
switch (tell_command.id) { // Switch to map APM command fields inot MAVLink command fields
case MAV_CMD_NAV_LOITER_TURNS:
case MAV_CMD_DO_SET_HOME:
case MAV_CMD_DO_SET_ROI:
tell_command.p1 = packet.param1;
break;
case MAV_CMD_CONDITION_YAW:
tell_command.p1 = packet.param3;
tell_command.alt = packet.param1;
tell_command.lat = packet.param2;
tell_command.lng = packet.param4;
break;
case MAV_CMD_NAV_TAKEOFF:
tell_command.p1 = 0;
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
tell_command.p1 = packet.param1 * 100;
break;
case MAV_CMD_NAV_LOITER_TIME:
tell_command.p1 = packet.param1; // APM loiter time is in ten second increments
break;
case MAV_CMD_CONDITION_DELAY:
case MAV_CMD_CONDITION_DISTANCE:
tell_command.lat = packet.param1;
break;
case MAV_CMD_DO_JUMP:
tell_command.lat = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_REPEAT_SERVO:
tell_command.lng = packet.param4;
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CHANGE_SPEED:
tell_command.lat = packet.param3;
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
case MAV_CMD_NAV_WAYPOINT:
tell_command.p1 = packet.param1;
break;
case MAV_CMD_DO_SET_PARAMETER:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_SET_SERVO:
tell_command.alt = packet.param2;
tell_command.p1 = packet.param1;
break;
}
if(packet.current == 2){ //current = 2 is a flag to tell us this is a "guided mode" waypoint and not for the mission
guided_WP = tell_command;
// add home alt if needed
if (guided_WP.options & MASK_OPTIONS_RELATIVE_ALT){
guided_WP.alt += home.alt;
}
set_mode(GUIDED);
// make any new wp uploaded instant (in case we are already in Guided mode)
set_next_WP(&guided_WP);
// verify we recevied the command
mavlink_msg_waypoint_ack_send(
chan,
msg->sysid,
msg->compid,
0);
} else {
// Check if receiving waypoints (mission upload expected)
if (!waypoint_receiving) break;
//Serial.printf("req: %d, seq: %d, total: %d\n", waypoint_request_i,packet.seq, g.command_total.get());
// check if this is the requested waypoint
if (packet.seq != waypoint_request_i)
break;
if(packet.seq != 0)
set_cmd_with_index(tell_command, packet.seq);
// update waypoint receiving state machine
waypoint_timelast_receive = millis();
waypoint_timelast_request = 0;
waypoint_request_i++;
if (waypoint_request_i == (uint16_t)g.command_total){
uint8_t type = 0; // ok (0), error(1)
mavlink_msg_waypoint_ack_send(
chan,
msg->sysid,
msg->compid,
type);
send_text(SEVERITY_LOW,PSTR("flight plan received"));
waypoint_receiving = false;
// XXX ignores waypoint radius for individual waypoints, can
// only set WP_RADIUS parameter
}
}
break;
}
case MAVLINK_MSG_ID_PARAM_SET: // 23
{
AP_Param *vp;
enum ap_var_type var_type;
// decode
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component))
break;
// set parameter
char key[ONBOARD_PARAM_NAME_LENGTH+1];
strncpy(key, (char *)packet.param_id, ONBOARD_PARAM_NAME_LENGTH);
key[ONBOARD_PARAM_NAME_LENGTH] = 0;
// find the requested parameter
vp = AP_Param::find(key, &var_type);
if ((NULL != vp) && // exists
!isnan(packet.param_value) && // not nan
!isinf(packet.param_value)) { // not inf
// add a small amount before casting parameter values
// from float to integer to avoid truncating to the
// next lower integer value.
