Ardupilot2/ArduCopter/sensors.cpp
2018-08-06 11:05:34 +10:00

475 lines
15 KiB
C++

#include "Copter.h"
// return barometric altitude in centimeters
void Copter::read_barometer(void)
{
barometer.update();
baro_alt = barometer.get_altitude() * 100.0f;
motors->set_air_density_ratio(barometer.get_air_density_ratio());
}
void Copter::init_rangefinder(void)
{
#if RANGEFINDER_ENABLED == ENABLED
rangefinder.init();
rangefinder_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ);
rangefinder_state.enabled = rangefinder.has_orientation(ROTATION_PITCH_270);
#endif
}
// return rangefinder altitude in centimeters
void Copter::read_rangefinder(void)
{
#if RANGEFINDER_ENABLED == ENABLED
rangefinder.update();
if (rangefinder.num_sensors() > 0 &&
should_log(MASK_LOG_CTUN)) {
DataFlash.Log_Write_RFND(rangefinder);
}
rangefinder_state.alt_healthy = ((rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::RangeFinder_Good) && (rangefinder.range_valid_count_orient(ROTATION_PITCH_270) >= RANGEFINDER_HEALTH_MAX));
int16_t temp_alt = rangefinder.distance_cm_orient(ROTATION_PITCH_270);
#if RANGEFINDER_TILT_CORRECTION == ENABLED
// correct alt for angle of the rangefinder
temp_alt = (float)temp_alt * MAX(0.707f, ahrs.get_rotation_body_to_ned().c.z);
#endif
rangefinder_state.alt_cm = temp_alt;
// filter rangefinder for use by AC_WPNav
uint32_t now = AP_HAL::millis();
if (rangefinder_state.alt_healthy) {
if (now - rangefinder_state.last_healthy_ms > RANGEFINDER_TIMEOUT_MS) {
// reset filter if we haven't used it within the last second
rangefinder_state.alt_cm_filt.reset(rangefinder_state.alt_cm);
} else {
rangefinder_state.alt_cm_filt.apply(rangefinder_state.alt_cm, 0.05f);
}
rangefinder_state.last_healthy_ms = now;
}
// send rangefinder altitude and health to waypoint navigation library
wp_nav->set_rangefinder_alt(rangefinder_state.enabled, rangefinder_state.alt_healthy, rangefinder_state.alt_cm_filt.get());
#else
rangefinder_state.enabled = false;
rangefinder_state.alt_healthy = false;
rangefinder_state.alt_cm = 0;
#endif
}
// return true if rangefinder_alt can be used
bool Copter::rangefinder_alt_ok()
{
return (rangefinder_state.enabled && rangefinder_state.alt_healthy);
}
/*
update RPM sensors
*/
void Copter::rpm_update(void)
{
#if RPM_ENABLED == ENABLED
rpm_sensor.update();
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
if (should_log(MASK_LOG_RCIN)) {
DataFlash.Log_Write_RPM(rpm_sensor);
}
}
#endif
}
// initialise compass
void Copter::init_compass()
{
if (!g.compass_enabled) {
return;
}
if (!compass.init() || !compass.read()) {
// make sure we don't pass a broken compass to DCM
hal.console->printf("COMPASS INIT ERROR\n");
Log_Write_Error(ERROR_SUBSYSTEM_COMPASS,ERROR_CODE_FAILED_TO_INITIALISE);
return;
}
ahrs.set_compass(&compass);
}
/*
initialise compass's location used for declination
*/
void Copter::init_compass_location()
{
// update initial location used for declination
if (!ap.compass_init_location) {
Location loc;
if (ahrs.get_position(loc)) {
compass.set_initial_location(loc.lat, loc.lng);
ap.compass_init_location = true;
}
}
}
// initialise optical flow sensor
void Copter::init_optflow()
{
#if OPTFLOW == ENABLED
// initialise optical flow sensor
optflow.init();
#endif // OPTFLOW == ENABLED
}
// called at 200hz
#if OPTFLOW == ENABLED
void Copter::update_optical_flow(void)
{
static uint32_t last_of_update = 0;
// exit immediately if not enabled
if (!optflow.enabled()) {
return;
}
// read from sensor
optflow.update();
// write to log and send to EKF if new data has arrived
if (optflow.last_update() != last_of_update) {
last_of_update = optflow.last_update();
uint8_t flowQuality = optflow.quality();
Vector2f flowRate = optflow.flowRate();
Vector2f bodyRate = optflow.bodyRate();
const Vector3f &posOffset = optflow.get_pos_offset();
ahrs.writeOptFlowMeas(flowQuality, flowRate, bodyRate, last_of_update, posOffset);
