Ardupilot2/libraries/AP_HAL_VRBRAIN/Storage.cpp
2014-04-08 16:19:19 +10:00

337 lines
8.6 KiB
C++

#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <ctype.h>
#include "Storage.h"
using namespace VRBRAIN;
/*
This stores eeprom data in the VRBRAIN MTD interface with a 4k size, and
a in-memory buffer. This keeps the latency and devices IOs down.
*/
// name the storage file after the sketch so you can use the same sd
// card for ArduCopter and ArduPlane
#define STORAGE_DIR "/fs/microsd/APM"
#define OLD_STORAGE_FILE STORAGE_DIR "/" SKETCHNAME ".stg"
#define OLD_STORAGE_FILE_BAK STORAGE_DIR "/" SKETCHNAME ".bak"
#define MTD_PARAMS_FILE "/fs/mtd"
#define MTD_SIGNATURE 0x14012014
#define MTD_SIGNATURE_OFFSET (8192-4)
#define STORAGE_RENAME_OLD_FILE 0
extern const AP_HAL::HAL& hal;
VRBRAINStorage::VRBRAINStorage(void) :
_fd(-1),
_dirty_mask(0),
_perf_storage(perf_alloc(PC_ELAPSED, "APM_storage")),
_perf_errors(perf_alloc(PC_COUNT, "APM_storage_errors"))
{
}
/*
get signature from bytes at offset MTD_SIGNATURE_OFFSET
*/
uint32_t VRBRAINStorage::_mtd_signature(void)
{
int mtd_fd = open(MTD_PARAMS_FILE, O_RDONLY);
if (mtd_fd == -1) {
hal.scheduler->panic("Failed to open " MTD_PARAMS_FILE);
}
uint32_t v;
if (lseek(mtd_fd, MTD_SIGNATURE_OFFSET, SEEK_SET) != MTD_SIGNATURE_OFFSET) {
hal.scheduler->panic("Failed to seek in " MTD_PARAMS_FILE);
}
if (read(mtd_fd, &v, sizeof(v)) != sizeof(v)) {
hal.scheduler->panic("Failed to read signature from " MTD_PARAMS_FILE);
}
close(mtd_fd);
return v;
}
/*
put signature bytes at offset MTD_SIGNATURE_OFFSET
*/
void VRBRAINStorage::_mtd_write_signature(void)
{
int mtd_fd = open(MTD_PARAMS_FILE, O_WRONLY);
if (mtd_fd == -1) {
hal.scheduler->panic("Failed to open " MTD_PARAMS_FILE);
}
uint32_t v = MTD_SIGNATURE;
if (lseek(mtd_fd, MTD_SIGNATURE_OFFSET, SEEK_SET) != MTD_SIGNATURE_OFFSET) {
hal.scheduler->panic("Failed to seek in " MTD_PARAMS_FILE);
}
if (write(mtd_fd, &v, sizeof(v)) != sizeof(v)) {
hal.scheduler->panic("Failed to write signature in " MTD_PARAMS_FILE);
}
close(mtd_fd);
}
/*
upgrade from microSD to MTD (FRAM)
*/
void VRBRAINStorage::_upgrade_to_mtd(void)
{
// the MTD is completely uninitialised - try to get a
// copy from OLD_STORAGE_FILE
int old_fd = open(OLD_STORAGE_FILE, O_RDONLY);
if (old_fd == -1) {
::printf("Failed to open %s\n", OLD_STORAGE_FILE);
return;
}
int mtd_fd = open(MTD_PARAMS_FILE, O_WRONLY);
if (mtd_fd == -1) {
hal.scheduler->panic("Unable to open MTD for upgrade");
}
if (::read(old_fd, _buffer, sizeof(_buffer)) != sizeof(_buffer)) {
close(old_fd);
close(mtd_fd);
::printf("Failed to read %s\n", OLD_STORAGE_FILE);
return;
}
close(old_fd);
ssize_t ret;
if ((ret=::write(mtd_fd, _buffer, sizeof(_buffer))) != sizeof(_buffer)) {
::printf("mtd write of %u bytes returned %d errno=%d\n", sizeof(_buffer), ret, errno);
hal.scheduler->panic("Unable to write MTD for upgrade");
}
close(mtd_fd);
#if STORAGE_RENAME_OLD_FILE
rename(OLD_STORAGE_FILE, OLD_STORAGE_FILE_BAK);
#endif
::printf("Upgraded MTD from %s\n", OLD_STORAGE_FILE);
}
void VRBRAINStorage::_storage_open(void)
{
if (_initialised) {
return;
}
struct stat st;
_have_mtd = (stat(MTD_PARAMS_FILE, &st) == 0);
// VRBRAIN should always have /fs/mtd_params
if (!_have_mtd) {
hal.scheduler->panic("Failed to find " MTD_PARAMS_FILE);
}
/*
cope with upgrading from OLD_STORAGE_FILE to MTD
*/
bool good_signature = (_mtd_signature() == MTD_SIGNATURE);
if (stat(OLD_STORAGE_FILE, &st) == 0) {
if (good_signature) {
#if STORAGE_RENAME_OLD_FILE
rename(OLD_STORAGE_FILE, OLD_STORAGE_FILE_BAK);
#endif
} else {
_upgrade_to_mtd();
}
}
// we write the signature every time, even if it already is
// good, as this gives us a way to detect if the MTD device is
// functional. It is better to panic now than to fail to save
// parameters in flight
_mtd_write_signature();
_dirty_mask = 0;
int fd = open(MTD_PARAMS_FILE, O_RDONLY);
if (fd == -1) {
hal.scheduler->panic("Failed to open " MTD_PARAMS_FILE);
}
if (read(fd, _buffer, sizeof(_buffer)) != sizeof(_buffer)) {
hal.scheduler->panic("Failed to read " MTD_PARAMS_FILE);
}
close(fd);
_initialised = true;
}
/*
mark some lines as dirty. Note that there is no attempt to avoid
the race condition between this code and the _timer_tick() code
below, which both update _dirty_mask. If we lose the race then the
result is that a line is written more than once, but it won't result
in a line not being written.