float rounding_addition = 0.01;
// handle variables with standard type IDs
if (var_type == AP_PARAM_FLOAT) {
((AP_Float *)vp)->set_and_save(packet.param_value);
} else if (var_type == AP_PARAM_INT32) {
#if LOGGING_ENABLED == ENABLED
Log_Write_Data(1, ((AP_Int32 *)vp)->get());
#endif
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -2147483648.0, 2147483647.0);
((AP_Int32 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT16) {
#if LOGGING_ENABLED == ENABLED
Log_Write_Data(3, (int32_t)((AP_Int16 *)vp)->get());
#endif
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -32768, 32767);
((AP_Int16 *)vp)->set_and_save(v);
} else if (var_type == AP_PARAM_INT8) {
#if LOGGING_ENABLED == ENABLED
Log_Write_Data(4, (int32_t)((AP_Int8 *)vp)->get());
#endif
if (packet.param_value < 0) rounding_addition = -rounding_addition;
float v = packet.param_value+rounding_addition;
v = constrain(v, -128, 127);
((AP_Int8 *)vp)->set_and_save(v);
} else {
// we don't support mavlink set on this parameter
break;
}
// Report back the new value if we accepted the change
// we send the value we actually set, which could be
// different from the value sent, in case someone sent
// a fractional value to an integer type
mavlink_msg_param_value_send(
chan,
key,
vp->cast_to_float(var_type),
mav_var_type(var_type),
_count_parameters(),
-1); // XXX we don't actually know what its index is...
}
break;
} // end case
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: //70
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
if (mavlink_check_target(packet.target_system,packet.target_component))
break;
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
APM_RC.setHIL(v);
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
#if MAVLINK10 != ENABLED
// This is used both as a sensor and to pass the location
// in HIL_ATTITUDE mode.
#if MAVLINK10 == ENABLED
case MAVLINK_MSG_ID_GPS_RAW_INT:
{
// decode
mavlink_gps_raw_int_t packet;
mavlink_msg_gps_raw_int_decode(msg, &packet);
// set gps hil sensor
g_gps->setHIL(packet.time_usec/1000.0,packet.lat/1.0e7,packet.lon/1.0e7,packet.alt/1000,
packet.vel/100,packet.cog/100,0,0);
if (gps_base_alt == 0) {
gps_base_alt = packet.alt/10;
}
current_loc.lng = packet.lon;
current_loc.lat = packet.lat;
current_loc.alt = g_gps->altitude - gps_base_alt;
if (!home_is_set) {
init_home();
}
break;
}
#else
case MAVLINK_MSG_ID_GPS_RAW: //32
{
// decode
mavlink_gps_raw_t packet;
mavlink_msg_gps_raw_decode(msg, &packet);
// set gps hil sensor
g_gps->setHIL(packet.usec/1000.0,packet.lat,packet.lon,packet.alt,
packet.v,packet.hdg,0,0);
if (gps_base_alt == 0) {
gps_base_alt = packet.alt*100;
}
current_loc.lng = packet.lon * T7;
current_loc.lat = packet.lat * T7;
current_loc.alt = g_gps->altitude - gps_base_alt;
if (!home_is_set) {
init_home();
}
break;
}
#endif
#if HIL_MODE == HIL_MODE_ATTITUDE
case MAVLINK_MSG_ID_ATTITUDE: //30
{
// decode
mavlink_attitude_t packet;
mavlink_msg_attitude_decode(msg, &packet);
// set AHRS hil sensor
ahrs.setHil(packet.roll,packet.pitch,packet.yaw,packet.rollspeed,
packet.pitchspeed,packet.yawspeed);
// rad/sec
/*
Vector3f gyros;
gyros.x = (float)packet.rollspeed;
gyros.y = (float)packet.pitchspeed;
gyros.z = (float)packet.yawspeed;
imu.set_gyro(gyros);
*/
//imu.set_accel(accels);
// rad/sec // JLN update - FOR HIL SIMULATION WITH AEROSIM
Vector3f gyros;
gyros.x = (float)packet.rollspeed / 1000.0;
gyros.y = (float)packet.pitchspeed / 1000.0;
gyros.z = (float)packet.yawspeed / 1000.0;
imu.set_gyro(gyros);
// m/s/s
Vector3f accels;
accels.x = (float)packet.roll * gravity / 1000.0;
accels.y = (float)packet.pitch * gravity / 1000.0;
accels.z = (float)packet.yaw * gravity / 1000.0;
imu.set_accel(accels);
break;
}
#endif
#endif
/*
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if(msg->sysid != g.sysid_my_gcs) break;
rc_override_fs_timer = millis();
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
// This is used both as a sensor and to pass the location
// in HIL_ATTITUDE mode.