if (g.log_bitmask & MASK_LOG_OPTFLOW) {
Log_Write_Optflow();
}
}
}
#endif // OPTFLOW == ENABLED
void Copter::compass_cal_update()
{
static uint32_t compass_cal_stick_gesture_begin = 0;
if (!hal.util->get_soft_armed()) {
compass.compass_cal_update();
}
if (compass.is_calibrating()) {
if (channel_yaw->get_control_in() < -4000 && channel_throttle->get_control_in() > 900) {
compass.cancel_calibration_all();
}
} else {
bool stick_gesture_detected = compass_cal_stick_gesture_begin != 0 && !motors->armed() && channel_yaw->get_control_in() > 4000 && channel_throttle->get_control_in() > 900;
uint32_t tnow = millis();
if (!stick_gesture_detected) {
compass_cal_stick_gesture_begin = tnow;
} else if (tnow-compass_cal_stick_gesture_begin > 1000*COMPASS_CAL_STICK_GESTURE_TIME) {
#ifdef CAL_ALWAYS_REBOOT
compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,true);
#else
compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,false);
#endif
}
}
}
void Copter::accel_cal_update()
{
if (hal.util->get_soft_armed()) {
return;
}
ins.acal_update();
// check if new trim values, and set them
float trim_roll, trim_pitch;
if(ins.get_new_trim(trim_roll, trim_pitch)) {
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
#ifdef CAL_ALWAYS_REBOOT
if (ins.accel_cal_requires_reboot()) {
hal.scheduler->delay(1000);
hal.scheduler->reboot(false);
}
#endif
}
// initialise proximity sensor
void Copter::init_proximity(void)
{
#if PROXIMITY_ENABLED == ENABLED
g2.proximity.init();
g2.proximity.set_rangefinder(&rangefinder);
#endif
}
// update error mask of sensors and subsystems. The mask
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set
// then it indicates that the sensor or subsystem is present but
// not functioning correctly.
void Copter::update_sensor_status_flags(void)
{
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
#if PRECISION_LANDING == ENABLED
if (precland.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
}
#endif
#if VISUAL_ODOMETRY_ENABLED == ENABLED
if (g2.visual_odom.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
}
#endif
if (ap.rc_receiver_present) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
if (copter.DataFlash.logging_present()) { // primary logging only (usually File)
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
}
#if PROXIMITY_ENABLED == ENABLED
if (copter.g2.proximity.sensor_present()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_PROXIMITY;
}
#endif
#if AC_FENCE == ENABLED
if (copter.fence.sys_status_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
#endif
#if RANGEFINDER_ENABLED == ENABLED
if (rangefinder.has_orientation(ROTATION_PITCH_270)) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
#endif
// all sensors are present except these, which may be set as enabled below:
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL &
~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL &
~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS &
~MAV_SYS_STATUS_LOGGING &
~MAV_SYS_STATUS_SENSOR_BATTERY &
~MAV_SYS_STATUS_GEOFENCE &
~MAV_SYS_STATUS_SENSOR_LASER_POSITION &
~MAV_SYS_STATUS_SENSOR_PROXIMITY);
switch (control_mode) {
case AUTO:
case AVOID_ADSB:
case GUIDED:
case LOITER:
case RTL:
case CIRCLE:
case LAND:
case POSHOLD:
case BRAKE:
case THROW:
case SMART_RTL:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL;
break;
case ALT_HOLD:
case GUIDED_NOGPS:
case SPORT:
case AUTOTUNE:
case FLOWHOLD:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL;
break;
default:
// stabilize, acro, drift, and flip have no automatic x,y or z control (i.e. all manual)
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
if (copter.DataFlash.logging_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
}
if (battery.num_instances() > 0) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY;
}
#if AC_FENCE == ENABLED