*/
void VRBRAINStorage::_mark_dirty(uint16_t loc, uint16_t length)
{
uint16_t end = loc + length;
while (loc < end) {
uint8_t line = (loc >> VRBRAIN_STORAGE_LINE_SHIFT);
_dirty_mask |= 1 << line;
loc += VRBRAIN_STORAGE_LINE_SIZE;
}
}
uint8_t VRBRAINStorage::read_byte(uint16_t loc)
{
if (loc >= sizeof(_buffer)) {
return 0;
}
_storage_open();
return _buffer[loc];
}
uint16_t VRBRAINStorage::read_word(uint16_t loc)
{
uint16_t value;
if (loc >= sizeof(_buffer)-(sizeof(value)-1)) {
return 0;
}
_storage_open();
memcpy(&value, &_buffer[loc], sizeof(value));
return value;
}
uint32_t VRBRAINStorage::read_dword(uint16_t loc)
{
uint32_t value;
if (loc >= sizeof(_buffer)-(sizeof(value)-1)) {
return 0;
}
_storage_open();
memcpy(&value, &_buffer[loc], sizeof(value));
return value;
}
void VRBRAINStorage::read_block(void *dst, uint16_t loc, size_t n)
{
if (loc >= sizeof(_buffer)-(n-1)) {
return;
}
_storage_open();
memcpy(dst, &_buffer[loc], n);
}
void VRBRAINStorage::write_byte(uint16_t loc, uint8_t value)
{
if (loc >= sizeof(_buffer)) {
return;
}
if (_buffer[loc] != value) {
_storage_open();
_buffer[loc] = value;
_mark_dirty(loc, sizeof(value));
}
}
void VRBRAINStorage::write_word(uint16_t loc, uint16_t value)
{
if (loc >= sizeof(_buffer)-(sizeof(value)-1)) {
return;
}
if (memcmp(&value, &_buffer[loc], sizeof(value)) != 0) {
_storage_open();
memcpy(&_buffer[loc], &value, sizeof(value));
_mark_dirty(loc, sizeof(value));
}
}
void VRBRAINStorage::write_dword(uint16_t loc, uint32_t value)
{
if (loc >= sizeof(_buffer)-(sizeof(value)-1)) {
return;
}
if (memcmp(&value, &_buffer[loc], sizeof(value)) != 0) {
_storage_open();
memcpy(&_buffer[loc], &value, sizeof(value));
_mark_dirty(loc, sizeof(value));
}
}
void VRBRAINStorage::write_block(uint16_t loc, const void *src, size_t n)
{
if (loc >= sizeof(_buffer)-(n-1)) {
return;
}
if (memcmp(src, &_buffer[loc], n) != 0) {
_storage_open();
memcpy(&_buffer[loc], src, n);
_mark_dirty(loc, n);
}
}
void VRBRAINStorage::_timer_tick(void)
{
if (!_initialised || _dirty_mask == 0) {
return;
}
perf_begin(_perf_storage);
if (_fd == -1) {
_fd = open(MTD_PARAMS_FILE, O_WRONLY);
if (_fd == -1) {
perf_end(_perf_storage);
perf_count(_perf_errors);
return;
}
}
// write out the first dirty set of lines. We don't write more
// than one to keep the latency of this call to a minimum
uint8_t i, n;
for (i=0; i<VRBRAIN_STORAGE_NUM_LINES; i++) {
if (_dirty_mask & (1<<i)) {
break;
}
}
if (i == VRBRAIN_STORAGE_NUM_LINES) {
// this shouldn't be possible
perf_end(_perf_storage);
perf_count(_perf_errors);
return;
}
uint32_t write_mask = (1U<<i);
// see how many lines to write
for (n=1; (i+n) < VRBRAIN_STORAGE_NUM_LINES &&
n < (VRBRAIN_STORAGE_MAX_WRITE>>VRBRAIN_STORAGE_LINE_SHIFT); n++) {
if (!(_dirty_mask & (1<<(n+i)))) {
break;
}
// mark that line clean
write_mask |= (1<<(n+i));
}
/*
write the lines. This also updates _dirty_mask. Note that
because this is a SCHED_FIFO thread it will not be preempted
by the main task except during blocking calls. This means we
don't need a semaphore around the _dirty_mask updates.
*/
if (lseek(_fd, i<<VRBRAIN_STORAGE_LINE_SHIFT, SEEK_SET) == (i<<VRBRAIN_STORAGE_LINE_SHIFT)) {
_dirty_mask &= ~write_mask;
if (write(_fd, &_buffer[i<<VRBRAIN_STORAGE_LINE_SHIFT], n<<VRBRAIN_STORAGE_LINE_SHIFT) != n<<VRBRAIN_STORAGE_LINE_SHIFT) {
// write error - likely EINTR
_dirty_mask |= write_mask;
close(_fd);
_fd = -1;
perf_count(_perf_errors);
}
if (_dirty_mask == 0) {
if (fsync(_fd) != 0) {
close(_fd);
_fd = -1;
perf_count(_perf_errors);
}
}
}
perf_end(_perf_storage);
}
#endif // CONFIG_HAL_BOARD