case MAVLINK_MSG_ID_GPS_RAW:
{
// decode
mavlink_gps_raw_t packet;
mavlink_msg_gps_raw_decode(msg, &packet);
// set gps hil sensor
g_gps->setHIL(packet.usec/1000.0,packet.lat,packet.lon,packet.alt,
packet.v,packet.hdg,0,0);
break;
}
#endif
*/
#if HIL_MODE == HIL_MODE_SENSORS
case MAVLINK_MSG_ID_RAW_IMU: // 28
{
// decode
mavlink_raw_imu_t packet;
mavlink_msg_raw_imu_decode(msg, &packet);
// set imu hil sensors
// TODO: check scaling for temp/absPress
float temp = 70;
float absPress = 1;
// Serial.printf_P(PSTR("accel:\t%d\t%d\t%d\n"), packet.xacc, packet.yacc, packet.zacc);
// Serial.printf_P(PSTR("gyro:\t%d\t%d\t%d\n"), packet.xgyro, packet.ygyro, packet.zgyro);
// rad/sec
Vector3f gyros;
gyros.x = (float)packet.xgyro / 1000.0;
gyros.y = (float)packet.ygyro / 1000.0;
gyros.z = (float)packet.zgyro / 1000.0;
// m/s/s
Vector3f accels;
accels.x = (float)packet.xacc / 1000.0;
accels.y = (float)packet.yacc / 1000.0;
accels.z = (float)packet.zacc / 1000.0;
imu.set_gyro(gyros);
imu.set_accel(accels);
compass.setHIL(packet.xmag,packet.ymag,packet.zmag);
break;
}
case MAVLINK_MSG_ID_RAW_PRESSURE: //29
{
// decode
mavlink_raw_pressure_t packet;
mavlink_msg_raw_pressure_decode(msg, &packet);
// set pressure hil sensor
// TODO: check scaling
float temp = 70;
barometer.setHIL(temp,packet.press_diff1);
break;
}
#endif // HIL_MODE
case MAVLINK_MSG_ID_RADIO:
{
mavlink_radio_t packet;
mavlink_msg_radio_decode(msg, &packet);
// use the state of the transmit buffer in the radio to
// control the stream rate, giving us adaptive software
// flow control
if (packet.txbuf < 20 && stream_slowdown < 100) {
// we are very low on space - slow down a lot
stream_slowdown += 3;
} else if (packet.txbuf < 50 && stream_slowdown < 100) {
// we are a bit low on space, slow down slightly
stream_slowdown += 1;
} else if (packet.txbuf > 95 && stream_slowdown > 10) {
// the buffer has plenty of space, speed up a lot
stream_slowdown -= 2;
} else if (packet.txbuf > 90 && stream_slowdown != 0) {
// the buffer has enough space, speed up a bit
stream_slowdown--;
}
break;
}
} // end switch
} // end handle mavlink
uint16_t
GCS_MAVLINK::_count_parameters()
{
// if we haven't cached the parameter count yet...