if (copter.fence.sys_status_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
#endif
#if PROXIMITY_ENABLED == ENABLED
if (copter.g2.proximity.sensor_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_PROXIMITY;
}
#endif
// default to all healthy
control_sensors_health = control_sensors_present;
if (!barometer.all_healthy()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
if (!g.compass_enabled || !compass.healthy() || !ahrs.use_compass()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (!gps.is_healthy()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_GPS;
}
if (!ap.rc_receiver_present || failsafe.radio) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
#if OPTFLOW == ENABLED
if (!optflow.healthy()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
#if PRECISION_LANDING == ENABLED
if (precland.enabled() && !precland.healthy()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION;
}
#endif
#if VISUAL_ODOMETRY_ENABLED == ENABLED
if (g2.visual_odom.enabled() && !g2.visual_odom.healthy()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION;
}
#endif
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (ahrs.initialised() && !ahrs.healthy()) {
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (copter.DataFlash.logging_failed()) {
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
}
#if PROXIMITY_ENABLED == ENABLED
if (copter.g2.proximity.sensor_failed()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_PROXIMITY;
}
#endif
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
switch (terrain.status()) {
case AP_Terrain::TerrainStatusDisabled:
break;
case AP_Terrain::TerrainStatusUnhealthy:
// To-Do: restore unhealthy terrain status reporting once terrain is used in copter
//control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
//control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
//break;
case AP_Terrain::TerrainStatusOK:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
break;
}
#endif
#if RANGEFINDER_ENABLED == ENABLED
if (rangefinder_state.enabled) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
if (!rangefinder_state.alt_healthy) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
}
#endif
if (!ap.initialised || ins.calibrating()) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
if (!copter.battery.healthy() || copter.battery.has_failsafed()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_BATTERY;
}
#if AC_FENCE == ENABLED
if (copter.fence.sys_status_failed()) {
control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
}
#endif
#if FRSKY_TELEM_ENABLED == ENABLED
// give mask of error flags to Frsky_Telemetry
frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present);
#endif
}
// init visual odometry sensor
void Copter::init_visual_odom()
{
#if VISUAL_ODOMETRY_ENABLED == ENABLED
g2.visual_odom.init();
#endif
}
// update visual odometry sensor
void Copter::update_visual_odom()
{
#if VISUAL_ODOMETRY_ENABLED == ENABLED
// check for updates
if (g2.visual_odom.enabled() && (g2.visual_odom.get_last_update_ms() != visual_odom_last_update_ms)) {
visual_odom_last_update_ms = g2.visual_odom.get_last_update_ms();
float time_delta_sec = g2.visual_odom.get_time_delta_usec() / 1000000.0f;
ahrs.writeBodyFrameOdom(g2.visual_odom.get_confidence(),
g2.visual_odom.get_position_delta(),
g2.visual_odom.get_angle_delta(),
time_delta_sec,
visual_odom_last_update_ms,
g2.visual_odom.get_pos_offset());
// log sensor data
DataFlash.Log_Write_VisualOdom(time_delta_sec,
g2.visual_odom.get_angle_delta(),
g2.visual_odom.get_position_delta(),
g2.visual_odom.get_confidence());
}
#endif
}
// winch and wheel encoder initialisation
void Copter::winch_init()
{
#if WINCH_ENABLED == ENABLED
g2.wheel_encoder.init();
g2.winch.init(&g2.wheel_encoder);
#endif
}
// winch and wheel encoder update
void Copter::winch_update()
{
#if WINCH_ENABLED == ENABLED
g2.wheel_encoder.update();
g2.winch.update();
#endif
}