if (0 == _parameter_count) {
AP_Param *vp;
AP_Param::ParamToken token;
vp = AP_Param::first(&token, NULL);
do {
_parameter_count++;
} while (NULL != (vp = AP_Param::next_scalar(&token, NULL)));
}
return _parameter_count;
}
/**
* @brief Send the next pending parameter, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_param_send()
{
// Check to see if we are sending parameters
if (NULL == _queued_parameter) return;
AP_Param *vp;
float value;
// copy the current parameter and prepare to move to the next
vp = _queued_parameter;
// if the parameter can be cast to float, report it here and break out of the loop
value = vp->cast_to_float(_queued_parameter_type);
char param_name[ONBOARD_PARAM_NAME_LENGTH];
vp->copy_name(param_name, sizeof(param_name), true);
mavlink_msg_param_value_send(
chan,
param_name,
value,
mav_var_type(_queued_parameter_type),
_queued_parameter_count,
_queued_parameter_index);
_queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index++;
}
/**
* @brief Send the next pending waypoint, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_waypoint_send()
{
if (waypoint_receiving &&
waypoint_request_i < (unsigned)g.command_total) {
mavlink_msg_waypoint_request_send(
chan,
waypoint_dest_sysid,
waypoint_dest_compid,
waypoint_request_i);
}
}
/*
a delay() callback that processes MAVLink packets. We set this as the
callback in long running library initialisation routines to allow
MAVLink to process packets while waiting for the initialisation to
complete
*/
static void mavlink_delay(unsigned long t)
{
uint32_t tstart;
static uint32_t last_1hz, last_50hz, last_5s;
if (in_mavlink_delay) {
// this should never happen, but let's not tempt fate by
// letting the stack grow too much
delay(t);
return;
}
in_mavlink_delay = true;
tstart = millis();
do {
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
}
delay(1);
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
} while (millis() - tstart < t);
in_mavlink_delay = false;
}
/*
send a message on both GCS links
*/
static void gcs_send_message(enum ap_message id)
{
gcs0.send_message(id);
if (gcs3.initialised) {
gcs3.send_message(id);
}
}
/*
send data streams in the given rate range on both links
*/
static void gcs_data_stream_send(void)
{
gcs0.data_stream_send();
if (gcs3.initialised) {
gcs3.data_stream_send();
}
}
/*
look for incoming commands on the GCS links
*/
static void gcs_update(void)
{
gcs0.update();
if (gcs3.initialised) {
gcs3.update();
}
}
static void gcs_send_text(gcs_severity severity, const char *str)
{
gcs0.send_text(severity, str);
if (gcs3.initialised) {
gcs3.send_text(severity, str);
}
}
static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
gcs0.send_text(severity, str);
if (gcs3.initialised) {
gcs3.send_text(severity, str);
}
}
/*
send a low priority formatted message to the GCS
only one fits in the queue, so if you send more than one before the
last one gets into the serial buffer then the old one will be lost
*/
static void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
char fmtstr[40];
va_list ap;
uint8_t i;
for (i=0; i<sizeof(fmtstr)-1; i++) {
fmtstr[i] = pgm_read_byte((const prog_char *)(fmt++));
if (fmtstr[i] == 0) break;
}
fmtstr[i] = 0;
pending_status.severity = (uint8_t)SEVERITY_LOW;
va_start(ap, fmt);
vsnprintf((char *)pending_status.text, sizeof(pending_status.text), fmtstr, ap);
va_end(ap);
mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT, 0);
if (gcs3.initialised) {
mavlink_send_message(MAVLINK_COMM_1, MSG_STATUSTEXT, 0);
}
}
// this code was moved from libraries/GCS_MAVLink to allow compile
// time selection of MAVLink 1.0
BetterStream *mavlink_comm_0_port;
BetterStream *mavlink_comm_1_port;
mavlink_system_t mavlink_system = {7,1,0,0};
uint8_t mavlink_check_target(uint8_t sysid, uint8_t compid)
{
if (sysid != mavlink_system.sysid)
return 1;
// Currently we are not checking for correct compid since APM is not passing mavlink info to any subsystem
// If it is addressed to our system ID we assume it is for us
return 0; // no error
}